Sample Paper

ANSWERKEY																			
1	(b)	2	(b)	3	(b)	4	(b)	5	(d)	6	(a)	7	(b)	8	(c)	9	(c)	10	(b)
11	(a)	12	(a)	13	(b)	14	(b)	15	(b)	16	(b)	17	(c)	18	(c)	19	(c)	20	(a)
21	(c)	22	(c)	23	(d)	24	(a)	25	(b)	26	(b)	27	(d)	28	(b)	29	(b)	30	(d)
31	(d)	32	(c)	33	(b)	34	(b)	35	(b)	36	(a)	37	(b)	38	(b)	39	(a)	40	(a)
41	(b)	42	(a)	43	(c)	44	(a)	45	(b)	46	(a)	47	(c)	48	(b)	49	(b)	50	(a)

Cósolutions

1. (b) Principal of similarity of figures.
2. (b) Let the quadratic polynomial be $a x^{2}+b x+c$, and its zeroes be a and b.
We have $\alpha+\beta=-3=\frac{-b}{a}$ and $\alpha \beta=2=\frac{c}{a}$
3. (b) Area of rectangle $=28 \mathrm{~cm} \times 23 \mathrm{~cm}=644 \mathrm{~cm}^{2}$ Radius of semicircle $=28 \mathrm{~cm} \div 2=14 \mathrm{~cm}$ Radius of quadrant $=23 \mathrm{~cm}-16 \mathrm{~cm}=7 \mathrm{~cm}$ Area of unshaded region

$$
\begin{aligned}
=\left(\frac{1}{2} \times \frac{22}{7} \times 14 \mathrm{~cm} \times 14 \mathrm{~cm}\right) & \\
& +\left(2 \times \frac{1}{4} \times \frac{22}{7} \times 7 \mathrm{~cm} \times 7 \mathrm{~cm}\right)
\end{aligned}
$$

$=385 \mathrm{~cm}^{2}$
Shaded area $=644 \mathrm{~cm}^{2}-385 \mathrm{~cm}^{2}$
$=259 \mathrm{~cm}^{2}$
If $\mathrm{a}=1$, then $\mathrm{b}=3$ and $\mathrm{c}=2$.
So, one quadratic polynomial which fits the given conditions is $x^{2}+3 x+2$.
4. (b) Let the lady has x coins of 25 p and y coins of 50 p . Then, according to problem

$$
\begin{align*}
& x+y=40 \\
& 25 x+50 y=1250 \tag{i}
\end{align*}
$$

Solving for $\mathrm{x} \& \mathrm{y}$ we get

$$
\mathrm{x}=30(25 \mathrm{p} \text { coins }) \& \mathrm{y}=10(50 \mathrm{p} \text { coins })
$$

5. (d) Let $\mathrm{A}(\mathrm{a}, \mathrm{a}), \mathrm{B}(-\mathrm{a},-\mathrm{a})$ and $(-\sqrt{3} a, \sqrt{3} a)$ be the given points. Then, we have

$$
\begin{aligned}
& A B=\sqrt{(-a-a)^{2}+(-a-a)^{2}} \\
& =\sqrt{4 a^{2}+4 a^{2}}=2 \sqrt{2} a
\end{aligned}
$$

$$
\begin{aligned}
& B C=\sqrt{(-\sqrt{3} a+a)^{2}+(\sqrt{3} a+1)^{2}} \\
& \Rightarrow \quad B C=\sqrt{a^{2}(1-\sqrt{3})^{2}+a^{2}(\sqrt{3}+1)^{2}} \\
& \Rightarrow \quad B C=a \sqrt{(1-\sqrt{3})^{2}+(1+\sqrt{3})^{2}} \\
& \Rightarrow \quad B C=a \sqrt{1+3-2 \sqrt{3}+1+3+2 \sqrt{3}} \\
& \Rightarrow \quad B C=a \sqrt{8}=2 \sqrt{2} a \\
& \text { and } \quad A C=\sqrt{(-\sqrt{3} a-a)^{2}+(\sqrt{3} a-a)^{2}} \\
& \Rightarrow \quad A C=\sqrt{a^{2}(\sqrt{3}+1)^{2}+a^{2}(\sqrt{3}-1)^{2}} \\
& \Rightarrow \quad A C=a \sqrt{(\sqrt{3}+1)^{2}+(\sqrt{3}-1)^{2}} \\
& \Rightarrow \quad A C=a \sqrt{3+1+2 \sqrt{3}+3+1-2 \sqrt{3}} \\
& \Rightarrow \quad=a \sqrt{8}=2 \sqrt{2} a
\end{aligned}
$$

