(DO NOT OPEN THIS QUESTION BOOKLET BEFORE TIME OR UNTIL YOU ARE ASKED TO DO SO)

PG-EE-2016

SUBJECT: Mathematics Hons. Five Year

		10108 Sr. No.
Time: 1¼ Hours Roll No. (in figures)	Max. Marks : 100	Total Questions: 100
Name	Father's Name	
Mother's Name	Date of Examination	
(Signature of the Candidate)		(Signature of the Invigilator)

CANDIDATES MUST READ THE FOLLOWING INFORMATION/INSTRUCTIONS BEFORE STARTING THE QUESTION PAPER.

- 1. All questions are compulsory.
- 2. The candidates must return the question booklet as well as OMR Answer-Sheet to the Invigilator concerned before leaving the Examination Hall, failing which a case of use of unfair-means/misbehaviour will be registered against him/her, in addition to lodging of an FIR with the police. Further the answer-sheet of such a candidate will not be evaluated.
- 3. In case there is any discrepancy in any question(s) in the Question Booklet, the same may be brought to the notice of the Controller of Examinations in writing within two hours after the test is over. No such complaint(s) will be entertained thereafter.
- 4. The candidate must not do any rough work or writing in the OMR Answer-Sheet. Rough work, if any, may be done in the question booklet itself. Answers must not be ticked in the question booklet.
- 5. There will be no negative marking. Each correct answer will be awarded one full mark. Cutting, erasing, overwriting and more than one answer in OMR Answer-Sheet will be treated as incorrect answer.
- 6. Use only Black or Blue Ball Point Pen of good quality in the OMR Answer-Sheet.
- 7. Before answering the questions, the candidates should ensure that they have been supplied correct and complete booklet. Complaints, if any, regarding misprinting etc. will not be entertained 30 minutes after starting of the examination.

PG-EE-2016/(Maths Hons Five Year)/(D)

1.	The solution of x	$dy - y dx + x^2 e^x dx =$	0 is:	
	$(1) \frac{x}{y} + e^x = C$	$(2) x + e^y = C$	$(3) \frac{y}{x} + e^x = C$	(4) 1y+e

The algebraic sum of deviation of 20 observations measured from 30 is 2. The mean observation is:

	(1)	28.5	(2)	29.6		(3) 30).5	(4) 30.1	
3.	The	standard	deviation	of 15	items	is 6 and	if each item	ı is decreased	by 1, then

standard deviation will be: (1) 5 (2) 7 (3) 6 (4) None of these

If in a frequency distribution, the mean and median are 21 and 22 respectively, then its mode is approximately:

(1) 24 (2) 42 (3) 22 (4) 20

5. A coin is tossed 4 times. The probability that at least one head turns up is :

(2) $\frac{15}{16}$ (1) $\frac{1}{16}$ (3) $\frac{2}{16}$ (4) None of these

One card is drawn randomly from a pack of 52 cards, then the probability that it is a king or spade is:

(2) $\frac{2}{13}$ (3) $\frac{3}{13}$

A problem in mathematics is given to three students A, B, C and their respective probability of solving the problem is $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$. Probability that the problem is solved, is:

(2) $\frac{1}{2}$ (3) $\frac{3}{4}$ (4) $\frac{2}{3}$

Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is:

(2) $\frac{1}{16}$ (3) $\frac{3}{16}$

9. A card is drawn from a pack of cards. The probability that the card will be a queen or a heart, is:

(1) $\frac{2}{13}$ (2) $\frac{4}{13}$ (3) $\frac{3}{13}$ (4) None of these

PG-EE-2016/(Mathematics Hons.)/(D)

P. T. O.

- 10. If a dice is thrown twice, the probability of occurrence of 4 at least once, is:
 - (1) $\frac{11}{36}$
- (2) $\frac{7}{12}$
- (4) None of these

- $\int x^x (1 + \log x) dx$ is equal to:
 - (1) $x^{2x} + C$ (2) $x^x + C$
- (3) $x^x \log x$
- (4) None of these

- 12. $\int \frac{x}{x^2 + 4x + 5} dx$ is equal to:
 - (1) $\frac{1}{2}\log[x^2+4x+5]-2\tan^{-1}(x+2)+C$
 - (2) $\frac{1}{2}\log[(x+2)^2-1]+2\tan^{-1}(x+2)+C$
 - (3) $\frac{1}{2}\log[x^2+4x+5]+C$
 - (4) None of these
- 13. $\int \frac{dx}{\sin x \cos x}$ is equal to:
 - (1) $\log |\sin x| + C$

