	(To be fi	lled up by	the candidat	e by blue/blo	ick ball-p	olut pen)	
Roll No.							
Serial No.	of OMR	answer Sh	et manain	2 امو			
Day and	Date	· ····is altacertai (.e.c	Hillian sant ta Aust III			(Signature	e of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 30 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it
 contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Atlante Card without its envelope.
- 3. A separate Auswer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken .
 as unfairments.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding tow of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle
 or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the carresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMER Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any forming unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 32

[उपनुष्त भिर्देश हिन्दी में अन्तिम आवरण पृष्ठ कर दिने गए हैं।।

ROUGH WORK रफ़ कार्य

No. of Questions: 120

Time: 2 Hours Full Marks: 360

Note: (1) Attempt as many questions as you can. Each question carries 3

(Three) marks. One mark will be deducted for each incorrect

answer. Zero mark will be awarded for each unattempted
question.

- (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- O1. The soil formation which contains significant water in pores but not able to yield significantly:
 - (1) Clay-

(2) Sand

(3) Silt

- (4) Gravel
- 02. Major aquifer system lies in India is :
 - (1) Cavernous limestone

(2) Alluvium

(3) Fractured granite

- (4) Vesicular Basalt
- 03. Groundwater movement in aquifer can be assessed by :
 - (1) Tracer study
 - (2) Analysis of water table contour
 - (3) Analysis of groundwater potential
 - (4) Water table contour and tracer study

P.T.O.

04.	Tra	nsmissivity is higher for:		
	(1)	Unconfined aquifer	(2)	Confined aquifer
	(3)	Leaky aquifer	(4)	Perched aquifer
0 5.	Dril	ling of rocks in hard rock is co	ondu	cted by :
	(1)	Rotary rig	(2)	DTH rig
	(3)	Reverse Rotary	(4)	Percussion Rig
06.	Spec	cfic capacity of well if the disch	arge	is 2 m ³ /second and drawdown
	is 10	0 m.		
	(1)	20 litre/second/meter	(2)	200 litre/second/meter
	(3)	100 litre/second/meter	(4)	125 litre/second/meter
07.	Dan	will be unstable if dip of rock	bed	is:
	(1)	Upstream side	(2)	Downstream side
	(3)	Vertical	(4)	Horizontal
08.	Tun	nelling is not suitable along th	ne :	
	(1)	Dip direction of beds	(2)	Strike direction of beds
	(3)	Parallel to bedding planes	(4)	Oblique to dip direction

09.	Whi	ch rock is most s	suitable for	founda	tion of dam:	
	(1)	Granite		(2)	Vesicular basalt	
	(3)	Sandstone	*	(4)	Quartzite	
10.	Res	ervoir is success	ful if rock is			
	(1)	Fractured and	soft	(2)	Soft and massive	
	(3)	Fractured and	hard	(4)	Hard and massive	
11.	Roc	k cut slope is ma	aximum sta	ble if re	ock bed is:	
	(1)	Highly jointed	and has sto	eper di	p	
	(2)	Highly jointed	and has ge	ntle dip		
	(3)	Massive and go	entle dip	18	15 (E. 18)	
	(4)	Massive and st	eeper dip			
12.	Soi	l creep occurs w	hen the mo	vement	of soil is:	
	(1)	Rapid		(2)	Slow	
	(3)	Very rapid		(4)	Extremely rapid	
13.	Slic	eken sides are a	type of:			
	(1)	' Foliation		(2)	Bedding	
	(3)	Lineation	•	(4)	Fault plane	

· 17P/205/22 (i)

14.	Upf	olds or arches of layered rocks	are	called:
	(1)	Antiforms	(2)	Faults
	(3)	Synforms	(4)	Unconformities
15.	Mos	st appropriate example of Geo	meg	netic reversal is imprinted on
	the	:		1*
	(1)	Rift basins	(2)	Orogenic belts
	(3)	MORs .	(4)	Trenches
16.	Coo	ling joints are in	cross	-section.
	(1)	Hexagonal	(2)	Circular
	(3)	Rectangular	(4)	Of any shape
17.	Isoc	linal folds have an interlimb a	ngle (of:
	(1)	80 - 900	(2)	50 - 60°
	(3)	0 - 100	(4)	30 - 400
18.	Fold	s with straight limbs and shar	rp hi	nges are called :
	(1)	Kink folds	(2)	Chevron folds
	(3)	Ptygmatic folds	(4)	Recumbent folds

