Subject Code : 606 ▼ Section Code : -Select- ▼ Difficulty: 1 ▼

| Subject<br>Code | Q<br>Id | Questions                                                                                                                                                                                                                                                                                                     | Answer<br>Key |
|-----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 606             | 301     | A source $V_s(t) = V \cos 100\pi t$ has an internal impedance of $(4 + j3)\Omega$ . If a purely resistive load connected to this source has to extract the maximum power out of the source, its value in $\Omega$ should be  (A) 3  (B) 4  (C) 5  (D) 7                                                       | (C)           |
| 606             | 302     | In the circuit shown below, the value of $R_L$ such that the power transferred to $R_L$ is maximum is $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                                     | (C)           |
| 606             | 303     | For parallel RLC circuit, which one of the following statements is NOT correct?  (A) ������������������������������������                                                                                                                                                                                     | (D)           |
| 606             | 304     | In a simple DC circuit with a constant voltage, where the resistance increases current will  (A) Decrease  (B) Stop  (C) Increase  (D) Remain constant                                                                                                                                                        | (A)           |
| 606             | 305     | A fully charged mobile phone with a 12 V battery is good for a 10 minute talk-time. Assume that, during the talk-time the battery delivers a constant current of 2 A and its voltage drops linearly from 12 V to 10 V as shown in the figure. How much energy does the battery deliver during this talk-time? | (C)           |



|     | 11     |                                                                                                                                                                                                                                | m a |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |        | (A) 220 J                                                                                                                                                                                                                      |     |
|     |        | (B) 12 kJ                                                                                                                                                                                                                      |     |
|     |        | (C) 13.2 kJ                                                                                                                                                                                                                    |     |
|     |        | (D) 14.4 J                                                                                                                                                                                                                     |     |
| 606 | 306    | An independent voltage source in series with an impedance $Z_r = R_z + jX_z$ delivers a maximum average power to a load impedance $Z_L$ when  (A) $Z_L = Rs + jXs$ (B) $Z_r = Rs$ (C) $Z_L = jX_z$ (D) $Z_L = R_z - jX_z$      | (D) |
| 606 | 307    | The condition on $R$ , $L$ and $C$ such that the step response $y$ ( $t$ ) in the figure has no oscillations, is  (A) $R \geq \frac{1}{2} \sqrt{L/C}$ (B) $R \geq \sqrt{L/C}$ (C) $R \geq 2 \sqrt{L/C}$ (D) $R = 1/\sqrt{L/C}$ | (C) |
| 606 | 308    | Voltage follower can be used as a  (A) Peak detector  (B) Summer  (C) Impedance matcher  (D) Integrator                                                                                                                        | (C) |
|     | 309    |                                                                                                                                                                                                                                | (B) |
| 606 | 70.785 |                                                                                                                                                                                                                                |     |
| 606 |        |                                                                                                                                                                                                                                |     |



|     | 7   | A square pulse of 3 volts amplitude is applied to $C - R$ circuit shown in the figure. The capacitor is initially uncharged. The output voltage V2 at time $t = 2$ sec is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | 0.1μF<br>0.1μF<br>0 1 2 1kΩ 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|     |     | (A)<br>3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|     |     | (B)<br>-3 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |     | (C)<br>4 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|     |     | (D)<br>-4 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |     | Twelve 1 $\Omega$ resistance are used as edges to form a cube.<br>The resistance between two diagonally opposite corners of the cube is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     |     | $\frac{5}{6}\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 606 | 310 | ( <u>B</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (A) |
|     |     | 1Ω<br>(C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|     |     | $\frac{6}{5}\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|     |     | $\frac{3}{2}\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|     |     | The dependent current source shown in the figure  5 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 606 | 311 | $V_1 = 20 \text{ V} + 5 \Omega $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (A) |
|     |     | (A) delivers 80 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|     |     | (B) absorbs 80 W (C) delivers 40 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|     |     | (D) absorbs 40 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| 606 | 312 | A 2-port network is shown in the given figure.  The parameter $h_{21}$ for this network can be given by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (A) |
|     |     | The parameter $n_{21}$ for this network can be given by $+ \frac{I_1}{R} + \frac{R}{R} + \frac{I_2}{R} + \frac{I_3}{R} + \frac{I_4}{R} + \frac{I_5}{R} + \frac{I_5}{R$ |     |
|     |     | $V_1$ $R$ $V_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|     |     | (A) -1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |



|     | 1   | (B) =1/2                                                                                                                                                                                                                                                                                                                                                                                                                           | 1   |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (C) -3/2                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|     |     | (D) +3/2                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| 606 | 313 | Superposition theorem is NOT applicable to networks containing  (A) nonlinear elements  (B) dependent voltage sources  (C) dependent current sources                                                                                                                                                                                                                                                                               | (A) |
|     |     | (D) transformers                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 606 | 314 | A high-Q quartz crystal exhibits series resonance at the frequency $w_s$ and parallel resonance at the frequency $w_p$ . Then  (A) $w_s$ is very close to, but less than $w_p$ (B) $w_s << w_p$ (C) $w_s$ is very close to, but greater than $w_p$                                                                                                                                                                                 | (A) |
| 606 | 315 | The number of independent loops for a network with $n$ nodes and $b$ branches is  (A) $n-1$ (B) $b-n$ (C) $b-n+1$ (D) independent of the number of nodes                                                                                                                                                                                                                                                                           | (C) |
| 606 | 316 | In a forward biased pn junction diode, the sequence of events that best describes the mechanism of current flow is  (A) injection, and subsequent diffusion and recombination of minority carriers  (B) injection, and subsequent drift and generation of minority carriers  (C) extraction, and subsequent drift and generation of minority carriers  (D) extraction, and subsequent drift and recombination of minority carriers | (A) |
| 606 | 317 | In a MOSFET operating in the saturation region, the channel length modulation effect causes  (A) an increase in the gate-source capacitance  (B) a decrease in the transconductance  (C) a decrease in the unity-gain cutoff frequency  (D) a decrease in the output resistance                                                                                                                                                    | (D) |
| 606 | 318 | Thin gate oxide in a CMOS process is preferably grown using  (A) wet oxidation  (B) dry oxidation  (C) epitaxial oxidation  (D) ion implantation                                                                                                                                                                                                                                                                                   | (B) |
| 606 | 319 | The DC current gain (β) of a BJT is 50. Assuming that the emitter injection efficiency is 0.995, the base transport factor is  (A) 0.98  (B) 0.985                                                                                                                                                                                                                                                                                 | (B) |



|     | 1   | (C) 0.99                                                                                                                                                                                                                                                                                                                |     |
|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (D) 0.995                                                                                                                                                                                                                                                                                                               |     |
| 606 | 320 | The phenomenon known as "Early Effect" in a bipolar transistor refers to a reduction of the effective base-width caused by  (A) Electron - hole recombination at the base  (B) The reverse biasing of the base - collector junction  (C) The forward biasing of emitter-base junction                                   | (B) |
|     |     | (D) The early removal of stored base charge during saturation-to-cut off switching                                                                                                                                                                                                                                      |     |
| 606 | 321 | A MOS capacitor made using 'p' type substrate is in the accumulation mode. The dominan charge in the channel is due to the presence of  (A) holes  (B) electrons  (C) positively charged icons  (D) negatively charged ions                                                                                             | (B) |
| 606 | 322 | An n-type silicon bar 0.1 cm long and 100 µm² cross-sectional area has a majority carrier concentration of 5 × 10²0 / m² and the carrier mobility is 0.13 m²/V-s at 300 K. If the charge of an electron is 1.5 × 10⁻¹9 coulomb, then the resistance of the bar is  (A) 106 Ohm  (B) 104 Ohm  (C) 10-1 Ohm  (D) 10-4 Ohm | (A) |
| 606 | 323 | A particular green LED emits light of wavelength 5490 A° The energy band gap of the semiconductor material used there is (Plank's constant = 6.626 × 10 <sup>-34</sup> J – s)  (A) 2.26 eV  (B) 1.98 eV  (C) 1.17 Ev  (D) 0.74 eV                                                                                       | (A) |
| 606 | 324 | The static characteristic of an adequately forward biased $p$ - $n$ junction is a straight line, if the plot is of  (A) $\log I$ vs $\log V$ (B) $\log I$ vs $V$ (C) $I$ vs $\log V$ (D) $I$ vs $V$                                                                                                                     | (B) |
| 606 | 325 | In a bipolar transistor at room temperature, if the emitter current is doubled the voltage across its base-emitter junction  (A) doubles  (B) halves  (C) increases by about 20 mV  (D) decreases by about 20 mV                                                                                                        | (C) |