Clearly, we have $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
Hence, the triangle ABC formed by the given points is an equilateral triangle.
6. (a) one
7. (b) $\frac{1}{\sec \theta}=\cos \theta$ and maximum value of $\cos \theta$ is 1

$$
\Rightarrow \text { Maximum value of } \frac{1}{\sec \theta} \text { is } 1
$$

8. (c) Let ABC be an isosceles triangle, where base $\mathrm{AB}=\mathrm{a}$ and equal sides $\mathrm{AC}=\mathrm{BC}=\mathrm{b}$. Let CD be the perpendicular on AB .

So, $\mathrm{AD}=\mathrm{DB}=\frac{1}{2} A B=\frac{a}{2}$
Altitude, CD = height of the
$\triangle \mathrm{ABC}$ is given by
$h=\sqrt{A C^{2}-A D^{2}}$
$\Rightarrow h=\frac{1}{2} \sqrt{4 b^{2}-a^{2}}$
Area of the $\triangle A B C=\frac{1}{2}$ base \times altitude

$$
=\frac{1}{2} \times a \times \frac{1}{2} \sqrt{4 b^{2}-a^{2}}=\frac{a}{4} \sqrt{4 b^{2}-a^{2}} .
$$

9. (c) We have, $p(x)=x^{2}-10 x-75$
$=x^{2}-15 x+5 x-75$
$=x(x-15)+5(x-15)=(x-15)(x+5)$
$\therefore \quad \mathrm{p}(\mathrm{x})=(\mathrm{x}-15)(\mathrm{x}+5)$
So, $p(x)=0$ when $x=15$ or $x=-5$. Therefore required zeroes are 15 and -5 .
10. (b) $\mathrm{A}(-4,0), \mathrm{B}(4,0), \mathrm{C}(0,3)$

$$
\begin{aligned}
& \begin{aligned}
\mathrm{AB}= & \sqrt{(4+4)^{2}+(0-0)^{2}}=\sqrt{(8)^{2}}=8 \\
\mathrm{BC}= & \sqrt{(0-4)^{2}+(3-0)^{2}} \\
& =\sqrt{16+9}=\sqrt{25}=5
\end{aligned} \\
& \mathrm{CA}=\sqrt{(-4-0)^{2}+(0-3)^{2}}=\sqrt{16+9}=\sqrt{25}=5 \\
& \mathrm{BC}= \\
& \mathrm{CA} \Rightarrow \mathrm{DABC} \text { is isosceles. }
\end{aligned}
$$

11. (a) The circle is divided into 18 equal sectors

Central angle in each sector $=\frac{360^{\circ}}{18}=20^{\circ}$
Area of each sector $=\frac{\theta}{360^{\circ}} \times \pi r^{2}$

$$
=\frac{20^{\circ}}{360^{\circ}} \times 3.14 \times 4 \times 4=2.79
$$

Area of shaded portion $=9 \times 2.79=25.12$
12. (a) Product
13. (b) $n(S)=6 \times 6=36, \mathrm{E}=\{(1,1),(2,2),(3,3),(4,4)$, $(5,5),(6,6)\}$

$$
\begin{aligned}
& n(E)=6 \\
& P(E)=\frac{n(E)}{n(S)}=\frac{6}{36}=\frac{1}{6}
\end{aligned}
$$

14. (b) $\mathrm{AB}=\sqrt{(9-9)^{2}+(6-0)^{2}}=6$

$$
\begin{aligned}
& \mathrm{BC}=\sqrt{(-9-9)^{2}+(6-6)^{2}}=18 \\
& \mathrm{CD}=\sqrt{(-9+9)^{2}+(0-6)^{2}}=6 \\
& \mathrm{DA}=\sqrt{(9+9)^{2}+(0-0)^{2}}=18 \\
& \mathrm{AC}=\sqrt{(-9-9)^{2}+(6-0)^{2}}=\sqrt{324+36} \\
& \quad=\sqrt{360}=6 \sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
& B C=\sqrt{(-9-9)^{2}+(0-6)^{2}}=\sqrt{324+36} \\
&=\sqrt{360}=6 \sqrt{10}
\end{aligned}
$$

