Sample Paper

	ANSWERKEY																		
1	(b)	2	(b)	3	(b)	4	(b)	5	(d)	6	(a)	7	(b)	8	(c)	9	(c)	10	(b)
11	(a)	12	(a)	13	(b)	14	(b)	15	(b)	16	(b)	17	(c)	18	(c)	19	(c)	20	(a)
21	(c)	22	(c)	23	(d)	24	(a)	25	(b)	26	(b)	27	(d)	28	(b)	29	(b)	30	(d)
31	(d)	32	(c)	33	(b)	34	(b)	35	(b)	36	(a)	37	(b)	38	(b)	39	(a)	40	(a)
41	(b)	42	(a)	43	(c)	44	(a)	45	(b)	46	(a)	47	(c)	48	(b)	49	(b)	50	(a)

(b) Principal of similarity of figures. 1.

2.

5.

- (b) Let the quadratic polynomial be $ax^2 + bx + c$, and its zeroes be a and b. We have $\alpha + \beta = -3 = \frac{-b}{a}$ and $\alpha\beta = 2 = \frac{c}{a}$
- 3. (b) Area of rectangle = $28 \text{ cm} \times 23 \text{ cm} = 644 \text{ cm}^2$ Radius of semicircle = $28 \text{ cm} \div 2 = 14 \text{ cm}$ Radius of quadrant = 23 cm - 16 cm = 7 cmArea of unshaded region

$$= \left(\frac{1}{2} \times \frac{22}{7} \times 14 \text{cm} \times 14 \text{cm}\right) + \left(2 \times \frac{1}{4} \times \frac{22}{7} \times 7 \text{cm} \times 7 \text{cm}\right)$$

 $= 385 \text{ cm}^2$ Shaded area = $644 \text{ cm}^2 - 385 \text{ cm}^2$ $= 259 \text{ cm}^2$

If
$$a = 1$$
, then $b = 3$ and $c = 2$.

So, one quadratic polynomial which fits the given conditions is $x^2 + 3x + 2$.

4. (b) Let the lady has x coins of 25 p and y coins of 50 p. Then, according to problem x + y = 40..... (i) 25 x + 50 y = 1250..... (ii) Solving for x & y we get x = 30 (25 p coins) & y = 10 (50 p coins) $\left(-\sqrt{3}a,\sqrt{3}a\right)$ be the given

(d) Let A(a, a), B(-a, -a) and
$$(-\sqrt{3}a, \sqrt{3}a)$$

$$AB = \sqrt{(-a-a)^{2} + (-a-a)^{2}}$$
$$= \sqrt{4a^{2} + 4a^{2}} = 2\sqrt{2}a$$

$$BC = \sqrt{\left(-\sqrt{3}a + a\right)^2 + \left(\sqrt{3}a + 1\right)^2}$$

$$\Rightarrow BC = \sqrt{a^2 \left(1 - \sqrt{3}\right)^2 + a^2 \left(\sqrt{3} + 1\right)^2}$$

$$\Rightarrow BC = a\sqrt{\left(1 - \sqrt{3}\right)^2 + \left(1 + \sqrt{3}\right)^2}$$

$$\Rightarrow BC = a\sqrt{1 + 3 - 2\sqrt{3} + 1 + 3 + 2\sqrt{3}}$$

$$\Rightarrow BC = a\sqrt{8} = 2\sqrt{2}a$$

and $AC = \sqrt{\left(-\sqrt{3}a - a\right)^2 + \left(\sqrt{3}a - a\right)^2}$

$$\Rightarrow AC = \sqrt{a^2 \left(\sqrt{3} + 1\right)^2 + a^2 \left(\sqrt{3} - 1\right)^2}$$

$$\Rightarrow AC = a\sqrt{\left(\sqrt{3} + 1\right)^2 + \left(\sqrt{3} - 1\right)^2}$$

$$\Rightarrow AC = a\sqrt{3 + 1 + 2\sqrt{3} + 3 + 1 - 2\sqrt{3}}$$

$$= a\sqrt{8} = 2\sqrt{2}a$$

Clearly, we have AB = BC = AC

Hence, the triangle ABC formed by the given points is an equilateral triangle.