| 606 | 326 | The common-emitter short-circuit current gain b of a transistor $ (A) \text{ is a monotonically increasing function of the collector current } I_C $ $ (B) \text{ is a monotonically decreasing function of } I_C $ $ (C)                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C) |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 606 | 327 | For a MOS capacitor fabricated on a p-type semiconductor, strong inversion occurs when  (A) surface potential is equal to Fermi potential  (B) surface potential is zero  (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (D) |
| 606 | 328 | An n-channel JEFT has $I_{DSS}=2$ mA and $Vp=-4$ V. Its transconductance $g_m$ (in milliohm) for an applied gate-to-source voltage VGS of $-2$ V is  (A) 0.25  (B) 0.5  (C) 0.75  (D) 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) |
| 606 | 329 | If the transistor in the figure is in saturation, then $I_{C} \downarrow_{C}$ $I_{A} \downarrow_{B} \downarrow_{C}$ $I_{C} \downarrow_$ | (D) |
|     |     | (D) $IC$ is less than or equal to $eta_{dc} I_{\Box}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 606 | 330 | (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (C) |



|     |     | The $i$ - $\nu$ characteristics of the diode in the circuit given below are $\begin{pmatrix} \frac{v-0.7}{500}A & V \geq 0.7V \\ 0.4, & V < 0.7V \\ 1 & k\Omega \end{pmatrix}$ The current in the circuit is  (A) 10 mA  (B) 9.3 mA  (C) 6.67 mA  (D) 6.2 mA |     |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 606 | 332 | The circuit below implements a filter between the input current $i_i$ and the output voltage $v_o$ . Assume that the op-amp is ideal. The filter implemented is a  (A) low pass filter  (B) band pass filter  (C) band stop filter  (D) high pass filter     | (D) |
| 606 | 333 | In the following a stable multivibrator circuit, which properties of $v_0(t)$ depend on R2?  R <sub>i</sub> (A) Only the frequency  (B) Only the amplitude  (C) Both the amplitude and the frequency  (D) Neither the amplitude nor the frequency            | (A) |
| 606 | 334 |                                                                                                                                                                                                                                                              | (D) |



|     |     | In the circuit shown below, the op-amp is ideal, the transistor has $V_{BE} = 0.6 \text{ V}$ and $\beta = 150$ . Decide whether the feedback in the circuit is positive or negative and determine the voltage V at the output of the op-amp.  10 V  5 kΩ  (A) Positive feedback, $V = 10 \text{ V}$ (B) Positive feedback, $V = 0 \text{ V}$ (C) Negative feedback, $V = 5 \text{ V}$ (D) Negative feedback, $V = 2 \text{ V}$ |     |
|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 606 | 335 | The OPAMP circuit shown above represents a  C  R <sub>1</sub> R <sub>2</sub> R <sub>3</sub> (A) high pass filter  (B) low pass filter  (C) band pass filter  (D) band reject filter                                                                                                                                                                                                                                            | (B) |
| 606 | 336 | In a transconductance amplifier, it is desirable to have  (A) a large input resistance and a large output resistance  (B) a large input resistance and a small output resistance  (C) as small input resistance and a large output resistance  (D) a small input resistance and a small output resistance                                                                                                                      | (A) |
| 606 | 337 | For the BJT circuit shown, assume that the $\beta$ of the transistor is very large and $V_{SE}=0.7~\rm{V}$ . The mode of operation of the BJT is $10~\rm{k}\Omega$ (A) cut-off (B) saturation (C) normal active (D) reverse active                                                                                                                                                                                             | (B) |
| 606 | 338 |                                                                                                                                                                                                                                                                                                                                                                                                                                | (C) |



| Ť   |     | The voltage e0 is indicated in the figure has been measured                                                                                                                                                                                                                                                    |     |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | by an ideal voltmeter. Which of the following can be calculated? $1 \ \text{M}\Omega$ $1 \ \text{M}\Omega$ $1 \ \text{M}\Omega$                                                                                                                                                                                |     |
|     |     | (A) Bias current of the inverting input only  (B) Bias current of inverting and non-inverting input only                                                                                                                                                                                                       |     |
|     |     | (C) Input offset current only                                                                                                                                                                                                                                                                                  |     |
|     | 28  | (D) Both the bias currents and input offset current                                                                                                                                                                                                                                                            |     |
| 606 | 339 | Both transistors T1 and T2 show in the figure, have a $\beta = 100$ , threshold voltage of 1 Volts. The device parameters $K_1$ and $K_2$ of $T_1$ and $T_2$ are, respectively, $36 \mu A/V^2$ and $9 \mu A/V^2$ . The output voltage Vo i s  +5 V  (A) 1 V  (B) 2 V  (C) 3 V  (D) 4 V                         | (D) |
| 606 | 340 | Voltage series feedback (also called series-shunt feedback) results in  (A) increase in both input and output impedances  (B) decrease in both input and output impedances  (C) increase in input impedance and decrease in output impedance  (D) decrease in input impedance and increase in output impedance | (C) |
| 606 | 341 | The circuit shown in the figure is best described as a  (A) bridge rectifier  (B) ring modulator  (C) frequency discriminator  (D) voltage doubler                                                                                                                                                             | (D) |
| 606 | 342 | If the differential voltage gain and the common mode voltage gain of a differential amplifier are 48 dB and 2 dB                                                                                                                                                                                               | (C) |



|      | 11     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III. |
|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      |        | respectively, then common mode rejection ratio is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|      |        | (A) 23 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|      |        | (B) 25 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|      |        | (C) 46 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|      |        | (D) 50 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|      |        | Generally, the gain of a transistor amplifier falls at high frequencies due to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|      |        | (A) internal capacitances of the device                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| 606  | 343    | (B) coupling capacitor at the input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B)  |
|      |        | (C) skin effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      |        | (D) coupling capacitor at the output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|      |        | Three identical amplifiers with each one having a voltage gain of 50, input resistance of $1k\Omega$ and output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      |        | resistance of $250\Omega$ are cascaded. The opened circuit voltages gain of the combined amplifier is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|      | 700500 | (A) 49 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| 606  | 344    | (B) 51 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (C)  |
|      |        | (C) 98 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
|      |        | (D) 102 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| 606  | 345    | Assume that the op-amp of the figure is ideal. If $v_i$ is a triangular wave, then $v_0$ will be $V_i$ $V_i$ $V_o$ (A) square wave  (B) triangular wave  (C) parabolic wave  (D) sine wave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (A)  |
| 606  | 346    | If the op-amp in the figure has an input offset voltage of 5 mV and an open-loop voltage gain of 10000, then $v_0$ will be $v_0 = \frac{13.7}{13.7} = \frac{13.7}{13.$ | (C)  |
| 606  | 347    | A dc power supply has a no-load voltage of 30 V, and a full-load voltage of 25 V at a full-load current of 1 A. Its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B)  |
| 0.00 |        | output resistance and load regulation, respectively, are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |



|     |     | <ul> <li>(B) 25 Ω and 20%</li> <li>(C) 5 Ω and 16.7%</li> <li>(D) 25 Ω and 16.7%</li> </ul>                                                                                                                                                                                                                                                                                                    |     |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 606 | 348 | For full wave rectification, a four diode bridge rectifier is claimed to have the following advantages over a two diode circuit (1) less expensive transformer, (2) smaller size transformer, and (3) suitability for higher voltage application. Of these,  (A) only (1) and (2) are true  (B) only (1) and (3) are true  (C) only (2) and (3) are true  (D) (1), (2) as well as (3) are true | (D) |
| 606 | 349 | A zener diode in the circuit shown in the figure has a knee current of 5 mA, and a maximum allowed power dissipation of 300 mW. What are the minimum and maximum load currents that can be drawn safely from the circuit, keeping the output voltage $V_0$ constant at 6 V?   (A) 0 mA,180 mA  (B) 5 mA,110 mA  (C) 10 mA, 55 mA  (D) 60 mA,180 mA                                             | (C) |
| 606 | 350 | For small signal ac operation, a practical forward biased diode can be modelled as  (A) a resistance and a capacitance in series  (B) an ideal diode and resistance in parallel  (C) a resistance and an ideal diode in series  (D) a resistance                                                                                                                                               | (C) |
| 606 | 351 | The output Y of a 2-bit comparator is logic 1 whenever the 2-bit input A is greater than the 2-bit input B. The number of combinations for which the output is logic 1, is  (A) 4  (B) 6  (C) 8  (D) 10                                                                                                                                                                                        | (B) |
| 606 | 352 | The full form of the abbreviations TTL and CMOS in reference to logic families are  (A) Triple Transistor Logic and Chip Metal Oxide Semiconductor  (B) Tristate Transistor Logic and Chip Metal Oxide Semiconductor  (C) Transistor Transistor Logic and Complementary Metal Oxide Semiconductor  (D) Tristate Transistor Logic and Complementary Metal Oxide Silicon                         | (C) |
| 606 | 353 | What are the minimum number of 2- to -1 multiplexers required to generate a 2- input AND Gate and a 2-input Ex-OR gate  (A) 1 and 2                                                                                                                                                                                                                                                            | (A) |