19.	Bed	s on the surface of the earth	ı alway	s extend in the direction of :
	(1)	True dip	(2)	Strike
	(3)	Apparent dip	(4)	Horizontal
20.	A b	reak in the sedimentation is	called	: .
	(1)	Unconformity	(2)	Strata
	(3)	Formation	(4)	Laminae
21.	Cor	ntinental drift theory was give	en by :	
	(1)	Harry Hess	(2)	A. Wagner
	(3)	Vine and Mathews	(4)	J. Tuzo Wilson
22.	Lith	ospheric plates are compos	ed of:	
	(1)	Crust		
	(2)	Mantle		***
	(3)	Crust and upper Mantle	6	
	(4)	Oceanic crust and contine	ntal cru	ist .
23.	Wh	ich of the following spectrum	n of the	electromagnetic waves is not
		d in remote sensing:		•
	(1)	Ultra violet rays	(2)	Visible spectrum
	(3)	Microwaves	(4)	Radio waves

24.	4. Colour of fresh vegetation in normal FCC imagery is:			
	(1)	Black	(2)	Green
	(3)	Red	(4)	White
25.	Wha	at powers the hydrologic cycle	?	
	(1)	Mantle convection	(2)	Radioactive decay
	(3)	Solar energy	(4)	Wind energy
26.	The	groundwater contribution to a	a stre	am is known as
	(1)	Base flow	(2)	Runoff
	(3)	Storage	(4)	Transmission
27.		is the branch of geo	logy	which deals with the study of
	the	water below the surface of the	eart	h crust.
	(1)	Mineralogy	(2)	Hydrometeorology
	(3)	Geophysics	(4)	Hydrogeology
26.	Whi	ich rock type would make the	best	aquifer?
	(1)	Shale	(2).	Mudstone
	(3)	Sandstone	(4)	Basalt

29.	The	subsurface Zone in which	all rock	openings are filled with water
		alled the	٠.	
	(1)	Saturated Zone	(2)	Water table
	(3)	Unsaturated Zone	(4)	Aquiclude
30.	Per	meability is	•	
	(1)	The percentage of a rock	s volume	•
	(2)	The capacity of a rock to	transmit	a fluid
	(3)	The percentage of pores i	in the ro	ck:
•	(4)	The discharge of water th	rough th	ne width of the aquifer.
31.	Wh	ich of the following stater	nents re	garding human activities and
	the	hydrologic cycle is false?		•
	(1)	Building roads and parkin	g lots inc	rease the amount of infiltration
		and percolation.		
	(2)	Human contribution to	global a	nd local warming can change
		the balance of water in d	ifferent l	nydrologic reservoirs.
	(3)	Global warming can lead	to melt	ing of frozen water and glacial
•		ice.		
	(4)	Rainwater harvesting	helps to	augment the groundwater
		resources.		

32.	Perc	hed aquifer occurs in the	Zone of	<u> </u>
	(1)	Saturation	(2)	Aeration
	(3)	Saturation and aeration	(4)	Surface sandy deposits
33.	Wat	er logging in an area occu	rs when	the water table
	(1)	Rises very close to the su	rface	
	(2)	Drops down too deep		
	(3)	Occurs below clay layers		
	(4)	Occurs in between 10 to	100 m	
34.	Мајс	or symptom of desertificat	ion is	
	(1)	Increase in an areal exte	ent of su	rface water in streams, ponds
		and lakes.		
	(2)	Decline of groundwater t	able	
	(3)	Control of soil erosion an	d stabili	zation of sand dunes
	(4)	No damage to native Veg	etation is	n deserts
35.	Roc	k Weathering is responsi	ble for le	ong term climate change and
	cycl	e of		
	(1)	'C'	(2)	'N'
	(3)	'P'	(4)	'S'