15. (b)

Let the initial position of the man be at O and his final position be B , since the man goes to 10 m due east and then 24 m due north.
Therefore $\triangle \mathrm{AOB}$ is a right angled triangle at angle A .
$\therefore \triangle \mathrm{AOB}$

$$
\begin{aligned}
\mathrm{OB}^{2} & =\mathrm{OA}^{2}+\mathrm{AB}^{2}=(10)^{2}+(24)^{2} \\
& =100+576 \\
O B & =\sqrt{676} \\
\mathrm{OB} & =26 \mathrm{~m}
\end{aligned}
$$

Hence, the man is at a distance of 26 m from the starting point.
16. (b) Let length and breadth be x cm and y cm respectively. According to problem,

$$
\begin{align*}
& 2(x+y)=40 \tag{i}\\
& \text { and } \frac{y}{x}=\frac{2}{3} \tag{ii}
\end{align*}
$$

on solving, $\mathrm{x}=12, \mathrm{y}=8$
$\therefore \quad$ Length $=12 \mathrm{~cm}$ and breadth $=8 \mathrm{~cm}$.
17. (c) $\tan \mathrm{A}=\frac{3}{4}=\frac{P}{b}$
$h=\sqrt{P^{2}+b^{2}}=\sqrt{9+16}$
$\sin \mathrm{A}=\frac{P}{h}=\frac{3}{5}$
18. (c) $\frac{3}{5}=0.6$ where as other numbers have non-terminating decimals.
19. (c) Let the medians through C meets AB at D .

Coordinates of D are
$\left(\frac{-4+2}{2}, \frac{-4+2}{2}\right)=(-1,-1)$
Length of $\mathrm{CD}=\sqrt{36+49}=\sqrt{85}$.
$=\sqrt{(5+1)^{2}+(-8+1)^{2}}$
20. (a) Let the number of blue balls $=x$
\therefore Total number of balls $=5+\mathrm{x}$
$\mathrm{P}($ blue ball $)=\frac{x}{5+x}$
$P($ red ball $)=\frac{5}{5+x}$
Given that $\mathrm{P}($ blue $)=2 \cdot \mathrm{P}($ red $)$

$$
\begin{aligned}
\frac{x}{5+x} & =2 \times \frac{5}{5+x} \\
\frac{x}{5+x} & =\frac{10}{5+x}
\end{aligned}
$$

21. (c) Total number of outcomes are $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$. The outcomes favourable to the event 'atmost one head' are HT, TH and TT.

$$
\therefore \mathrm{P}(\mathrm{E})=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathrm{~s})}=\frac{3}{4}
$$

22. (c) $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow \frac{3}{2 m-5} \neq \frac{-2}{7}$
or $-4 m+10 \neq 21$
or $-4 m \neq 11$
or $m \neq-\frac{11}{4}$
23. (d) Let h metres be the height of the telephone pole. Since time is the same in both the cases.

$$
\therefore \quad \angle \mathrm{BCA}=\angle \mathrm{DEA}=\mathrm{q}
$$

Clearly, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$ are similar

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{AC}}{\mathrm{AE}}=\frac{\mathrm{AB}}{\mathrm{AD}} \\
& \Rightarrow \quad \frac{24}{16}=\frac{15}{\mathrm{~h}} \Rightarrow \mathrm{~h}=\frac{15 \times 16}{24}=\frac{240}{24}=10
\end{aligned}
$$

Hence, height of the telephone pole $=10 \mathrm{~cm}$.
24. (a) Polynomial $p(x)$ has four real zeros.
25. (b) $\sin \theta+2 \cos \theta=1 \Rightarrow(\sin \theta+2 \cos \theta) 2=1$

$$
\begin{aligned}
& \Rightarrow \quad \sin ^{2} \theta+4 \cos ^{2} \theta+4 \sin \theta \cos \theta=1 \\
& \Rightarrow \quad 1-\cos ^{2} \theta+4\left(1-\sin ^{2} \theta+4 \sin \theta \cos \theta=1\right. \\
& \Rightarrow \quad 4 \sin ^{2} \theta+\cos ^{2} \theta-4 \sin \theta \cos \theta=4 \\
& \Rightarrow \quad(2 \sin \theta-\cos \theta)^{2}=4 \\
& \Rightarrow \quad 2 \sin \theta-\cos \theta=2 \\
& \\
& \quad[\because 2 \sin \theta-\cos \theta \neq-2]
\end{aligned}
$$

26. (b) The system of simultaneous equations $a_{1} x+b_{1} y+c_{1}$ $=0$ and $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$, have exactly one (unique) solution if $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$.
27. (d) The L.C.M. of 16,20 and 24 is 240 .