| (8) 1 and 3   (C) 1 and 1   (D) 2 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T.          | 3) 1          | (D) 1 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | П           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| C)   2 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| X = 01110 and Y = 11001 are two \$ 5-bit biazy numbers represented in two's complement: format. The sum of X and Y represented in two's complement format using 6 bits is (A) 100111 (D) 10000 (C)   |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| and y represented in two's complement format using 6 bits is (A) 100111  (B) 10000 (C) 101001 (D) correction in key    Decimal 43 in Hexadecimal and BCD number system is respectively (A) B2, 0100 011 (C) 2B, 010 0011 (C) 2B, 010 1000 (D) B2, 0100 0011 (C) 2B, 011 0100 (D) B2, 0100 1000    A digital system is required to amplify a binary-encoded audio signal. The user should be able to control the gain of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is (A) 8 (B) 6 (C) 5 (D) 7    The minimum number of comparators required to build an 8-bits flash ADC is (A) 8 (A) 8 (B) 6 (C) 255 (D) 256    A 4 bit ripple counter and a bit synchronous counter are made using this flops having a propagation delay of 10 ms each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ms, S = 40 ms (C) R = 10 ms, S = 30 ms (D) R = 30 ms, S = 10 ms (C) R = 10 ms, S = 30 ms (D) R = 30 ms, S = 10 ms (C) R = (C) - 7 (D) - 8    (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               | (D) 2 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| 606   354   (ii) 10000   (iii) 10000   (iii) 10000   (iii) 10000   (iii) 10000   (iiii) 10000   (iiii) 10000   (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Columbia    |             |               | (A) 100111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Colorated and Received Proceedings   Colorated State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 606         | 354           | (B) 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (C)         |
| Decimal 43 in Hexadecimal and BCD number system is respectively (A) B2, 0100 011 (C) 2B, 0110 0100  B355 (B) 2B, 0100 0100  A digital system is required to amplify a binary-encoded audio signal. The user should be able to control the gain of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is (A) 8 (B) 6 (C) 5 (D) 7  The minimum number of comparators required to build an 8-bits flash ADC is (A) 8 (B) 63 (C) 255 (D) 256  (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 in seach. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (C) R = 10 ns, S = 40 ns (C) R = 10 ns, S = 10 ns  (B) A - 4 bit 2's complement representation of a decimal number is 1000. The number is (A) R = (A) |             |               | (C) 101001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| (A) B2, 010 011 (C) 2B, 0011 0100 (D) B2, 0100 0100  A digital system is required to amplify a binary-encoded audio signal. The user should be able to control the gain of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is  (A) 8 (B) 6 (C) 5 (D) 7  The minimum number of comparators required to build an 8-bits flash ADC is (A) 8 (B) 6 (C) 5 (D) 7  The minimum number of comparators required to build an 8-bits flash ADC is (A) 8  (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 in seach. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 as, S = 40 as (B) R = 40 as, S = 10 as (C) R = 10 as, S = 30 as (D) R = 30 as, S = 10 as (C) R = 10 as, S = 30 as (D) R = 30 as, S = 10 as (C) R = 10 as, S = 30 as (D) R = 30 as, S = 10 as (C) R = 10 as, S = 30 as (D) R = 30 as, S = 10 as (C) R = 10 as, S = 30 as (D) R = 30 as, S = 10 as (C) R = 10 as, S = 30 as (D) R = 30 as, S = 10 as (C) R = 10 as, S = 30 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S = 10 as (D) R = 30 as, S =   |             |               | (D) correction in key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| 606 355 (B) 2B, 0100 0011 (C) 2B, 0011 0100 (D) B2, 0100 (D) B2, 0100 (D) B2, 0100 (D) B2, 0100 (D) B2 |             |               | Decimal 43 in Hexadecimal and BCD number system is respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 606 355 (B) 2B, 0100 0011 (C) 2B, 0011 0100 (D) B2, 0100 (D) B2, 0100 (D) B2, 0100 (D) B2, 0100 (D) B2 |             |               | (A) B2, 0100 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| (C) 2B, 0011 0100 (D) B2, 0100 0100  A digital system is required to amplify a binary-eacoded audio signal. The user should be able to control the gain of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is  (A) 8 (B) 6 (C) 5 (D) 7  The minimum number of comparators required to build an 8-bits flash ADC is (A) 8 (B) 63 (C) 255 (D) 256  (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 as each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (C) R = 10 ns, S = 40 ns (C) R = 10 ns, S = 30 ns (C) R = 30 ns, S = 10 ns (C) R = 30 ns, S = 10 ns (C) R = 30 ns, S = 10 ns (C) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns, S = 10 ns (E) R = 30 ns (E)  | 606         | 355           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)         |
| CD   B2, 0100 0100   CD   B2, 0100 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| A digital system is required to amplify a binary-encoded audio signal. The user should be able to control the gain of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is  (A) 8 (B) 6 (C) 5 (D) 7  The minimum number of comparators required to build an 8-bits flash ADC is (A) 8 (B) 63 (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = 10 ns (D) R = 30 ns, S = |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to encode, in straight binary, is  (A) 8 (B) 6 (C) 5 (D) 7  The minimum number of comparators required to build an 8-bits flash ADC is (A) 8  (B) 63 (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns (C) -7 (D) -8  606  360  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 \( \oldsymbol{\phi}\). The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |               | (D) B2, 0100 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| 606   356   (B) 6   (C) 5   (D) 7    The minimum number of comparators required to build an 8-bits flash ADC is (A) 8   (C) 255   (D) 256   (D) 25 |             |               | of the amplifier from minimum to a maximum in 100 increments. The minimum number of bits required to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| (B) 6 (C) 5 (D) 7  The minimum number of comparators required to build an 8-bits flash ADC is (A) 8  (B) 63 (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ans each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  606  359 (B) 0 (C) -7 (D) -8  (D)  606  360 An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 <b>\Phi</b> . The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 606         | 256           | (A) 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (m)         |
| The minimum number of comparators required to build an 8-bits flash ADC is (A) 8  (B) 63 (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  (B) 0 (C) -7 (D) -8  (B) (C) (C) (C) (C) (D) (C) (D) (D) (C) (C) (D) (D) (C) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D                                                                                                                                                                                                                                                                                                                                                                                        | 606         | 336           | (B) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D)         |
| The minimum number of comparators required to build an 8-bits flash ADC is  (A) 8  (B) 63 (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then  (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  (A) +8  (B) 0 (C) -7 (D) -8  (D)  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for a a V linput will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |               | (C) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| (A) 8 (B) 63 (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  606 359 (B) 0 (C) -7 (D) -8  606 An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 \( \oldsymbol{\Phi} \). The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |               | (D) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| (A) 8 (B) 63 (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  606 359 (B) 0 (C) -7 (D) -8  606 An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 \( \oldsymbol{\Phi} \). The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | į.          |               | The sixty of the Community of the Control of the Co |             |
| 606 357 (B) 63 (C) 255 (D) 256 (D) 25  |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| (C) 255 (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  (B) 0 (C) -7 (D) -8  CD An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 ◆s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2011/4/90/2 | 29/2007/04/20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500,500,500 |
| (D) 256  A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then  (A) R = 10 ns, S = 40 ns  (B) R = 40 ns, S = 10 ns  (C) R = 10 ns, S = 30 ns  (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is  (A) +8  (B) 0  (C) -7  (D) -8  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 ◆s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 606         | 357           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C)         |
| A 4 bit ripple counter and a bit synchronous counter are made using flip flops having a propagation delay of 10 ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then  (A) R = 10 ns, S = 40 ns  (B) R = 40 ns, S = 10 ns  (C) R = 10 ns, S = 30 ns  (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is  (A) +8  606  359  (B) 0  (C) -7  (D) -8  (D)  606  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20  s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |               | (C) 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| ns each. If the worst case delay in the ripple counter and the synchronous counter be R and S respectively, then  (A) R = 10 ns, S = 40 ns  (B) R = 40 ns, S = 10 ns  (C) R = 10 ns, S = 30 ns  (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is  (A) +8  (B) 0  (C) -7  (D) -8  (D)  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20  s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               | (D) 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| (A) R = 10 ns, S = 40 ns (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  (B) 0 (C) -7 (D) -8  (D)  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20  . The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| (B) (B) R = 40 ns, S = 10 ns (C) R = 10 ns, S = 30 ns (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  (B) (B) (C) -7 (D) -8  (D) (C) -7 (D) -8  (B) (B) (B) (C) -7 (D) -8  (D) (C) -7 (D) -8  (E) (B) (B) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| (C) R = 10 ns, S = 10 ns (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  (B) B = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  (B) C (C) -7 (D) -8  (D)  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20  s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 606         | 358           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)         |
| (D) R = 30 ns, S = 10 ns  4 - bit 2's complement representation of a decimal number is 1000. The number is (A) +8  (B) 0 (C) -7 (D) -8  (D)  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000         | 330           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| 4 - bit 2's complement representation of a decimal number is 1000. The number is  (A) +8  (B) 0  (C) -7  (D) -8  (D)  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               | (C) $R = 10 \text{ ns}, S = 30 \text{ ns}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| (A) +8  (B) 0  (C) -7  (D) -8  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20  s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |               | (D) $R = 30 \text{ ns}, S = 10 \text{ ns}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 606   359   (B) 0   (C) −7   (D) −8     |             |               | 4 - bit 2's complement representation of a decimal number is 1000. The number is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| 606 359 (B) 0 (D)  (C) -7 (D) -8  606 360 An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 ♠s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |               | (A) +8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| (C) -7 (D) -8  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 ❖s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 606         | 359           | 51 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (D)         |
| (D) -8  An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20  s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| An 8 bit successive approximation analog to digital communication has full scale reading of 2.55 V and its conversion time for an analog input of 1 V is 20 �s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| conversion time for an analog input of 1 V is 20 �s. The conversion time for a 2 V input will be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 606         | 360           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)         |
| (A) 10 <b>V</b> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L           |               | (V) 10 <b>A</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |



|     |     | (B) 20 <b>♦</b> s                                                                                                                                                                                                               |     |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (C) 40 <b>♦</b> s                                                                                                                                                                                                               |     |
|     |     | (D) 50 <b>�</b> s                                                                                                                                                                                                               |     |
|     |     | The resolution of a 4-bit counting ADC is 0.5 volts. For an analog input of 6.6 volts, the digital output of the ADC will be                                                                                                    |     |
|     |     | (A) 1011                                                                                                                                                                                                                        |     |
| 606 | 361 | (B) 1101                                                                                                                                                                                                                        | (B) |
|     |     | (C) 1100                                                                                                                                                                                                                        |     |
|     |     | (D) 1110                                                                                                                                                                                                                        |     |
|     |     | Two 2's complement number having sign bits 'x' and 'y' are added and the sign bit of the result is z. Then, the occurrence of overflow is indicated by the Boolean function                                                     |     |
|     |     | (A)<br>xyz                                                                                                                                                                                                                      |     |
| 606 | 362 | $\frac{(B)}{xyz}$                                                                                                                                                                                                               | (D) |
|     |     | $\frac{(C)}{xyz + xy\overline{z}}$                                                                                                                                                                                              |     |
|     |     | (D)<br>xy + yz + zx                                                                                                                                                                                                             |     |
|     |     | The advantage of using a dual slope ADC in a digital voltmeter is that                                                                                                                                                          |     |
|     |     | (A) its conversion time is small                                                                                                                                                                                                |     |
| 606 | 363 | (B) its accuracy is high                                                                                                                                                                                                        | (B) |
|     |     | (C) it gives output in BCD format                                                                                                                                                                                               |     |
|     |     | (D) it does not require a                                                                                                                                                                                                       |     |
|     |     | A dynamic RAM cell which hold 5 V has to be refreshed every 20 m sec, so that the stored voltage does not fall by more than 0.5 V. If the cell has a constant discharge current of 1 pA, the storage capacitance of the cell is |     |
|     |     | (A)                                                                                                                                                                                                                             |     |
|     |     | $4 \times 10^{-6} \mathrm{F}$                                                                                                                                                                                                   |     |
| 606 | 364 | (B) $4 \times 10^{-9} \text{ F}$                                                                                                                                                                                                | (D) |
|     |     | (C)                                                                                                                                                                                                                             |     |
|     |     | $4 \times 10^{-12} \text{ F}$                                                                                                                                                                                                   |     |
|     |     | (D) $4 \times 10^{-15} \text{ F}$                                                                                                                                                                                               |     |
|     |     | A memory system of size 26 K bytes is required to be designed using memory chips which have 12 address lines and 4 data lines each. The number of such chips required to design the memory system is                            |     |
|     |     | (A) 2                                                                                                                                                                                                                           |     |
| 606 | 365 | (B) 4                                                                                                                                                                                                                           | (D) |
|     |     | (C) 8                                                                                                                                                                                                                           |     |
|     |     | (D) 13                                                                                                                                                                                                                          |     |
| 606 | 366 | A band-limited signal with a maximum frequency of 5 kHz is to be sampled. According to the sampling theorem, the sampling frequency which is not valid is                                                                       | (A) |
|     |     | (A) 5 kHz                                                                                                                                                                                                                       |     |
|     |     | (B) 12 kHz                                                                                                                                                                                                                      |     |



| f   | 11 I |                                                                                                                                                                                                                                                                                                   | II. |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |      | (C) 15 kHz                                                                                                                                                                                                                                                                                        |     |
|     |      | (D) 20 kHz                                                                                                                                                                                                                                                                                        |     |
| 606 | 367  | The input $x(t)$ and output $y(t)$ of a system are related as $y(t) = \int_{-\infty}^{t} x(\tau) Cos \left(3\cos(3\tau) d\tau\right)$ . The system is  (A) time-invariant and stable  (B) stable and not time-invariant  (C) time-invariant and not stable  (D) not time-invariant and not stable | (D) |
| 606 | 368  | A system is defined by its impulse response $h(n) = 2^n u(n-2)$ .  The system is  (A) stable and causal  (B) causal but not stable  (C) stable but not causal  (D) unstable and non-causal                                                                                                        | (B) |
| 606 | 369  | The unit impulse response of a system is $f(t) = e^{-t}$ , $t \ge 0$ .<br>For this system the steady-state value of the output for unit step input is equal to  (A) -1  (B) 0  (C) 1  (D) $\infty$                                                                                                | (C) |
| 606 | 370  | The power in the signal $s(t) = 8\cos(20\pi - \frac{\pi}{2}) + 4\sin(15\pi t)$ is  (A) 40  (B) 41  (C) 42  (D) 82                                                                                                                                                                                 | (A) |
| 606 | 371  | The Fourier transform of a conjugate symmetric function is always  (A) imaginary  (B) conjugate anti-symmetric  (C) real  (D) conjugate symmetric                                                                                                                                                 | (C) |
| 606 | 372  | The Laplace transform of $i(t)$ is given by $i(s) = \frac{2}{s(s+1)}$ At $t \to \infty$ the value of $i(t)$ becomes  (A) 0  (B) 1  (C) 2                                                                                                                                                          | (C) |



|     | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (D) 3                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 606 | 373 | Convolution of $x$ ( $t+5$ ) with impulse function $\partial(t-7)$ is equal to  (A) $x(t-12)$ (B) $x(t+12)$ (C) $x(t-2)$ (D) $x(t+2)$                                                                                                                                                                                                                                                                                                  | (C) |
| 606 | 374 | If a signal $f(t)$ has energy E, the energy of the signal $f(2t)$ is equal to  (A) 1  (B) E/2  (C) 2E  (D) 4E                                                                                                                                                                                                                                                                                                                          | (B) |
| 606 | 375 | <ul> <li>A signal x (t) has a Fourier transform X(ω).</li> <li>If x (t) is a real and odd function of t, then X(ω) is</li> <li>(A) a real and even function of ω</li> <li>(B) a imaginary and odd function of ω</li> <li>(C) an imaginary and even function of ω</li> <li>(D) a real and odd function of ω</li> </ul>                                                                                                                  | (A) |
| 606 | 376 | The return loss of a device is found to be 20 dB. The voltage standing wave ratio (VSWR) and magnitude of reflection coefficient are respectively  (A) 1.22 and 0.1  (B) 0.81 and 0.1  (C) - 1.22 and 0.1  (D) 2.44 and 0.2                                                                                                                                                                                                            | (A) |
| 606 | 377 | A plane wave propagating in air with $E(8a_x + 6a_y + 5a_z)e^{j(\omega t + 3x - 4y)}V/m$ is incident on a perfectly conducting slab positioned at $x \le 0$ . The $E$ field of the reflected wave is  (A) $(-8a_x - 6a_y - 5a_z)e^{j(\omega t + 3x + 4y)}V/m$ (B) $(-8a_x + 6a_y - 5a_z)e^{j(\omega t + 3x + 4y)}-V/m$ (C) $(-8a_x - 6a_y - 5a_z)e^{j(\omega t - 3x - 4y)}V/m$ (D) $(-8a_x + 6a_y - 5a_z)e^{j(\omega t - 3x - 4y)}V/m$ | (C) |
| 606 | 378 |                                                                                                                                                                                                                                                                                                                                                                                                                                        | (A) |