36.	Whi	ch of the following processe	s is a m	ajor cause of acid rain?
	(1)	Burning of coal and gasoli	ine	
	(2)	Destruction of rain forests		
	(3)	Leakage of industrial was	te	
	(4)	Change of clamatic condit	ions	
37.	Chr	omite ores in ultramafic ro	cks are	formed by:
	(1)	Magmatic process	(2)	Metamorphic process
	(3)	Hydrothermal process	(4)	Pneumatolytic process
38.	Deg	ana is known for :		
	(1)	Scheelite deposit	. (2)	Wolframite deposit
	(3)	Magnetite deposit	(4)	Galena deposit
39.	An	ass of rock traversed by a r	network	of small ore-bearing veinlets is
	call	ed:	v	
	(1)	Saddle reef	(2)	Composite veins
	(3)	Ladder veins	(4)	Stockworks

40 .	Kir	una type magnetite deposit	is ty	pically characterized by the
	pre	sence of:		
	(1)	Fe and P	(2)	Fe and As
	(3)	Fe and Bi	(4)	Fe and Sb
41.	Ore	minerals usually associated v	rith c	halcopyrite deposits are :
	(1)	Bornite, cuprite, covellite		
	(2)	Hematite, magnetite and side	erite	
	(3)	Bauxite, laterite, goethite		
	(4)	Mica, olivine, Pyroxene		
42.	Diar	nonds in kimberlites are found	d in t	he form of :
	(1)	Segregation	(2)	Injection
	(3)	Cavity fillings	(4)	Dissemination
43.	Gos	sans are the signboards of the	hidd	len:
	(1)	Sulfide deposits	(2)	Oxide deposits
	(3)	Chromate deposits	(4)	Phosphate deposits
		X-1		

44.	The	regions, where metallic de	posite	of specific types are found
•	abu	ndantly are called:		
	(1)	Metallogenic epochs	(2)	Metallogenic provinces
	(3)	Metallogenic districts	(4)	Metallogenic regions
45.	Mai	nganese deposits of M.P. and	Meha	rashtra belong to:
	(1)	Metamorphic ore deposits	(2)	Hydrothermal Ore deposits
	(3)	Pegmatitic ore deposits	(4)	Magmatic ore deposits
46.	In 2	Zawar, Pb & Zn mineralisation	is la	rgely confined to :
4	(1)	Slates and phyllites	(2)	Graphite-mica Schist
	(3)	Dolomites .	(4)	Quartz-mica Schist
47.	The	famous Kolar Gold Fields an	d Hut	ti Gold Mines are located in :
	(1)	Karnataka		
	(2)	Kernetaka and Andhra Pred	esh	
	(3)	Karnetaka and Tamilnadu		
	(4)	Karnataka and Kerala		

48.	Mos	st of the Coal deposits in India	are	found in :
	(1)	Lower Gondwana	(2)	Upper Gondwana
	(3)	Jurassic	(4)	Tertiary
49.	Iner	rtinite corresponds to:		
	(1)	Kerogen Type-I	(2)	Kerogen Type-IV
	(3)	Kerogen Type-II	(4)	Kerogen Type-III
50.	The	carbon in coal which does not	com	bine with any other element is
	con	sidered as :		
	(1)	Total elemental carbon	(2)	Total organic carbon
	(3)	Fixed carbon	(4)	Total inorganic carbon
51.	Vitr	inite reflectance is a paramet	er us	sed for the determination of :
	(1)	Coal rank	(2)	Coal grade
	(3)	Coal type	(4)	Coal reserve
			,	
52.	Wh	ich formation is deprived of co	al:	*
	(1)	Karharbari Formation	(2)	Barakar Formation
	(3)	Barren Measure Formation	(4)	Raniganj Formation

53.	Chi	rimiri is k	mown for :			
	(1)	Oil	0	(2)	Coal	
	(3)	Gas		(4)	Atomic minerals	
54.	Fue	l ratio is	the ratio of	fixed carbon'	to:	2 W
	(1)	Volatile	matter	(2)	Total moisture	20
	(3)	Total ca	rbon	(4)	Total ash	
55.	Acc	ording to	Hilt's Rule,	there is:		13
	(1)	Decreas	c of ash cer	ntent with dep	th.	•
	(2)	Increase	of coal ran	k with depth		
	(3)	Increase	of moistur	e content with	depth	
	(4)	Increase	of ash con	tent with dept	h	•
56.	The	optical t	ehaviour o	f which of the	following maceral	uniformly
			increase in			
	(1)	Inertinit	te	(2)	Liptinite	
	(3)	Vitrinite		(4)	Secondary liptinite	

P.T.O.