The least multiple of 240 but it is not a perfect square. Similarly 2400 is also ruled out because it is also not a perfect square. 1600 is divided by 16 and 20 but not by 24 . Therefore 3600 is least number which is a perfect square and divisible by $16,20,24$.
28. (b) The centre of the circle is the midpoint of the diameter.

So coordinates of centre $=$ midpoint of AB

$$
=\left(\frac{-2+4}{2}, \frac{3-5}{2}\right)=\left(\frac{2}{2}, \frac{-2}{2}\right)=(1,-1)
$$

29. (b) Since, the graph of $y=f(x)$ is a parabola, therefore $\mathrm{f}(\mathrm{x})$ is quadratic.
30. (d) $1+\sin ^{2} \theta=3 \sin \theta \cos \theta$

$$
\left[\because 1=\cos ^{2} \theta+\sin ^{2} \theta\right]
$$

$\Rightarrow \quad \cos ^{2} \theta+2 \sin ^{2} \theta=3 \sin \theta \cos \theta$
$\Rightarrow \quad \cos ^{2} \theta-3 \sin \theta \cos \theta+2 \sin ^{2} \theta=0$
$\Rightarrow \quad \cos \theta-\sin q)(\cos \theta-2 \sin \theta)=0$
$\Rightarrow \quad \cos \theta-\sin \theta=0$ or $\cos \theta-2 \sin \theta=0$
$\Rightarrow \sin \theta=\cos \theta$ or $2 \sin \theta=\cos \theta$
$\Rightarrow \quad \frac{\sin \theta}{\cos \theta}=1$ or $2 \frac{\sin \theta}{\cos \theta}=1$
$\Rightarrow \tan \theta=1$ or $2 \tan \theta=1$
Thus, $\tan \theta=1$ or $\tan \theta=\frac{1}{2}$.
31. (d) By Pythagoras theorem in $\triangle \mathrm{BAC}$, we have

$\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}=6^{2}+8^{2}=100 \Rightarrow \mathrm{BC}=10 \mathrm{CM}$
Now,
Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{OAB}+$ Area of $\triangle \mathrm{OBC}+$ Area of $\triangle \mathrm{OCA}$
$\Rightarrow \frac{1}{2} \mathrm{AB} \times \mathrm{AC}=\frac{1}{2} \mathrm{AB} \times \mathrm{r}+\frac{1}{2} \mathrm{BC} \times \mathrm{r}+\frac{1}{2} \mathrm{CA} \times \mathrm{r}$
$\Rightarrow \quad-\times 6 \times 8=\frac{1}{2}(6 \times \mathrm{r})+(10 \times \mathrm{r})+\frac{1}{2}(8 \times \mathrm{r})$
$\Rightarrow \quad 48=24 \mathrm{r} \Rightarrow \mathrm{r}=2 \mathrm{~cm}$
32. (c) $(-1)^{\mathrm{n}}+(-1)^{4 \mathrm{n}}=0$ will be possible, when n is any odd natural number i.e.,
33. (b)

Area of sector OACB
$=\frac{45}{360} \times \frac{22}{7} \times 28 \times 28=308 \mathrm{~cm}^{27}$
Area $(\triangle \mathrm{AOB})=\frac{1}{2}(28)(28) \sin 45^{\circ}$
$=14 \times 28 \times 277.19$
Area $($ minor segment $)=308-277.19$ $=30.81$
34. (b) Let the required ratio be $\mathrm{K}: 1$
\therefore The co-ordinates of the required point on the y -axis is