|     |     | The radiation pattern of an antenna in spherical co-ordinates is given by $F(\Theta)=\cos^4\Theta$ ; $0 \le 0 \le \pi/2$ . The directivity of the antenna is                                                                                                                                                     |     |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (A) 10 dB                                                                                                                                                                                                                                                                                                        |     |
|     |     | (B) 12.6 dB                                                                                                                                                                                                                                                                                                      |     |
|     |     | (C) 11.5 dB<br>(D) 18 dB                                                                                                                                                                                                                                                                                         |     |
|     |     | (D) 18 GD                                                                                                                                                                                                                                                                                                        |     |
|     |     | A transmission line with a characteristic impedance of 100 $\Omega$ is used to match a 50 $\Omega$ section to a 200 $\Omega$ section. If the matching is to be done both at 429MHz and 1GHz, the length of the transmission line can be approximately                                                            |     |
|     |     | (A) 82.5 cm                                                                                                                                                                                                                                                                                                      |     |
| 606 | 379 | (B) 1.05m                                                                                                                                                                                                                                                                                                        | (C) |
|     |     | (C) 1.58 cm                                                                                                                                                                                                                                                                                                      |     |
|     |     | (D) 1.75m                                                                                                                                                                                                                                                                                                        |     |
|     |     | A transmission line of characteristic impedance $50\Omega$ is terminated by a $50\Omega$ load. When excited by a sinusoidal voltage source at 10 GHz, the phase difference between two points spaced 2 mm apart on the line is found to be $\pi/4$ radians. The phase velocity of the wave along the line is     |     |
| 606 | 380 | (A) $0.8 \Leftrightarrow 10^8 \text{m/s}$                                                                                                                                                                                                                                                                        | (C) |
| 000 | 360 | (B) 1.2 ◆ 10 <sup>8</sup> m/s                                                                                                                                                                                                                                                                                    | (0) |
|     |     | (C) $1.6 	 10^8 \text{m/s}$                                                                                                                                                                                                                                                                                      |     |
|     |     | (D) $3 \diamondsuit 10^8 \text{m/s}$                                                                                                                                                                                                                                                                             |     |
| 606 | 381 | A transmission line has a characteristic impedance of 50 Ω and a resistance of 0.1 Ω/m. If the line is distortion less, the attenuation constant (in Np/m) is  (A) 500  (B) 5  (C) 0.014  (D) 0.002                                                                                                              | (D) |
| 606 | 382 | The electric field component of a time harmonic plane EM wave traveling in a nonmagnetic lossless dielectric medium has an amplitude of 1 V/m. If the relative permittivity of the medium is 4, the magnitude of the time-average power density vector (in W/m2) is  (A)  (B)  (B)  (C)  (C)  (C)  (D)  (A)  (C) | (C) |
| 606 | 383 | (D) $\frac{1}{240\pi}$ For a Hertz dipole antenna, the half power beam width (HPBW) in the <i>E</i> -plane is                                                                                                                                                                                                    | (C) |
|     |     | (A) 360°                                                                                                                                                                                                                                                                                                         |     |
|     |     |                                                                                                                                                                                                                                                                                                                  |     |



|     |        | (C) 90°                                                                                                                                                                                                       |       |
|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     |        | (D) 45°                                                                                                                                                                                                       |       |
|     |        | A uniform plane wave in the free space is normally incident on an infinitely thick dielectric slab (dielectric constant $\mathcal{E} = 9$ ). The magnitude of the reflection coefficient is                   |       |
| 606 | 384    | (A) 0                                                                                                                                                                                                         | (C)   |
| 000 | 304    | (B) 0.3                                                                                                                                                                                                       | (C)   |
|     |        | (C) 0.5                                                                                                                                                                                                       |       |
|     |        | (D) 0.8                                                                                                                                                                                                       |       |
|     |        | In the design of a single mode step index optical fibre close to upper cut-off, the single-mode operation is not preserved if                                                                                 |       |
| 200 |        | (A) radius as well as operating wavelength are halved                                                                                                                                                         |       |
| 506 | 385    | (B) radius as well as operating wavelength are doubled                                                                                                                                                        | (B)   |
|     |        | (C) radius is halved and operating wavelength is doubled                                                                                                                                                      |       |
|     |        | (D) radius is doubled and operating wavelength is halved                                                                                                                                                      | J.,   |
|     |        | The electric field of an electromagnetic wave propagation in the positive direction is given by $E=\hat{\mathbf{a}}_x\sin(\omega t-\beta z)+\hat{\mathbf{a}}_y\sin(\omega t-\beta z+\pi/2)$ . The wave is     |       |
| 506 | 386    | (A) Linearly polarized in the z-direction                                                                                                                                                                     | (C)   |
|     |        | (B) Elliptically polarized                                                                                                                                                                                    |       |
|     |        | (C) Left-hand circularly polarized                                                                                                                                                                            |       |
|     |        | (D) Right-hand circularly polarized                                                                                                                                                                           |       |
|     |        | A transmission line is feeding 1 watt of power to a horn antenna having a gain of 10 dB. The antenna is matched to the transmission line. The total power radiated by the horn antenna into the free space is |       |
|     | 200.00 | (A) 10 Watts                                                                                                                                                                                                  | -0.00 |
| 606 | 387    | (B) 1 Watts                                                                                                                                                                                                   | (A)   |
|     |        | (C) 0.1 Watts                                                                                                                                                                                                 |       |
|     |        | (D) 0.01 Watt                                                                                                                                                                                                 |       |
|     |        | A rectangular wave guide having $TE_{10}$ mode as dominant mode is having a cut off frequency 18 GHz for the mode $TE_{30}$ . The inner broad-wall dimension of the rectangular wave guide is                 |       |
|     |        | (A) 5/3 cm                                                                                                                                                                                                    |       |
| 606 | 388    | (B) 5 cm                                                                                                                                                                                                      | (C)   |
|     |        | (C) 5/2 cm                                                                                                                                                                                                    |       |
|     |        | (D) 10cm                                                                                                                                                                                                      |       |
|     |        | Refractive index of glass is 1.5. Find the wavelength of a beam of light with frequency of 1014 Hz in glass.  Assume velocity of light is 3 • 108 m/s in vacuum                                               |       |
|     |        | (A) 3 • m                                                                                                                                                                                                     |       |
| 606 | 389    | (B) 3 mm                                                                                                                                                                                                      | (C)   |
|     |        | (C) 2 •m                                                                                                                                                                                                      |       |
|     |        | (D) 1 mm                                                                                                                                                                                                      |       |
|     |        |                                                                                                                                                                                                               | II    |



|     | 11  | by the antenna will be                                                                                                                                                                                                                                                                                                                                                                                              | 11  |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (A) 4 mW                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|     |     | (B) 1 mW                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |     | (C) 7 mW                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |     | (D) 1/4 mW                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| 606 | 391 | A plane electromagnetic wave propagating in freespace is incident normally on a large slab of loss-less, non-magnetic, dielectric material with $E > E0$ . Maxima and minima are observed when the electric field is measured in front of the slab. The maximum electric field is found to be 5 times the minimum field. The intrinsic impedance of the medium should be $(A)\ 120\ \pi\Omega$ $(B)\ 60\ \pi\Omega$ | (D) |
|     |     | (C) $600 \pi\Omega$                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|     |     | (D) $24 \pi\Omega$                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 606 | 392 | The depth of penetration of electromagnetic wave in a medium having conductivity '\sigma' at a frequency of 1 MHz is 25 cm. The depth of penetration at a frequency of 4 MHz will be  (A) 6.25 dm  (B) 12.50 cm  (C) 50.00 cm  (D) 100.00 cm                                                                                                                                                                        | (B) |
| 606 | 393 | A uniform plane wave traveling in air is incident on the plane boundary between air and another dielectric medium with $\mathcal{E}_r$ = 4. The reflection coefficient for the normal incidence, is  (A) Zero  (B) $0.5 \angle 180.0$ (C) $0.333 \angle 0.0$ (D) $0.333 \angle 180.0$                                                                                                                               | (D) |
| 606 | 394 | The VSWR can have any value between (A) 0 and 1 (B) $-1$ and $+1$ (C) 0 and $\infty$ (D) 1 and $\infty$                                                                                                                                                                                                                                                                                                             | (D) |
| 606 | 395 | A person with receiver is 5 Km away from the transmitter. What is the distance that this person must move further to detect a 3-dB decrease in signal strength?  (A) 942 m  (B) 2070 m  (C) 4978 m  (D) 5320 m                                                                                                                                                                                                      | (B) |
| 606 | 396 | A material has conductivity of 10 <sup>-2</sup> mho/m and a relative permittivity of 4. The frequency at which the conduction current in the medium is equal to the displacement current is  (A) 45 MHz  (B) 90 MHz                                                                                                                                                                                                 | (A) |