6. (a) one
7. (b)
$$\frac{1}{2}$$

(b)
$$\frac{1}{\sec \theta} = \cos \theta$$
 and maximum value of $\cos \theta$ is 1

$$\Rightarrow \text{ Maximum value of } \frac{1}{\sec \theta} \text{ is 1}$$

8. (c) Let ABC be an isosceles triangle, where base AB = aand equal sides AC = BC = b. Let CD be the perpendicular on AB.

Mathematics

Let the initial position of the man be at O and his final position be B, since the man goes to 10 m due east and then 24 m due north.

Therefore
$$\triangle AOB$$
 is a right angled triangle at angle A.
 $\therefore \triangle AOB$

$$OB^{2} = OA^{2} + AB^{2} = (10)^{2} + (24)^{2}$$
$$= 100 + 576$$
$$OB = \sqrt{676}$$
$$OB = 26m$$

Hence, the man is at a distance of 26 m from the starting point.

(b) Let length and breadth be x cm and y cm respectively. 16. According to problem,

2
$$(x + y) = 40$$
 (i)
and $\frac{y}{x} = \frac{2}{2}$ (ii)

solving,
$$x = 12$$
, $y = 8$

$$\therefore$$
 Length = 12 cm and breadth = 8cm.

17. (c)
$$\tan A = \frac{3}{4} = \frac{P}{b}$$

 $h = \sqrt{P^2 + b^2} = \sqrt{9 + 16}$
 $\sin A = \frac{P}{h} = \frac{3}{5}$

а

on

18. (c) $\frac{3}{5} = 0.6$ where as other numbers have non-terminating decimals.

So,
$$AD = DB = \frac{1}{2}AB = \frac{a}{2}$$

Altitude, $CD =$ height of the
 ΔABC is given by
 $h = \sqrt{AC^2 - AD^2}$
 $\Rightarrow h = \frac{1}{2}\sqrt{4b^2 - a^2}$
Area of the $\Delta ABC = \frac{1}{2}$ base × altitude
 $= \frac{1}{2} \times a \times \frac{1}{2}\sqrt{4b^2 - a^2} = \frac{a}{4}\sqrt{4b^2 - a^2}$.
9. (c) We have, $p(x) = x^2 - 10x - 75$
 $= x^2 - 15x + 5x - 75$
 $= x(x - 15) + 5(x - 15) = (x - 15) (x + 5)$
 $\therefore p(x) = (x - 15) (x + 5)$
So, $p(x) = 0$ when $x = 15$ or $x = -5$. Therefore required
zeroes are 15 and -5 .
10. (b) $A(-4, 0), B(4, 0), C(0, 3)$
 $AB = \sqrt{(4 + 4)^2 + (0 - 0)^2} = \sqrt{(8)^2} = 8$
 $BC = \sqrt{(0 - 4)^2 + (3 - 0)^2}$
 $= \sqrt{16 + 9} = \sqrt{25} = 5$
 $CA = \sqrt{(-4 - 0)^2 + (0 - 3)^2} = \sqrt{16 + 9} = \sqrt{25} = 5$
 $BC = CA \Rightarrow DABC$ is isosceles.
11. (a) The circle is divided into 18 equal sectors
Central angle in each sector $= \frac{360^\circ}{18} = 20^\circ$
Area of each sector $= \frac{\theta}{360^\circ} \times \pi r^2$
 $= \frac{20^\circ}{360^\circ} \times 3.14 \times 4 \times 4 = 2.79$
Area of shaded portion $= 9 \times 2.79 = 25.12$

5)

8

12. (a) Product

13. (b)
$$n(S) = 6 \times 6 = 36$$
, $E = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$
 $n(E) = 6$
 $P(E) = \frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}$

s-34

9.

10.

- 19. (c) Let the medians through C meets AB at D. A(2, 2) D B(-4, -4) C(5, -8) Coordinates of D are $\left(\frac{-4+2}{2}, \frac{-4+2}{2}\right) = (-1, -1)$ Length of CD = $\sqrt{36+49} = \sqrt{85}$. $= \sqrt{(5+1)^2 + (-8+1)^2}$ 20. (a) Let the number of blue balls = x \therefore Total number of balls = 5 + x P (blue ball) = $\frac{x}{5+x}$ P (red ball) = $\frac{5}{5+x}$ Given that P (blue) = 2 • P (red) $\frac{x}{5+x} = 2 \times \frac{5}{5+x}$ $\frac{x}{5+x} = \frac{10}{5+x}$
- **21.** (c) Total number of outcomes are {HH, HT, TH, TT}. The outcomes favourable to the event 'atmost one head' are HT. TH and TT.

$$\therefore P(E) = \frac{n(E)}{n(s)} = \frac{3}{4}$$
22. (c) $\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \Rightarrow \frac{3}{2m-5} \neq \frac{-2}{7}$
or $-4m + 10 \neq 21$
or $-4m \neq 11$
or $m \neq -\frac{11}{4}$

23. (d) Let *h* metres be the height of the telephone pole. Since time is the same in both the cases.