$$
x=\frac{K(-4)+3(1)}{K+1} ; y=\frac{K(2)+5(1)}{K+1}
$$

Since, it lies on y - axis
\therefore Its x -cordinates $=0$
$\therefore \frac{-4 \mathrm{~K}+3}{\mathrm{~K}+1}=0 \Rightarrow-4 \mathrm{~K}+3=0$
$\Rightarrow \mathrm{K}=\frac{3}{4}$
\Rightarrow Required ratio $=\frac{3}{4}: 1$
\therefore ratio $=3: 4$
35. (b) Consistent system
36. (a) $\frac{\tan \theta+\sec \theta-1}{\tan \theta-\sec \theta+1}$

$$
\begin{aligned}
& =\frac{(\tan \theta+\sec \theta)-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{\tan \theta-\sec \theta+1} \\
& =\frac{(\tan \theta+\sec \theta)[1-(\sec \theta-\tan \theta)]}{\tan \theta-\sec \theta+1} \\
& =\frac{(\tan \theta+\sec \theta)(1-\sec \theta+\tan \theta)}{(1+\tan \theta-\sec \theta)} \\
& =\tan \theta+\sec \theta \\
& =\frac{1+\sin \theta}{\cos \theta}
\end{aligned}
$$

37. (b) $-2,1,3$
38. (b)

$$
\begin{equation*}
\text { In } \triangle \mathrm{AED}, \angle \mathrm{AED}=90^{\circ} \tag{i}
\end{equation*}
$$

$$
\therefore \quad \mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2}
$$

$$
\Rightarrow \quad \mathrm{AE}^{2}=\left(\mathrm{AD}^{2}-\mathrm{DE}^{2}\right)
$$

$$
\therefore \quad \mathrm{AB}^{2}=\left(\mathrm{AD}^{2}-\mathrm{DE}^{2}\right)+\mathrm{BE}^{2}
$$

$$
=\left(\mathrm{AD}^{2}-\mathrm{DE}^{2}\right)+\left(\mathrm{BD}-\mathrm{DE}^{2}\right)
$$

$$
=\left(\mathrm{AD}^{2}-\mathrm{DE}^{2}\right)+\left(\frac{1}{2} \mathrm{BC}-\mathrm{DE}\right)^{2}
$$

$$
=\mathrm{AD}^{2}+\frac{1}{4} \mathrm{BC}^{2}-\mathrm{BC} \times \mathrm{DE}
$$

39. (a) The numbers common to given numbers are $2^{2}, 5$ and 7^{2}.
\therefore H.C.F. $=2^{2} \times 5 \times 7^{2}=980$.
40. (a) Perimeter of sector $=25 \mathrm{~cm}$

$$
\begin{aligned}
& 2 \mathrm{r}+\frac{\theta}{360} \times 2 \mathrm{r}=25 \\
& \Rightarrow 2 \mathrm{r}+\frac{90}{360} \times 2 \times \frac{25}{7} \times \mathrm{r}=25 \\
& \Rightarrow \frac{11}{7} 2 \mathrm{r}+\mathrm{r}=25 \Rightarrow \frac{22}{7} \mathrm{r}=25 \Rightarrow \mathrm{r}=7 \\
& \text { Area of minor segment }=\left(\frac{\pi \theta}{360^{\circ}}-\frac{\operatorname{Sin} \theta}{2}\right) r^{2} \\
& =\left(\frac{22}{7} \times \frac{90}{360^{\circ}}-\frac{\sin 90}{2}\right)(7)^{2} \\
& =\left(\frac{11}{14}-\frac{1}{2}\right) \times 49=\frac{4}{14} \times 49=14 \mathrm{~cm}^{2}
\end{aligned}
$$

41. (b)
(b)
42.

(a)
43.
(c)
45.
(b)
44. (a)
46. (a) As three faces are marked with number ' 2 ', so number of favourable cases $=3$.
\therefore Required probability, $P(2)=\frac{3}{6}=\frac{1}{2}$
47. (c) No. of favourable cases $=$ No. of events of getting the number $1+$ no. of events of getting the number $3=2+1=3$
\therefore Required probability, $\mathrm{P}(1$ or 3$)=\frac{3}{6}=\frac{1}{2}$
48. (b) Only 1 face is marked with 3 , so there are 5 faces which are not marked with 3 .
\therefore Required probability, $\mathrm{P}(\operatorname{not} 3)=\frac{5}{6}$
49. (b)
50. (a)