(2) $\log |\sec x| + C$

(3) $\log |\tan x| + C$

- (4) None of these
- 14. $\int_{-\frac{1}{2}}^{\frac{\pi}{2}} (\cos x) \left[\log \left(\frac{1-x}{1+x} \right) \right] dx \text{ is equal to :}$
 - (1) 1
- (2) $e^{\frac{1}{2}}$
- (3) 0
- (4) -1

- **15.** $\int_{0}^{3} \frac{dx}{x^2 x}$ is equal to:
 - (1) $\log\left(\frac{2}{3}\right)$
- (2) $\log\left(\frac{1}{4}\right)$ (3) $\log\left(\frac{8}{3}\right)$
- (4) $\log\left(\frac{4}{3}\right)$

- 16. The value of $\int (1-x^2) \sin x \cos^2 x \, dx$ is:
 - (1) n
- (2) 0
- (3) 2π
- (4) None of the

- The area bounded by $y = \log x$, x-axis and ordinates x = 1, x = 2 is:
 - (1) $\log\left(\frac{4}{a}\right)$ sq. unit

(2) $\log\left(\frac{2}{e}\right)$ sq. unit

(3) log 4 sq. unit

- (4) None of these
- Area bounded by the curves $y = x^2$ and $y^2 = x$ is:
- (1) $\frac{2}{3}$ sq. unit (2) $\frac{1}{3}$ sq. unit (3) $\frac{1}{2}$ sq. unit (4) None of these
- **19.** Area of region satisfying $x \le 2$, $y \le |x|$ and $x \ge 0$ is:
 - (1) 4 sq. unit
- (2) 1 sq. unit
- (3) 2 sq. unit
- (4) None of these

- 20. $\int \frac{dx}{x^2 + 4x + 13}$ is equal to:
 - (1) $\tan^{-1} \left(\frac{x+2}{3} \right) + C$

(2) $\frac{1}{2} \tan^{-1} \frac{x}{2} + C$

(3) $\tan^{-1}(x-2)+C$

- (4) None of these
- 21. If A is a square matrix, then (A + A') is:
 - (1) unit matrix

- (2) symmetric matrix
- (3) non-singular matrix
- (4) skew-symmetric matrix
- **22.** If $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then value of α for which $A^2 = B$ is:
 - (1) 1
- (3) 4
- (4) no real value
- 23. If $A = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$ and $A^{-1} = \lambda(\text{adj } A)$, then λ is equal to:
 - (1) $-\frac{1}{6}$ (2) $\frac{1}{6}$ (3) $\frac{1}{3}$

- **24.** If A is a square matrix such that AA' = I = A'A, then |A| is equal to:
 - (1) 0
- (2) ±2
- $(3) \pm 1$
- (4) None of these
- $-w^{2}/2$ 25. If w is a complex cube root of unity, then 1 is equal to: -1 1 0
 - (1) 1
- (2) w
- (3) 0
- (4) w^2

- 26. If $C = 2 \cos \theta$, then the value of the determinant $\Delta = \begin{bmatrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C \end{bmatrix}$ is:

- (2) $4\cos^2\theta(2\cos\theta 1)$
- (3) $\frac{2\sin^2 2\theta}{\sin \theta}$
- (4) None of these
- 27. x + ky z = 0, 3x ky z = 0 and x 3y + z = 0 has non-zero solution for k is equal to :
 - (1) 0
- (2) 1
- (4) None of these

- **28.** If $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$, then A^{-1} is equal to:
- (1) $\begin{bmatrix} \frac{5}{11} & \frac{2}{11} \\ \frac{3}{11} & -\frac{1}{11} \end{bmatrix}$ (2) $\begin{bmatrix} -\frac{5}{11} & \frac{2}{11} \\ \frac{3}{11} & \frac{1}{11} \end{bmatrix}$ (3) $\begin{bmatrix} \frac{5}{11} & -\frac{2}{11} \\ -\frac{3}{11} & -\frac{1}{11} \end{bmatrix}$ (4) None of these