 $\therefore \angle BCA = \angle DEA = q$

Clearly, $\triangle ABC$ and $\triangle ADE$ are similar

 $\therefore \qquad \frac{AC}{AE} = \frac{AB}{AD}$ $\Rightarrow \qquad \frac{24}{16} = \frac{15}{h} \Rightarrow h = \frac{15 \times 16}{24} = \frac{240}{24} = 10$

Hence, height of the telephone pole = 10 cm.

24. (a) Polynomial p(x) has four real zeros.

25. (b)
$$\sin \theta + 2 \cos \theta = 1 \Rightarrow (\sin \theta + 2 \cos \theta)^2 = 1$$

- $\Rightarrow \quad \sin^2 \theta + 4 \cos^2 \theta + 4 \sin \theta \cos \theta = 1$
 - $\Rightarrow 1 \cos^2 \theta + 4 (1 \sin^2 \theta + 4 \sin \theta \cos \theta = 1)$
 - \Rightarrow 4 sin² θ + cos² θ 4 sin θ cos θ = 4
 - $\Rightarrow (2\sin\theta \cos\theta)^2 = 4$

$$\Rightarrow 2\sin\theta - \cos\theta = 2$$

- $[\because 2\sin\theta \cos\theta \neq -2]$
- 26. (b) The system of simultaneous equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, have exactly one (unique) solution if $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$.
- 27. (d) The L.C.M. of 16, 20 and 24 is 240. The least multiple of 240 but it is not a perfect square. Similarly 2400 is also ruled out because it is also not a perfect square. 1600 is divided by 16 and 20 but not by 24. Therefore 3600 is least number which is a perfect square and divisible by 16, 20, 24.
- 28. (b) The centre of the circle is the midpoint of the diameter.So coordinates of centre = midpoint of AB

$$=\left(\frac{-2+4}{2},\frac{3-5}{2}\right)=\left(\frac{2}{2},\frac{-2}{2}\right)=(1,-1)$$

- **29.** (b) Since, the graph of y = f(x) is a parabola, therefore f(x) is quadratic.
- **30.** (d) $1 + \sin^2 \theta = 3 \sin \theta \cos \theta$
 - $[\because 1 = \cos^2 \theta + \sin^2 \theta]$

$$\Rightarrow \cos^2 \theta + 2\sin^2 \theta = 3\sin \theta \cos \theta$$

- $\Rightarrow \cos^2 \theta 3 \sin \theta \cos \theta + 2 \sin^2 \theta = 0$
- $\Rightarrow \cos \theta \sin q) (\cos \theta 2 \sin \theta) = 0$
- $\Rightarrow \cos \theta \sin \theta = 0 \text{ or } \cos \theta 2 \sin \theta = 0$ $\Rightarrow \sin \theta = \cos \theta \text{ or } 2 \sin \theta = \cos \theta$

$$\Rightarrow \quad \frac{\sin\theta}{\cos\theta} = 1 \text{ or } 2\frac{\sin\theta}{\cos\theta} = 1$$

$$\Rightarrow$$
 tan $\theta = 1$ or 2 tan $\theta = 1$

Thus,
$$\tan \theta = 1$$
 or $\tan \theta = \frac{1}{2}$.