|     |     | (C) 450 MHz<br>(D) 900 MHz                                                                                                                                                                                                                                                                         |     |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 606 | 397 | A uniform plane electromagnetic wave incident on a plane surface of a dielectric material is reflected with a VSWR of 3. What is the percentage of incident power that is reflected?  (A) 0.1  (B) 0.25  (C) 0.5  (D) 0.75                                                                         | (B) |
| 606 | 398 | The depth of penetration of wave in a lossy dielectric increases with increasing  (A) conductivity  (B) permeability  (C) wavelength  (D) permittivity                                                                                                                                             | (C) |
| 606 | 399 | Some unknown material has a conductivity of 10 <sup>6</sup> mho/m and a permeability of $4\pi \times 10^{-7}$ H/m. The skin depth for the material at 1GHz is  (A) 15.9 m  (B) 20.9 m  (C) 25.9 m  (D) 30.9 m                                                                                      | (A) |
| 606 | 400 | A lossless transmission line having $50\Omega$ characteristic impedance and length $\lambda/4$ is short circuited at one end and connected to an ideal voltage source of 1 V at the other end. The current drawn from the voltage source is  (A) 0  (B) 0.02 A  (C) $\infty$ (D) None of the above | (A) |
| 606 | 401 | If $R(\zeta)$ is the auto correlation function of a real, wide-sense stationary random process, then which of the following is NOT true  (A) $R(\zeta) = R(-\zeta)$ (B) $R(\zeta) \leq R(0)$ (C) $R(\zeta) = -R(-\zeta)$ (D)  The mean square value of the process is $R(0)$                       | (C) |



|             |     | If S (f) is the power spectral density of a real, wide-sense stationary random process, then which of the following is ALWAYS true?                                                                                                                         |     |
|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|             |     | $S(0) \leq S(f)$                                                                                                                                                                                                                                            |     |
|             |     | $S(f) \ge 0$                                                                                                                                                                                                                                                |     |
|             |     | S(-f) = -S(f)                                                                                                                                                                                                                                               |     |
|             |     | $\int_{-\infty}^{\infty} S(f)df = 0$                                                                                                                                                                                                                        |     |
|             |     | If $E$ denotes expectation, the variance of a random variable $X$ is given by                                                                                                                                                                               |     |
| <b>CDC</b>  | 102 | (A) $E[X^2] - E^2[X]$<br>(B) $E[X^2] + E^2[X]$                                                                                                                                                                                                              | /AN |
| 606         | 403 | (B) $E[X^2] + E^2[X]$<br>(C) $E[X^2]$                                                                                                                                                                                                                       | (A) |
|             |     | (D) $E^{2}[X]$                                                                                                                                                                                                                                              |     |
|             |     | A zero-mean white Gaussian noise is passes through an ideal low pass filter of bandwidth 10 kHz. The output is then uniformly sampled with sampling period $ts = 0.03$ msec. The samples so obtained would be                                               |     |
|             |     | (A) correlated                                                                                                                                                                                                                                              |     |
| 606         | 404 | (B) statistically independent                                                                                                                                                                                                                               | (A) |
|             |     | (C) uncorrelated                                                                                                                                                                                                                                            |     |
|             |     | (D) orthogonal                                                                                                                                                                                                                                              |     |
|             |     | A 1 mW video signal having a bandwidth of 100 MHz is transmitted to a receiver through cable that has 40 dB loss. If the effective one-side noise spectral density at the receiver is $10^{-20}$ Watt/Hz, then the signal-to-noise ratio at the receiver is |     |
| 606         | 405 | (A) 50 dB                                                                                                                                                                                                                                                   | (A) |
|             | 403 | (B) 30 dB                                                                                                                                                                                                                                                   | (.7 |
|             |     | (C) 40 dB                                                                                                                                                                                                                                                   |     |
|             |     | (D) 60 dB                                                                                                                                                                                                                                                   |     |
|             |     | Two sinusoidal signals of same amplitude and frequencies 10 kHz and 10.1 kHz are added together. The combined signal is given to an ideal frequency detector. The output of the detector is                                                                 |     |
| 606         | 406 | (A) 0.1 kHz sinusoid                                                                                                                                                                                                                                        | (A) |
| 000         | 400 | (B) 20.1 kHz sinusoid                                                                                                                                                                                                                                       | (A) |
|             |     | (C) a linear function of time                                                                                                                                                                                                                               |     |
|             |     | (D) a constant                                                                                                                                                                                                                                              |     |
|             |     | The noise at the input to an ideal frequency detector is white. The detector is operating above threshold. The power spectral density of the noise at the output is                                                                                         |     |
| <b>CO</b> 5 | 7.2 | (A) raised-cosine                                                                                                                                                                                                                                           | 200 |
| 606         | 407 | (B) flat                                                                                                                                                                                                                                                    | (C) |
|             |     | (C) parabolic                                                                                                                                                                                                                                               |     |
|             |     | (D) Gaussian                                                                                                                                                                                                                                                |     |



| 606 | 408 |                                                                                                                                                                                                          | (D) |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | Let $X$ and $Y$ be two statistically independent random variables uniformly distributed in the ranges $(-1,1)$ and $(-2,1)$ respectively. Let $Z = X \div Y$ . Then the probability that $(z \le -1)$ is |     |
|     |     | (A) zero                                                                                                                                                                                                 |     |
|     |     | (B)                                                                                                                                                                                                      |     |
|     |     | $\frac{1}{6}$                                                                                                                                                                                            |     |
|     |     | $ \begin{array}{c} \text{(C)} \\ \frac{1}{3} \end{array} $                                                                                                                                               |     |
|     |     |                                                                                                                                                                                                          |     |
|     |     | $ \begin{array}{c} \text{(D)} \\ \frac{1}{12} \end{array} $                                                                                                                                              |     |
|     |     | 12                                                                                                                                                                                                       |     |
|     |     | Let Y and Z be the random variable obtained by sampling $X(t)$ at $t = 2$ and $t = 4$ respectively.                                                                                                      |     |
|     |     | Let $W = Y - Z$ . The variance of W is                                                                                                                                                                   |     |
| 606 | 409 | (A) 13.36                                                                                                                                                                                                | (C) |
|     |     | (B) 9.36<br>(C) 2.64                                                                                                                                                                                     |     |
|     |     | (D) 8                                                                                                                                                                                                    |     |
|     |     | The line-of-sight communication requires the transmit and receive antennas to face each other. If the transmit antenna is vertically polarized, for best reception the receiver antenna should be        |     |
|     |     | (A) horizontally polarized                                                                                                                                                                               |     |
| 606 | 410 | (B) vertically polarized                                                                                                                                                                                 | (B) |
|     |     | (C) at 45° with respect to horizontal polarization                                                                                                                                                       |     |
|     |     | (D) at 45° with respect to vertical polarization                                                                                                                                                         |     |
|     |     | A band-limited signal with a maximum frequency of 5 kHz is to be sampled. According to the sampling theorem, the sampling frequency, which is not valid, is                                              |     |
| 606 | 411 | (A) 5 kHz                                                                                                                                                                                                | (A) |
| 000 | 411 | (B) 12 kHz<br>(C) 15 kHz                                                                                                                                                                                 | (A) |
|     |     | (D) 20 kHz                                                                                                                                                                                               |     |
| 606 | 412 |                                                                                                                                                                                                          | (A) |
|     |     | The PDF of a Gaussian random variable X is given by $p_x(X) = \frac{1}{3\sqrt{2\pi}} e^{\frac{(X-4)^2}{2S}}$ . The probability                                                                           |     |
|     |     | of the event $\{X=4\}$ is                                                                                                                                                                                |     |
|     |     | (A)<br>1                                                                                                                                                                                                 |     |
|     |     | $\frac{1}{2}$                                                                                                                                                                                            |     |
|     |     | $\frac{1}{3\sqrt{2\pi}}$                                                                                                                                                                                 |     |
|     |     |                                                                                                                                                                                                          |     |
|     |     | (C)                                                                                                                                                                                                      |     |