- **29.** If $A = \begin{bmatrix} 1 & \log_b^a \\ \log_a^b & 1 \end{bmatrix}$, then |A| is equal to :
 - (1) 0
- (2) 1
- (3) \log_b^a
- (4) \log_a^b
- 30. If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots + \infty}}}$, then $\frac{dy}{dx}$ is equal to:
 - (1) $-\frac{\cos x}{2\nu 1}$ (2) $\frac{\sin x}{1 2\nu}$ (3) $\frac{\cos x}{2\nu 1}$
- (4) None of these
- 31. A lady gives a dinner party for six guests. The number of ways in which they may be selected from among ten friends, if two of the friends will not attend the party together, is:
 - (1) 164
- (2) 140
- (3) 112
- **32.** If w is an imaginary cube root of unity, then $(1+w-w^2)$ is equal to:
 - (1) 128 w.
- (2) -128 w
- (3) $-128 w^2$
- (4) $128w^2$
- **33.** The equation $z\bar{z} + (2-3i)z + (2+3i)\bar{z} + 4 = 0$ represents a circle of radius:
 - (1) 3
- (2) 4
- (3) 2
- (4) 6

34.	If the roots of the	equation $qx^2 + px + q$	q = 0	are complex, v	where p, q are real; then the
	roots of the equation	on $x^2 - 4qx + p^2 = 0$	are:		
	(1) real and equal		(2)	imaginary	
	(3) real and unequ	ial	(4)	none of these	
35.	If $a + b = 8$, then ab	is greatest when: $(2) a = 4 b = 4$	(3)	a = 6, b = 2	(4) None of these
	(1) $a = 3, b = 5$	7/4			
36.	If the coefficient of equal to:	f 7th and 13th term	in the	e expansion of	$(1+x)^n$ are equal, then n is
	(1) 10	(2) 20	(3)	15	(4) 18
37.	If "c, denotes th	e number of combi	nation	ns of n things	taken r at a time, then the
		$r_{c_{r-1}} + 2 \times r_{c_r}$ equal			
	(1) $^{n+2}c_r$	(2) $^{n+2}c_{r+1}$	(3)	$n^{+1}c_r$	(4) $^{n+1}c_{r+1}$
38.		ch should be added in G. P. is:	to th	e numbers 2,	14, 62, so that the resulting
	(1) 4	(2) 3		2	(4) 1
39.	If the roots of the	e equation $x^3 - 12x^2$	+ 390	c-28=0 are in	n A. P., then their common
	(1) ±2	(2) ±4	(3):±1	(4) ±3
40.	The equation of $y - x + 7 = 0$ and	the straight line jo u + 2x - 2 = 0 is:	ining	the origin to	the point of intersection of
	(1) $3x + 4y = 0$	$(2) \ 4x + 3y = 0$	27.544	3x - 4y = 0	CARL MALE MILES
41	Let R be the relation R^{-1} is equal	tion from $A = \{2, 3,$	4, 5]	to $B = \{3, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$	10) defined by 'x divides y',
	(1) {(6, 2), (3, 3)}		(2	(6, 2), (10, 2)}
	(3) ((6, 2), (10, 2)), (3, 3), (6, 3), (10, 5)	(4) None of the	se:
42	. Which of the foll	lowing is a singleton	set?		
	(1) $\{x: x < 1, 3\}$		(2	2) $ x: x =5$,	x ∈ Z
	(3) $\{x: x^2 = 1, x\}$	∈ Z)	(4	1) $\{x: x^2 + x + a^2 +$	$1=0,x\in R\}$

PG-EE-2016/(Mathematics Hons.)/(D)

P. T. O.

40	N. Septiminary Maddistrates	NEW NAME -	24		
43	• If $A = \{(x, y) : y = (x, y) : y : y : y : y : y : y : y : y : y $	e^x , $x \in R$ and $B =$	$\{(x,y):y=e^{-x},x\in R$	l, ther	$A \cap B$ is:
	(1) empty set	(2) not a set	(3) singleton set	(4)	none of these
44	• If $A = \{(x, y) : x^2 - (x, y) : x^2 - (x, y) : x^2 - (x, y) : x = $	$+y^2 = 25$ } and $B = \{($	$(x,y): x^2 + 9y^2 = 144\},$	then	$A \cap B$ contains \cdot
	(1) one point	(2) two points	(3) three points	(4)	four points
45	If $z = i \log (2 - \sqrt{3})$), then cos z is equ	al to:		
	(1) i	(2) 2	(3) 3 <i>i</i>	(4)	2 <i>i</i>
46.	The expression to	$\sin^2 \alpha + \cot^2 \alpha$ is:			
Com	(1) ≥2	(2) ≤2	(3) ≥ -2	(4)	None of these
47.	A linear program	ming problem is con	ncerned with finding	the fo	llowing value :
	(1) only maximu	m value	(2) optimal value		
	(3) only minimum	n value	(4) none of these		
48.	The linear function or minimized is care	n Z = ax + by, when alled a:	e a, b are constants, s	which	has to be maximize
	(1) constraint		(2) function of an	y type	
	(3) linear objectiv	e function	(4) none of these	(15,834)	
49.	A compound state	ment is a statement	which is made up of		
	(1) only one states		(2) any number of		ments
	(3) two or more st	atements	(4) none of these		
50.	A compound state	ment with an 'Or' is	The state of the s		
	(1) one componen				
	(2) none compone	nt statement is false			
		onent statements are			
	(4) none of these				
51.	If $\vec{a} = \hat{i} + \hat{i} + \hat{k}^* \cdot \vec{k} -$	21-42 7-2-1	$3\hat{k}$ are coplanar, then	23/21	
and the state of t	_	** *** *** *** *** *** *** *** *** ***	ok are coplanar, ther	the v	alue of λ is :

