In the given figure, E is any point on median $A D$ of a $\triangle A B C$. Show that ar (ABE) $=\operatorname{ar}(A C E)$

Answer:
$A D$ is the median of $\triangle A B C$. Therefore, it will divide $\triangle A B C$ into two triangles of equal areas.
\therefore Area $(\triangle A B D)=$ Area $(\triangle A C D) \ldots$ (1) $E D$ is the median of $\triangle E B C$.

On subtracting equation (2) from equation (1), we obtain Area
$(\triangle A B D)-\operatorname{Area}(E B D)=$ Area $(\triangle A C D)-$ Area $(\triangle E C D)$ Area
$(\triangle A B E)=\operatorname{Area}(\triangle A C E)$ Question 10:
$A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal BD (See the given figure). Show that

(i) $\triangle \mathrm{APB} \cong \triangle C Q D$
(ii) $A P=C Q$

(i) In $\triangle A P B$ and $\triangle C Q D$, $\angle \mathrm{APB}=\angle \mathrm{CQD}\left(\right.$ Each $\left.90^{\circ}\right)$
$A B=C D$ (Opposite sides of parallelogram $A B C D$)
$\angle \quad \angle \mathrm{ABP}=\mathrm{CDQ}$ (Alternate interior angles for $\mathrm{AB} \| \mathrm{CD}$)
$\therefore \quad \cong \triangle \mathrm{APB} \triangle \mathrm{CQD}$ (By AAS congruency)
(ii) By using the above result
$\triangle \mathrm{APB}{ }^{\simeq} \triangle \mathrm{CQD}$, we obtain $\mathrm{AP}=$ CQ (By CPCT) Question

3:
Show that the diagonals of a parallelogram divide it into four triangles of equal area.
Answer:

We know that diagonals of parallelogram bisect each other.
Therefore, O is the mid-point of $A C$ and BD.
$B O$ is the median in $\triangle A B C$. Therefore, it will divide it into two triangles of equal areas.
\therefore Area $(\triangle A O B)=$ Area $(\triangle B O C) \ldots$ (1) In $\triangle B C D$, CO is the median.
\therefore Area $(\triangle B O C)=$ Area $(\triangle C O D)$
Similarly, Area ($\triangle C O D$) $=$ Area ($\triangle A O D$) ... (3)
From equations (1), (2), and (3), we obtain

```
Area }(\triangleAOB)=\operatorname{Area (\triangleBOC) = Area ( }\triangle\textrm{COD})=\mathrm{ Area ( }\triangle\textrm{AOD}
```

Therefore, it is evident that the diagonals of a parallelogram divide it into four triangles of equal area.

Question 4:

In the given figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If linesegment $C D$ is bisected by $A B$ at O, show that $\operatorname{ar}(A B C)=\operatorname{ar}(A B D)$.

\therefore Area $(\triangle A C O)=$ Area ($\triangle A D O$).. (1)
Considering $\triangle B C D, B O$ is the median.
\therefore Area $(\triangle B C O)=$ Area $(\triangle B D O)$
Adding equations (1) and (2), we obtain
Area $(\triangle \mathrm{ACO})+\operatorname{Area}(\triangle \mathrm{BCO})=$ Area $(\triangle \mathrm{ADO})+$ Area $(\triangle \mathrm{BDO})$
\Rightarrow Area $(\triangle A B C)=\operatorname{Area}(\triangle A B D)$

Question 6:

In the given figure, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at O such that $O B=O D$. If $A B=C D$, then show that:
(i) $\operatorname{ar}(D O C)=\operatorname{ar}(A O B)$
(ii) $\operatorname{ar}(\mathrm{DCB})=\operatorname{ar}(\mathrm{ACB})$
(iii) $D A \| C B$ or $A B C D$ is a parallelogram.
[Hint: From D and B, draw perpendiculars to AC.]