| f   | H 1 |                                                                                                                        | II. |
|-----|-----|------------------------------------------------------------------------------------------------------------------------|-----|
|     |     |                                                                                                                        |     |
|     |     | (D)<br>1/4                                                                                                             |     |
|     |     | *                                                                                                                      |     |
|     |     | The amplitude spectrum of a Gaussian pulse is                                                                          |     |
|     |     | (A) uniform                                                                                                            |     |
| 606 | 413 | (B) a sine function                                                                                                    | (C) |
|     |     | (C) Gaussian                                                                                                           |     |
|     |     | (D) an impulse function                                                                                                |     |
|     |     |                                                                                                                        |     |
|     |     | The Fourier transform of a voltage signal $x(t)$ is $X(t)$ . The unit of $X(t)$ is                                     |     |
|     |     | (A) volt                                                                                                               |     |
| 606 | 414 | (B) volt-sec                                                                                                           | (A) |
|     |     | (C) volt/sec                                                                                                           |     |
|     |     | (D)                                                                                                                    |     |
|     |     | $\operatorname{vol} t^2$                                                                                               |     |
|     |     | The auto correlation function of an energy signal has                                                                  |     |
|     |     | (A) no symmetry                                                                                                        |     |
| 606 | 415 | (B) conjugate symmetry                                                                                                 | (D) |
|     |     | (C) odd symmetry                                                                                                       |     |
|     |     | (D) even symmetry                                                                                                      |     |
|     |     |                                                                                                                        |     |
|     |     | If $x=\sqrt{-1}$ , then the value of $x^x$ is                                                                          |     |
|     |     | (A)                                                                                                                    |     |
|     |     | $e^{-\pi/2}$                                                                                                           |     |
| 606 | 416 | $e^{\pi/2}$                                                                                                            | (A) |
|     |     |                                                                                                                        |     |
|     |     | (C)<br>x                                                                                                               |     |
|     |     | (D)<br>1                                                                                                               |     |
|     |     | 1                                                                                                                      |     |
|     |     | A fair dice is tossed two times. The probability that the second toss results in a value that is higher than the first |     |
|     |     | toss is                                                                                                                |     |
| 606 | 417 | (A) 2/36                                                                                                               | (D) |
| 000 | 717 | (B) 2/6                                                                                                                | (D) |
|     |     | (C) 5/12                                                                                                               |     |
|     |     | (D) •                                                                                                                  |     |
| 606 | 418 | $d^{2y}$ , $dy$ , $dy$                                                                                                 | (B) |
|     |     | The order of the differential equation $\frac{d^{2y}}{dt} + (\frac{dy}{dt})^3 \div y^4 = e^{-t}$ is                    |     |
|     |     | (A) 1                                                                                                                  |     |
|     |     | (B) 2                                                                                                                  |     |
|     |     |                                                                                                                        |     |



|     | 1   | (C) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (D) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| 606 | 419 | The system of linear equations $4x + 2y = 7$ $2x + y = 6$ Has  (A) a unique solution (B) no solution  (C) an infinite number of solutions  (D) exactly two distinct solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B) |
| 606 | 420 | A probability density function is of the form $p(x) = Ke^{-\alpha(x)}$ , $x \in (-\infty, \infty)$ .  The value of $K$ is  (A) 0.5  (B) 1  (C) 0.5a  (D) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C) |
| 606 | 421 | Three Capacitors $C_1$ , $C_2$ and $C_3$ whose values are $10~\mu\text{F}$ , $5\mu\text{F}$ , $2\mu\text{F}$ respectively have breakdown $10\text{V}$ , $5\text{V}$ and $2\text{V}$ respectively. For the interconnection shown below the maximum safe voltage in Volts that can be applied across the combination, and the corresponding total charge in $\mu\text{C}$ stored in the effective capacitance across the terminals are respectively $\begin{array}{cccc} C_2 & C_3 \\ \hline & C_2 & C_3 \\ \hline & C_4 \\ \hline & C_4 \\ \hline & C_5 & C_3 \\ \hline & C_6 \\ \hline & C_7 & C_8 \\ \hline & C_8 \\ \hline & C_9 & C_9 \\ \hline & C_$ | (C) |
| 606 | 422 | The average power delivered to an impedance (4-j3)Ω by a current 5 cos(100pt + 100) A is  (A) 44.2W  (B) 50W  (C) 62.5W  (D) 125W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) |
| 606 | 423 | In a series $RLC$ circuit, $R=2$ k $\Omega$ , $L=1$ H, and $C=1/400\mu$ F. The resonant frequency is  (A) $2\times10^4\text{Hz}$ (B) $1/\pi\times10^4\text{Hz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (B) |



| F   | 1   |                                                                                                                                                                                                                                                                            | II. |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (C)<br>10 <sup>4</sup> Hz                                                                                                                                                                                                                                                  |     |
|     |     | $(D) 2\pi \times 10^4 Hz$                                                                                                                                                                                                                                                  |     |
|     |     | The first and the last critical frequency of an RC -driving point impedance function must respectively be  (A) a zero and a pole                                                                                                                                           |     |
| 606 | 424 | (B) a zero and a zero (C) a pole and a pole (D) a pole and a zero                                                                                                                                                                                                          | (C) |
|     |     | A source of angular frequency 1 rad/sec has a source impedance consisting of $1\Omega$ resistance in series with 1 H inductance. The load that will obtain the maximum power transfer is                                                                                   |     |
| 606 | 425 | <ul> <li>(A) 1 Ω resistance</li> <li>(B) 1 Ω resistance in parallel with 1 H inductance</li> </ul>                                                                                                                                                                         | (C) |
|     |     | <ul> <li>(C) 1 Ω resistance in series with 1 F capacitor</li> <li>(D) 1 Ω resistance in parallel with 1 F capacitor</li> </ul>                                                                                                                                             |     |
|     |     | A series RLC circuit has a resonance frequency of 1khz and a quality factor Q=100, If each of R,L and C is doubled from its original value, the new Q of the circuit is                                                                                                    |     |
| 606 | 426 | (A) 25<br>(B) 50                                                                                                                                                                                                                                                           | (B) |
|     |     | (C) 100<br>(D) 200                                                                                                                                                                                                                                                         |     |
|     |     | The short-circuit admittance matrix a two-port network is $\begin{bmatrix} 0 & -1/2 \\ 1/2 & 0 \end{bmatrix}$ . The two-port network is                                                                                                                                    |     |
| 606 | 427 | (A) non-reciprocal and passive (B) non-reciprocal and active                                                                                                                                                                                                               | (B) |
|     |     | (C) reciprocal and passive                                                                                                                                                                                                                                                 |     |
|     |     | (D) reciprocal and active  In IC technology, dry oxidation (using dry oxygen) as compared to wet oxidation (using steam or water vapor)                                                                                                                                    |     |
|     |     | produces  (A) superior quality oxide with a higher growth rate                                                                                                                                                                                                             |     |
| 606 | 428 | (B) inferior quality oxide with a higher growth rate                                                                                                                                                                                                                       | (D) |
|     |     | (C) inferior quality oxide with a lower growth rate  (D) superior quality oxide with a lower growth rate                                                                                                                                                                   |     |
| 606 | 429 | m                                                                                                                                                                                                                                                                          | (D) |
|     |     | The source of a silicon $(n_i=10^{10} \text{per cm}^3)n$ -channel MOS transistor has an area Of 1 sq.mm and a depth of 1µm. If the dopant density in the source is $10^{19}/\text{cm}^3$ , the number of holes in the source region with the above volume is approximately |     |
|     |     | (A) $10^7$                                                                                                                                                                                                                                                                 |     |
|     |     | (B) 100                                                                                                                                                                                                                                                                    |     |