(3) $\frac{5}{2}$

(4) $\frac{7}{3}$

52.	If $\vec{a} = 2\hat{i}$	$+\hat{j}+2\hat{k}$ and	$\vec{b} = 5\hat{i} - 3\hat{j}$	$+\hat{k}$, then the	projection of I	on \vec{a} is:
		(5066 - 26 - 50	A CONTRACTOR OF CONTRACTOR	LA TO SERVICE SERVICE OF	- A-2.55 22 B

- (1) 6
- (2) 5
- (3) 4
- (4) 3

53. If
$$\vec{a}$$
, \vec{b} , \vec{c} are mutually perpendicular unit vectors, then $|\vec{a} + \vec{b} + \vec{c}|$ is equal to:

- (2) √3
- (4) 0

54. If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then $\lambda + \mu$ is equal to:

- (1) 3

55. A variable plane moves, so that the sum of the reciprocals of its intercepts on the coordinates axes is
$$\frac{1}{2}$$
. Then the plane passes through:

- (1) $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (2) (-1, 1, 1) (3) (2, 2, 2)
- (4) (0, 0, 0)

(1) x+y+z-15=0

(2) x + y + z + 15 = 0

(3) x-y-z-15=0

(4) x-y+z-15=0

57. The direction ratio of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle
$$\frac{\pi}{4}$$
 with plane $x + y = 3$ are :

- (1) 1, $\sqrt{2}$, 1
- (2) 1, 1, $\sqrt{2}$
- (3) 1, 1, 2
- (4) $\sqrt{2}$, 1, 1

58. A line makes the same angle
$$\theta$$
, with each of the x and z axes. If the angle β which it makes with y-axis is such that $\sin^2 \beta = 3\sin^2 \theta$, then $\cos^2 \theta$ is equal to:

- (2) $\frac{1}{5}$
- (3) $\frac{2}{3}$

59. The solution of
$$\frac{dy}{dx} = 2^{y-x}$$
 is:

- (1) $2^x + 2^y = C$ (2) $\frac{1}{2^x} \frac{1}{2^y} = C$ (3) $2^x 2^y = C$
- (4) None of these

60.
$$y + x^2 = \frac{dy}{dx}$$
 has the solution:

- (1) $y+x^2+2x+2=ce^x$
- $(2) \quad y + 2x = ce^x$

(3) $y + 2x + 2 = ce^x$

(4) None of these

(1)
$$\frac{1}{5}$$

(2)
$$\frac{2}{5}$$

(3)
$$\frac{3}{5}$$

(4) None of these

If A and B are events such that $P(A \cup B) = \frac{3}{4}$, $P(A \cap B) = \frac{1}{4}$, $P(\overline{A}) = \frac{2}{3}$, then $P(\overline{A} \cap B) = \frac{1}{4}$.

(1)
$$\frac{5}{12}$$
 (2) $\frac{3}{8}$ (3) $\frac{5}{8}$

(2)
$$\frac{3}{8}$$

(3)
$$\frac{5}{8}$$

A coin is tossed three times. The probability of getting head and tail alternatively, is

(1)
$$\frac{1}{8}$$

(2)
$$\frac{1}{2}$$

(3)
$$\frac{1}{4}$$

(4) None of these

Seven white balls and three black balls are randomly placed in a row. The probabili that no two black balls are placed adjacently, equals:

(1)
$$\frac{1}{13}$$

(2)
$$\frac{2}{15}$$
 (3) $\frac{7}{15}$

(3)
$$\frac{7}{15}$$

 $(4) \frac{1}{2}$

The solution set of the equation $\sin^{-1} x = 2 \tan^{-1} x$ is:

(4)
$$\left\{1, \frac{1}{2}, 0\right\}$$

66. $\tan \left[\frac{1}{2} \sin^{-1} \left(\frac{2a}{1+a^2} \right) + \frac{1}{2} \cos^{-1} \left(\frac{1-a^2}{1+a^2} \right) \right]$ is equal to:

(1)
$$\frac{2a}{1+a^2}$$

(2)
$$\frac{2a}{1-a^2}$$

(1)
$$\frac{2a}{1+a^2}$$
 (2) $\frac{2a}{1-a^2}$ (3) $\frac{1-a^2}{1+a^2}$

(4)
$$\frac{1+a^2}{1-a^2}$$

67. $\tan^{-1} \frac{x}{y} - \tan^{-1} \frac{x-y}{x+y}$; (x > y > 0) is equal to:

$$(1) \quad \frac{3\pi}{4}$$

(2)
$$-\frac{\pi}{4}$$

(3)
$$-\frac{3\pi}{4}$$

 $(4) \ \frac{\pi}{4}$

68. If in a triangle ABC, $\underline{A} = \tan^{-1} 2$ and $\underline{B} = \tan^{-1} 3$, then angle C is equal to:

$$(1) \ \frac{\pi}{4}$$

(2)
$$\frac{3\pi}{4}$$

(3)
$$-\frac{\pi}{4}$$

(4) None of these

69.	For real numbers x and y, we write	$xRy \Leftrightarrow$	$x^2 - y^2 + \sqrt{3}$	is an irrational number. T	hen
	the relation R, is:	THE CHOWNELL	246 1 W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TIP TO BUILD

- (1) Transitive
- (2) Reflexive
- (3) Symmetric
- (4) None of these

70. A function
$$f$$
 from the set of natural numbers to integers defined by
$$f(x) = \begin{cases} \frac{n-1}{2}, & \text{when } n \text{ is odd} \\ -\frac{n}{2}, & \text{when } n \text{ is even} \end{cases}$$
 is:

- (1) one-one but not onto
- (2) onto but not one-one
- (3) one-one and onto both
- (4) none of these

71. If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are:

- $(1) 99^2$
- (2) 18
- (3) 2⁹⁹

72. If $f(x) = 1 - \frac{1}{x}$, then the value of $f\left[f\left(\frac{1}{x}\right)\right]$ is:

- (1) $\frac{1}{x} 1$ (2) $\frac{x}{1 x}$ (3) $\frac{x 1}{x}$ (4) $\frac{x}{x 1}$

73. The function $f(x) = \log\left(x + \sqrt{x^2 + 1}\right)$ is:

(1) an even function

- (2) an odd function
- (3) a periodic function

(4) none of these

74. The value of $\sin A \sin(60^\circ + A) \sin(60^\circ - A)$ is equal to:

- (1) $\sin 3A$
- (2) $\sin \frac{3A}{2}$ (3) $\sin \frac{3A}{4}$

75. If $\cos \theta = \frac{1}{2} \left(x + \frac{1}{x} \right)$, then $\frac{1}{2} \left(x^2 + \frac{1}{x^2} \right)$ is equal to:

- (1) cos 2θ
- (2) $\sin 2\theta$
- (3) sec 20
- (4) tan 20

76. If $y = \sin^2 \theta + \csc^2 \theta$, $\theta \neq 0$, then:

- (1) y > 2
- (2) $y \le 2$
- (3) $y \ge -2$

PG-EE-2016/(Mathematics Hons.)/(D)

P. T. O.

77	The value of	$\frac{\cos 12^{\circ} - \sin 12^{\circ}}{\cos 12^{\circ} + \sin 12^{\circ}}$	sin 147°	ic coupl to
	The value of	cos12°+sin12°	cos 147°	is equal to.