Let us draw $\mathrm{DN}{ }^{\perp} \mathrm{AC}$ and $\mathrm{BM} \perp \mathrm{AC}$.
(i) In $\triangle \mathrm{DON}$ and $\triangle \mathrm{BOM}$,
$\perp \quad \perp \mathrm{DNO}=\mathrm{BMO}$ (By construction)
$\perp \quad \perp$ DON $=$ BOM (Vertically opposite angles)
$O D=O B$ (Given)
By AAS congruence rule,
$\triangle D O N \triangle B O M$
${ }^{\perp} \mathrm{DN}=\mathrm{BM} \ldots$ (1)
We know that congruent triangles have equal areas.
\perp Area $(\triangle \mathrm{DON})=\operatorname{Area}(\triangle \mathrm{BOM}) .$.
In $\triangle \mathrm{DNC}$ and $\triangle \mathrm{BMA}$,
\perp DNC $=\perp$ BMA (By construction)
$C D=A B$ (Given)
$\mathrm{DN}=\mathrm{BM}$ [Using equation (1)]
I $\triangle D N C$ । $\triangle B M A$ (RHS congruence rule)
1 Area $(\triangle \mathrm{DNC})=\operatorname{Area}(\triangle \mathrm{BMA}) \ldots$ (3)

On adding equations (2) and (3), we obtain
Area $(\triangle \mathrm{DON})+$ Area $(\triangle \mathrm{DNC})=$ Area $(\triangle \mathrm{BOM})+$ Area $(\triangle \mathrm{BMA})$
Therefore, Area $(\triangle \mathrm{DOC})=\operatorname{Area}(\triangle \mathrm{AOB})$
(ii) We obtained,

Area $(\triangle D O C)=\operatorname{Area}(\triangle A O B)$
\perp Area $(\triangle \mathrm{DOC})+\operatorname{Area}(\triangle O C B)=\operatorname{Area}(\triangle \mathrm{AOB})+\operatorname{Area}(\triangle O C B)$
(Adding Area ($\triangle \mathrm{OCB}$) to both sides)
1 Area $(\triangle D C B)=$ Area $(\triangle A C B)$
(iii) We obtained,

Area $(\triangle D C B)=\operatorname{Area}(\triangle A C B)$
If two triangles have the same base and equal areas, then these will lie between the same parallels.

I DA || CB ... (4)
In quadrilateral $A B C D$, one pair of opposite sides is equal $(A B=C D)$ and the other pair of opposite sides is parallel (DA || CB).

Therefore, $A B C D$ is a parallelogram.

Question 7:

D and E are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $\operatorname{ar}(D B C)=a r$ (EBC). Prove that DE || BC.

Answer:
Answer:

Since $\triangle B C E$ and $\triangle B C D$ are lying on a common base $B C$ and also have equal areas, $\triangle B C E$ and $\triangle B C D$ will lie between the same parallel lines.
$\perp D E \| B C$

Question 8:

$X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at E and E respectively, show that $\operatorname{ar}(A B E)=\operatorname{ar}(A C F)$

$X Y \| B C$ । $E Y \| B C B E$
|| AC I BE || CY

Therefore, EBCY is a parallelogram.
It is given that
XY || BC *F || BC FC
$\| A B$ FC \| XB

Therefore, BCFX is a parallelogram.
Parallelograms EBCY and BCFX are on the same base BC and between the same parallels $B C$ and $E F$.
\perp Area $(E B C Y)=$ Area (BCFX) ... (1)

Consider parallelogram EBCY and $\triangle A E B$

These lie on the same base BE and are between the same parallels BE and AC.
\perp Area $(\triangle \mathrm{ABE})=\sqrt{\frac{1}{2}}$ Area (EBCY)
Also, parallelogram $B C F X$ and $\triangle A C F$ are on the same base $C F$ and between the same parallels CF and $A B$.
\perp Area $(\triangle \mathrm{ACF})=\frac{1}{\frac{1}{2}}$ Area (BCFX) ... (3)
From equations (1), (2), and (3), we obtain
Area $(\triangle A B E)=\operatorname{Area}(\triangle A C F)$

Question 9:

The side $A B$ of a parallelogram $A B C D$ is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure). Show that $\operatorname{ar}(A B C D)=\operatorname{ar}(P B Q R)$.
[Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)]

3

Answer:

Let us join $A C$ and $P Q$.
$\triangle A C Q$ and $\triangle A Q P$ are on the same base $A Q$ and between the same parallels $A Q$ and CP.