|     | 1         | (C) 10                                                                                                                                                                          |                |
|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|     |           | (D) 0                                                                                                                                                                           |                |
|     |           | Drift current in the semiconductors depends upon                                                                                                                                |                |
|     |           | (A) only the electric field                                                                                                                                                     |                |
| 606 | 430       | (B) only the carrier concentration gradient                                                                                                                                     | (C)            |
|     |           | (C) both the electric field and the carrier concentration                                                                                                                       |                |
|     |           | (D) both the electric field and the carrier concentration gradient                                                                                                              |                |
|     |           | A Zener diode, when used in voltage stabilization circuits, is biased in                                                                                                        |                |
|     |           | (A) reverse bias region below the breakdown voltage                                                                                                                             |                |
| 606 | 431       | (B) reverse breakdown region                                                                                                                                                    | (B)            |
|     |           | (C) forward bias region                                                                                                                                                         |                |
|     |           | (D) forward bias constant current mode                                                                                                                                          |                |
|     |           | A silicon PN junction is forward biased with a constant current at room temperature. When the temperature is increased by 10&C, the forward bias voltage across the PN junction |                |
|     | 800,60521 | (A) increases by 60 mV                                                                                                                                                          | 2007 90000 400 |
| 606 | 432       | (B) decreases by 60 mV                                                                                                                                                          | (D)            |
|     |           | (C) increases by 25 mV                                                                                                                                                          |                |
|     |           | (D) decreases by 25 mV                                                                                                                                                          |                |
|     |           | At room temperature, a possible value for the mobility of electrons in the inversion layer of a silicon n-channel MOSFET is                                                     |                |
|     |           | (A) $450 \text{ cm}^2 / \text{V} - \text{s}$                                                                                                                                    |                |
| 606 | 433       | (B) $1350 \text{ cm}^2/\text{V}-\text{s}$                                                                                                                                       | (A)            |
|     |           | (C) $1800 \text{ cm}^2/\text{V}-\text{s}$                                                                                                                                       |                |
|     |           | (D) $3600 \text{ cm}^2 / \text{V}$ –s                                                                                                                                           |                |
|     |           | Thin gate oxide in a CMOS process is preferably grown using                                                                                                                     |                |
|     |           | (A) wet oxidation                                                                                                                                                               |                |
| 606 | 434       | (B) dry oxidation                                                                                                                                                               | (B)            |
|     |           | (C) epitaxial oxidation                                                                                                                                                         |                |
|     |           | (D) ion implantation                                                                                                                                                            |                |
|     |           | Compared to a p-n junction with $NA = ND = 10^{14} / cm^3$ , which one of the following statements is TRUE for a p-n junction with $NA = ND = 10^{20} / cm^3$ ?                 |                |
| 606 | 435       | (A) Reverse breakdown voltage is lower and depletion capacitance is lower                                                                                                       | (C)            |
|     |           | (B) Reverse breakdown voltage is higher and depletion capacitance is lower                                                                                                      |                |
|     |           | (C) Reverse breakdown voltage is lower and depletion capacitance is higher                                                                                                      |                |
|     |           | (D) Reverse breakdown voltage is higher and depletion capacitance is higher                                                                                                     |                |
| 606 | 436       | In an n-type silicon crystal at room temperature, which of the following can have a concentration of $4 \times 10^{19} / cm^{-3}$ ?                                             | (C)            |



|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                              | II- |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (A) Silicon atoms                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |     | (B) Holes                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|     |     | (C) Dopant atoms                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|     |     | (D) Valence electrons                                                                                                                                                                                                                                                                                                                                                                                                        |     |
|     |     | The ratio of the mobility to the diffusion coefficient in a semiconductor has the units                                                                                                                                                                                                                                                                                                                                      |     |
|     |     | (A) V-1                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| 606 | 437 | (B) cm. V1                                                                                                                                                                                                                                                                                                                                                                                                                   | (A) |
|     |     | (C) V.cm-1                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|     |     | (D) V. s                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|     |     | A silicon wafer has 100nm of oxide on it and is furnace at a temperature above 1000°C for further oxidation. The oxidation rate                                                                                                                                                                                                                                                                                              |     |
|     |     | (A) is independent of current oxide thickness and temperature                                                                                                                                                                                                                                                                                                                                                                |     |
| 606 | 438 | (B) is independent of current oxide thickness but depends on temperature                                                                                                                                                                                                                                                                                                                                                     | (D) |
|     |     | (C) slows down as the oxide grows                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |     | (D) is zero as the existing oxide prevents further oxidation                                                                                                                                                                                                                                                                                                                                                                 |     |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|     |     | The concentration of minority carriers in an extrinsic semiconductor under equilibrium is                                                                                                                                                                                                                                                                                                                                    |     |
|     |     | (A) Directly proportional to doping concentration                                                                                                                                                                                                                                                                                                                                                                            |     |
| 606 | 439 | (B) Inversely proportional to the doping concentration                                                                                                                                                                                                                                                                                                                                                                       | (A) |
|     |     | (C) Directly proportional to the intrinsic concentration                                                                                                                                                                                                                                                                                                                                                                     |     |
|     |     | (D) Inversely proportional to the intrinsic concentration                                                                                                                                                                                                                                                                                                                                                                    |     |
| 606 | 440 | A heavily doped n-type semiconductor has the following data:  Hole-electron ratio : 0.4  Doping concentration : 4.2 × 10 <sup>8</sup> atoms/m <sup>3</sup> Intrinsic concentration : 1.5 × 10 <sup>4</sup> atoms/m <sup>3</sup> The ratio of conductance of the n-type semiconductor to that of the intrinsic semiconductor of same material and at same temperature is given by  (A) 5.0E-5  (B) 2000  (C) 10000  (D) 20000 | (D) |
|     |     | (5) 20000                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| 606 | 441 | For a BJT, the common base current gain $\alpha=0.98$ and the collector base junction reverse bias saturation current ICO = 0.6 $\mu$ A. This BJT is connected in the common emitter mode and operated in the active region with a base drive current IB = 20 $\mu$ A. The collector current IC for this mode of operation is                                                                                                | (D) |
|     |     |                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|     |     | (B) 0.99 mA                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|     |     | (C) 1.0 mA                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|     |     | (D) 1.01 mA                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 606 | 442 | For small increase in VG beyond IV, which of the following gives the correct description of the region of                                                                                                                                                                                                                                                                                                                    | (D) |



|     | 1   | operation of each MOSFET                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | II. |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | (A) Both the MOSFETs are in saturation region                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|     |     | (B) Both the MOSFETs are in triode region                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|     |     | (C) n-MOSFETs is in triode and $p$ -MOSFET is in saturation region                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|     |     | (D) n- MOSFET is in saturation and p -MOSFET is in triode region                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|     |     | (D) II- WOSPET IS III SAULIAUON AIRU p - WOSPET IS III UIOUC TEGION                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 606 | 443 | The input impedance ( $Zi$ ) and the output impedance ( $Z0$ ) of an ideal transconductance voltage controlled current source amplifier are  (A) $Zi=0$ , $Z0=0$ (B) $Zi=0$ , $Z0=\infty$ (C) $Zi=\infty$ , $Z0=0$ (D) $Zi=\infty$ , $Z0=\infty$                                                                                                                                                                                                                                                    | (D) |
| 606 | 444 | An n-channel depletion MOSFET has following two points on its $I_D$ - $V_{GS}$ curve:  (i) $V_{GS}$ = 0 at $I_D$ = 12 mA and  (ii) $V_{GS}$ = 6 Volts at $I_D$ = 0 mA  Which of the following $Q$ point will given the highest trans conductance gain for small signals?  (A) $V_{GS}$ = -6 Volts  (B) $V_{GS}$ = -3 Volts  (C) $V_{GS}$ = 0Volts                                                                                                                                                   | (C) |
| 606 | 445 | $V_{GS} = 3 \ Volts$ If $\beta \ DC$ is increased by 10%, the collector-to-emitter voltage drop  (A) increases by less than or equal to 10%  (B) decreases by less than or equal to 10%  (C) increase by more than 10%  (D) decreases by more than 10%                                                                                                                                                                                                                                              | (B) |
| 606 | 446 | In a full-wave rectifier using two ideal diodes, $V_{dc}$ and $V_{m}$ are the dc and peak values of the voltage respectively across a resistive load. If $PIV$ is the peak inverse voltage of the diode, then the appropriate relationships for this rectifier are  (A) $V_{dc} = \frac{V_{m}}{\pi} \text{ . PIV} = 2V_{m}$ (B) $I_{dc} = 2\frac{V_{m}}{\pi} \text{ . PIV} = 2V_{m}$ (C) $V_{dc} = 2\frac{V_{m}}{\pi} \text{ . PIV} = V_{m}$ (D) $V_{dc} = \frac{V_{m}}{\pi} \text{ . PIV} = V_{m}$ | (B) |
| 606 | 447 | An amplifier without feedback has a voltage gain of 50, input resistance of 1 k $\Omega$ and output resistance of 2.5 k $\Omega$ . The input resistance of the current-shunt negative feedback amplifier using the above amplifier with a feedback factor of 0.2, is                                                                                                                                                                                                                                | (A) |



|     |     | (A) $\frac{1}{11}k\Omega$ (B) $\frac{1}{5}k\Omega$ $\frac{5}{5}$ (C) $5k\Omega$ (D) $11 k\Omega$                                                                                                                                                          |     |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 606 | 448 | Introducing a resistor in the emitter of a common amplifier stabilizes the dc operating point against variations in (A) only the temperature (B) only the $\beta$ of the transistor (C) both temperature and $\beta$ (D) none of the above                | (C) |
| 606 | 449 | Crossover distortion behavior is characteristic of  (A) Class A output stage  (B) Class B output stage  (C) Class AB output stage  (D) Common-base output stage                                                                                           | (D) |
| 606 | 450 | In standing wave pattern on a transmission line  (A) voltage and current nodes coincide  (B) voltage nodes and current antinodes as well as current nodes and voltage antinodes coincide  (C) voltage and current antinode coincide  (D) both (A) and (C) | (D) |