- (1) 0
- (2) -1
- (3) 1
- (4) None of these

78.
$$P(n): 1+3+5+\ldots + (2n-1)=n^2$$
 is:

(1) true for n > 1

(2) true for no n

(3) true for all $n \in N$

(4) none of these

- (1) 10×2
- (2) 19×2
- (3) [10
- (4) None of these

- (1) <u>[5</u>
- (2) $\frac{5}{2}$
- (3) 4
- (4) $\frac{|4|}{2}$

- (1) (2, 2)
- (2) (1,1)
- (3) (4,4)
- (4) (3, 3)

82. The equation of a circle with centre (1, 2) and tangent
$$x + y - 5 = 0$$
 is:

- (1) $x^2 + y^2 + 2x 4y + 6 = 0$
- (2) $x^2 + y^2 2x 4y + 3 = 0$
- (3) $x^2 + y^2 2x + 4y + 8 = 0$
- (4) $x^2 + y^2 2x 4y + 8 = 0$

83. The distance between the foci of an ellipse is 16 and the eccentricity is
$$\frac{1}{2}$$
. Length of major axis of the ellipse is:

- (1) 8
- (2) 16
- (3) 32
- (4) 64

84. The ratio in which the line joining
$$(2, 4, 5)$$
 and $(3, 5, -4)$ is divided by the yz-plane is:

- (1) 4:-3
- (2) 3:2
- (3) 2:3
- (4) -2:3

- (1) 3z + 4x = 12
- (2) 3y + 4z = 12
- (3) 3x + 4z = 12
- (4) 3z + 4y = 12

86. $\lim_{x\to 0} \frac{\int y \, dy}{x \tan(\pi + x)}$ is equal to:

- (1) 2
- (2) $\frac{1}{2}$
- (3) -2
- (4) None of these

87. The points of discontinuity of $\tan x$ are:

- (1) $x = n\pi$
- (2) $2n\pi$
- (3) $(2n+1)\frac{\pi}{2}$ (4) $-2n\pi$

where $n \in I$

88. If $xy = e^{x-y}$, then $\frac{dy}{dx}$ is equal to:

- (1) $\frac{(x-1)y}{x(1+y)}$ (2) $\frac{(x+1)y}{x(1+y)}$ (3) $\frac{(x-1)y}{x(1-y)}$
- (4) None of these

89. If $y = \frac{1 + \sin x - \cos x}{1 + \sin x + \cos x}$, then $\frac{dy}{dx}$ is equal to:

- (1) $\frac{1}{\cos x}$ (2) $\frac{1}{\sin x}$ (3) $\frac{1}{1-\cos x}$
- (4) None of these

90. If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then A^{100} is equal to:

- (1) $2^{100}A$
- (2) 100 A
- (3) $2^{99}A$
- (4) 299 A

91. If f(x) = x + 2, then f'[f(x)] at x = 4 is:

- (1) 8
- (2) 1
- (3) 4
- (4) 5

The value of $\frac{d}{dx} \left[\left(\frac{\tan^2 2x - \tan^2 x}{1 - \tan^2 2x \tan^2 x} \right) \cot 3x \right]$ is:

- (1) sec x
- (2) $\sec^3 x$
- (3) $\sec x \tan x$ (4) $\sec^2 x$

93. If $x = a \sin \theta$, $y = b \cos \theta$, then $\frac{d^2y}{dx^2}$ is equal to:

- (1) $\frac{b}{a^2} \sec \theta$ (2) $-\frac{b}{a^2} \sec^3 \theta$ (3) $\frac{b}{a} \sec^2 \theta$
- (4) None of these

94. If $x^m y^n = (x + y)^{m+n}$, then $\frac{dy}{dx}$ is:

- (1) $\frac{y}{x}$ (2) $\frac{x}{y}$ (3) xy

(4) None of these

95. Maximum slope of the curve $y = -x^3 + 3x^2 + 9x - 27$ is:

- (1) 0
- (2) 16
- (3) 12

(4) 32

The function x^x is increasing, when:

- (1) $x > \frac{1}{e}$ (2) $x < \frac{1}{e}$ (3) x < 0

(4) None of these

97. The rate of change of the surface area of a sphere of radius r, when the radius is increasing at the rate of 2 cm/s is proportional to:

- (1) $\frac{1}{r}$ (2) r^2
- (3) r

 $(4) \frac{1}{r^2}$

98. Angle between the tangents to the curve $y = x^2 - 5x + 6$ at the points (2, 0) and (3, 0) is:

- (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{4}$

99. $\int \frac{(x+1)^2}{x(x^2+1)} dx$ is equal to:

- (1) $\log x + C$ (2) $2 \tan^{-1} x + C$ (3) $\log \frac{1}{1 + r^2} + C$ (4) None of these

100. $\int_{1+\cos x}^{x+\sin x} dx$ is equal to:

- (1) $x \tan \frac{x}{2} + C$ (2) $\tan \frac{x}{2} + C$ (3) $\log \cos \frac{x}{2}$ (4) None of these