I \quad Area $(\triangle A C Q)=\operatorname{Area}(\triangle A P Q)$
1 Area $(\triangle A C Q)-\operatorname{Area}(\triangle A B Q)=\operatorname{Area}(\triangle A P Q)-\operatorname{Area}(\triangle A B Q)$
I Area $(\triangle A B C)=\operatorname{Area}(\triangle Q B P) \ldots$ (1)
Since $A C$ and $P Q$ are diagonals of parallelograms $A B C D$ and $P B Q R$ respectively, \perp Area $(\triangle A B C)=\sqrt{\frac{1}{2}}$ Area $(A B C D)$.

Area $(\triangle Q B P)=$ Area $(P B Q R)$
From equations (1) (2), and (3), we obtain
$\frac{1}{2}$
Area $(\mathrm{ABCD})=\quad$ Area (PBQR)
Area $(A B C D)=$ Area $(P B Q R)$ Question 10:

Diagonals $A C$ and $B D$ of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at O.
Prove that ar $(A O D)=\operatorname{ar}(B O C)$.
Answer:

It can be observed that $\triangle \mathrm{DAC}$ and $\triangle \mathrm{DBC}$ lie on the same base DC and between the same parallels $A B$ and CD.
\perp Area $(\triangle \mathrm{DAC})=$ Area $(\triangle \mathrm{DBC})$
\perp Area $(\triangle D A C)-\operatorname{Area}(\triangle D O C)=\operatorname{Area}(\triangle D B C)-\operatorname{Area}(\triangle D O C)$
\perp Area $(\triangle \mathrm{AOD})=\operatorname{Area}(\triangle \mathrm{BOC})$

Question 11:

In the given figure, $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets $D C$ produced at F . Show that (i) ar (ACB) $=\operatorname{ar}(\mathrm{ACF})$
(ii) $\operatorname{ar}(\mathrm{AEDF})=\operatorname{ar}(\mathrm{ABCDE})$

Answer:
(i) $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ACF}$ lie on the same base $A C$ and are between

The same parallels $A C$ and $B F$. ।
Area $(\triangle A C B)=$ Area $(\triangle A C F)$
(ii) It can be observed that

Area $(\triangle A C B)=$ Area $(\triangle A C F)$
1 Area $(\triangle \mathrm{ACB})+$ Area $(\mathrm{ACDE})=$ Area $(\mathrm{ACF})+$ Area (ACDE)
\perp Area $(A B C D E)=$ Area $(A E D F)$

Question 12:

A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.

Let quadrilateral $A B C D$ be the original shape of the field.
The proposal may be implemented as follows.
Join diagonal BD and draw a line parallel to BD through point A. Let it meet the extended side $C D$ of $A B C D$ at point E. Join $B E$ and $A D$. Let them intersect each other at O. Then, portion $\triangle A O B$ can be cut from the original field so that the new shape of the field will be $\triangle B C E$. (See figure)

We have to prove that the area of $\triangle A O B$ (portion that was cut so as to construct Health Centre) is equal to the area of $\triangle D E O$ (portion added to the field so as to make the area of the new field so formed equal to the area of the original field)

It can be observed that $\triangle D E B$ and $\triangle D A B$ lie on the same base $B D$ and are between the same parallels $B D$ and $A E . \perp$ Area $(\triangle D E B)=$ Area $(\triangle D A B)$
\perp Area $(\triangle D E B)-\operatorname{Area}(\triangle D O B)=\operatorname{Area}(\triangle D A B)-\operatorname{Area}(\triangle D O B)$
$\perp \quad$ Area $(\triangle \mathrm{DEO})=\operatorname{Area}(\triangle \mathrm{AOB})$

Question-13:

$A B C D$ is a trapezium with $A B \| D C$. A line parallel to $A C$ intersects $A B$ at X and $B C$ at Y.
Prove that ar $(A D X)=\operatorname{ar}(A C Y)$.
[Hint: Join CX.] Answer:

It can be observed that $\triangle A D X$ and $\triangle A C X$ lie on the same base $A X$ and are between the same parallels $A B$ and $D C$.

$$
\perp \operatorname{Area}(\triangle A D X)=\operatorname{Area}(\triangle A C X) \ldots \text { (1) }
$$

$\triangle A C Y$ and $\triangle A C X$ lie on the same base $A C$ and are between the same parallels $A C$ and XY.

1. Area $(\triangle A C Y)=$ Area $(A C X)$... (2) From
equations (1) and (2), we obtain
Area $(\triangle A D X)=$ Area $(\triangle A C Y)$ Question 14:
In the given figure, $A P \| B Q| | C R$. Prove that $\operatorname{ar}(A Q C)=\operatorname{ar}(P B R)$.

Answer:

Since $\triangle A B Q$ and $\triangle P B Q$ lie on the same base $B Q$ and are between the same parallels $A P$ and $B Q$,

```
| Area (\triangleABQ) = Area (\trianglePBQ) ... (1)
```

Again, $\triangle B C Q$ and $\triangle B R Q$ lie on the same base $B Q$ and are between the same parallels $B Q$ and $C R$.
$\perp \operatorname{Area}(\triangle \mathrm{BCQ})=\operatorname{Area}(\triangle \mathrm{BRQ}) \ldots$ (2)
On adding equations (1) and (2), we obtain
Area $(\triangle \mathrm{ABQ})+\operatorname{Area}(\triangle \mathrm{BCQ})=\operatorname{Area}(\triangle \mathrm{PBQ})+\operatorname{Area}(\triangle \mathrm{BRQ}) \perp$
Area $(\triangle A Q C)=\operatorname{Area}(\triangle P B R)$

Question 15:
Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect at O in such a way that ar (AOD) $=\operatorname{ar}(B O C)$. Prove that $A B C D$ is a trapezium.

Answer:

It
is given that
Area $(\triangle A O D)=\operatorname{Area}(\triangle B O C)$
Area $(\triangle A O D)+\operatorname{Area}(\triangle A O B)=\operatorname{Area}(\triangle B O C)+$ Area $(\triangle A O B)$
Area $(\triangle A D B)=$ Area $(\triangle A C B)$
We know that triangles on the same base having areas equal to each other lie between the same parallels.

Therefore, these triangles, $\triangle A D B$ and $\triangle A C B$, are lying between the same parallels. i.e., $A B \| C D$

Therefore, ABCD is a trapezium.

Question 16:

In the given figure, ar (DRC) $=$ ar (DPC) and ar (BDP) $=\operatorname{ar}(\mathrm{ARC})$. Show that both the quadrilaterals ABCD and DCPR are trapeziums.

Answer:

It
is given that
Area $(\triangle \mathrm{DRC})=\operatorname{Area}(\triangle \mathrm{DPC})$
As $\triangle \mathrm{DRC}$ and $\triangle \mathrm{DPC}$ lie on the same base DC and have equal areas, therefore, they must lie between the same parallel lines. \perp DC \| RP

Therefore, DCPR is a trapezium. It is also given that

Area $(\triangle B D P)=\operatorname{Area}(\triangle A R C)$
\perp Area $(B D P)-\operatorname{Area}(\triangle \mathrm{DPC})=\operatorname{Area}(\triangle \mathrm{ARC})-\operatorname{Area}(\triangle \mathrm{DRC})$
\perp Area $(\triangle \mathrm{BDC})=$ Area $(\triangle \mathrm{ADC})$
Since $\triangle B D C$ and $\triangle A D C$ are on the same base $C D$ and have equal areas, they must lie between the same parallel lines. $\perp \mathrm{AB} \| \mathrm{CD}$

Therefore, $A B C D$ is a trapezium.