31. (d) By Pythagoras theorem in $\triangle BAC$, we have

BC² = AB² + AC² = 6² + 8² = 100
$$\Rightarrow$$
 BC = 10 CM 37. (b) -2, 1, Now,
Area of $\triangle ABC$ = Area of $\triangle OAB$ + Area of
 $\triangle OBC$ + Area of $\triangle OCA$
 $\Rightarrow \frac{1}{2}AB \times AC = \frac{1}{2}AB \times r + \frac{1}{2}BC \times r + \frac{1}{2}CA \times r$ 38. (b)
 $\Rightarrow - \times 6 \times 8 = \frac{1}{2}(6 \times r) + (10 \times r) + \frac{1}{2}(8 \times r)$
 $\Rightarrow 48 = 24 r \Rightarrow r = 2 cm$
(c) $(-1)^n + (-1)^{4n} = 0$ will be possible, when n is any odd
natural number i.e.,
(b) $28 \frac{O}{45} 28$
 $A rea of sector OACB$
 $= \frac{45}{360} \times \frac{22}{7} \times 28 \times 28 = 308 cm^{27}$
 $A rea (\triangle AOB) = \frac{1}{2}(28)(28) \sin 45^{\circ}$
 $= 14 \times 28 \times = 277.19$
Area (minor segment) = 308 - 277.19
 $= 30.81$
(b) Let the required ratio be K : 1
 \therefore The co-ordinates of the required point on the y-axis is
 $x = \frac{K(-4)+3(1)}{K+1}$; $y = \frac{K(2)+5(1)}{K+1}$
Since, it lies on y - axis
 \therefore Its x-cordinates = 0
 $\therefore \frac{-4K+3}{K+1} = 0 \Rightarrow -4K + 3 = 0$
 $\Rightarrow K = \frac{3}{4}$
 \Rightarrow Required ratio $= \frac{3}{4} : 1$
 \therefore ratio = 3 : 4
(b) Consistent system
 $(\Rightarrow ta n \theta + sec \theta - 1$
 $Area (a) Asth$

36. (a)
$$\frac{1}{\tan\theta - \sec\theta + 1} = \frac{(\tan\theta + \sec\theta) - (\sec^2\theta - \tan^2\theta)}{\tan\theta - \sec\theta + 1}$$

$$= \frac{(\tan \theta + \sec \theta)[1 - (\sec \theta - \tan \theta)]}{\tan \theta - \sec \theta + 1}$$
$$= \frac{(\tan \theta + \sec \theta)(1 - \sec \theta + \tan \theta)}{(1 + \tan \theta - \sec \theta)}$$
$$= \tan \theta + \sec \theta$$
$$= 1 + \sin \theta$$

$$\cos\theta$$

3 A E D AEB, $\angle AEB = 90^{\circ}$ $AB^2 = AE^2 + BE^2$(i) AED, $\angle AED = 90^{\circ}$ $AD^2 = AE^2 + DE^2$ AE² = (AD² - DE²) AB² = (AD² - DE²) + BE² $D^2 - DE^2$) + (BD - DE²) $D^2 - DE^2$) + $\left(\frac{1}{2}BC - DE\right)^2$ $D^2 + \frac{1}{4}BC^2 - BC \times DE$ numbers common to given numbers are 2², 5 and $= 2^2 \times 5 \times 7^2 = 980.$ neter of sector = 25 cm $\frac{\theta}{360} \times 2r = 25$ $r + \frac{90}{360} \times 2 \times \frac{25}{7} \times r = 25$ $\frac{1}{7}$ 2r + r = 25 $\Rightarrow \frac{22}{7}$ r = 25 \Rightarrow r = 7 of minor segment = $\left(\frac{\pi\theta}{360^\circ} - \frac{Sin\theta}{2}\right)r^2$ $\frac{22}{7} \times \frac{90}{360^{\circ}} - \frac{\sin 90}{2} (7)^2$ $\left(\frac{1}{4} - \frac{1}{2}\right) \times 49 = \frac{4}{14} \times 49 = 14 \text{ cm}^2.$ 42. **(a)** 43. (c) 45. **(b)** ree faces are marked with number '2', so number of favourable cases = 3. \therefore Required probability, $P(2) = \frac{3}{6} = \frac{1}{2}$ (c) No. of favourable cases = No. of events of getting the 47. number 1 + no. of events of getting the number 3 = 2 + 1 = 3 \therefore Required probability, P(1 or 3) = $\frac{3}{6} = \frac{1}{2}$

48. (b) Only 1 face is marked with 3, so there are 5 faces which are not marked with 3.

$$\therefore \text{ Required probability, P (not 3)} = \frac{5}{6}$$

49. (b) 50. (a)

32.

33.

34.

35.

20