57.	Sulp	alphur content is high in which of the following coals?				
	(1)	Mahanadi valley coals				
	(2)	Damodar valley coals				
	(3)	Tertiary coals of NE and NW I	ndia			
	(4)	Son valley coals				
58.	Grad	de of coal is related to:				
	(1)	Carbon content	(2)	Ash content		
	(3)	Bed moisture	(4)	Sulphur content		
59.	Can	nel coals are rich in :		•		
	(1)	Alginate	(2)	Sporinite		
	(3)	Suberinite	(4)	Resinite		
60.	Ker	ogen type-III is derived from:				
	(1)	Continental plants				
	(2)	Algal deposits				
	(3)	(3) Mixture of phytoplankton and zooplankton				
	(4)	Zooplankton				

					200	
61.	. Wh	nich of the follo	wing rocks ha	s no v	olcanic equivalent ?	
	(1)	Gabbro		(2)	Anorthosite .	
	(3)	Diorite		(4)	Granodiorite	
62.	The	commonest r	ock type in the	e rift z	ones is :	
	(1)	Basalt	•	(2)	Andesite	
	(3)	Granite		(4)	Diorite	
63.	Wh	ich of the follow	ving magma/l	ava ha	as more viscosity ?	
	(1)	Andesite	• •	(2)	Başalt	
	(3)	Komatiite	•	(4)	Rhyolite	
64.	The	term 'lithosph	еге' comprises	::	•	
	(1)	Crust + mant	le + core	(2)	Crust + mantle	•
	(3)	Crust + upper	mantle	(4)	Crust + lower mantie	
55.	Bulk	of the Deccan	Trap lavas en	upted	at ;	
£.	(1)	90 M.Y.		(2)	65 M.Y.	
	(3)	100 M.Y.		(4)	20 M.Y.	

66.	Whic	h of the following ternary syste	m is	termed as 'Petrogenys residua
	syste	em' ?		
	(1)	Albite-kalsilite-silica	(2)	Diopside-forsterite-silica
	(3)	Diopside-albite-anorthite	(4)	Albite-silica-anorthite
67.	Whi	ch of the following constitute	es an	example of primary igneous
	text	ure ?	65.	
	(1)	Symplectite	(2)	Schistose
	(3)	Porphyritic	(4)	Gneissose
68	. Нус	irous mafic silicates are char	acter	istic of which of the following
	roc	k ?		
	(1)	Basalt	(2)	Komatite
	(3)	Lamprophyre	(4)	Tonalite
69). Th	e mineral which is most abun	dant	in the ultramafic rocks is:
4	(1)	Na-plagioclase	(2)	Ca-plagioclase
	(3)	Amphibole	(4	Olivine

70	. שו	hich of the following -i1:		
			s not	a part of discontinuous reaction
	SCI	ries ?		
	(1)	Pyroxene .	(2)	Amphibole
	(3)	Olivine	(4)	Plagioclase
71.	W	nich one of the following is no	t an l	ypabyssal rock ?
	(1)	Section 1 Section 1	2	Pumice
	(3)	Aplite	(4)	Dolerite
72.	Wh	ich of the following is not an	extru	sive rock ?
	(1)	Trachyte	(2)	Dunite
	(3)	Andesite	(4)	Rhyolite
73,	The	shell composition of radiolar	ia is :	
	(1)	Calcareous	(2)	Siliceous
6	(3)	Phosphatic	(4)	Chitinous
4.	Whi	ch of the following microfossi	l grou	ps occurs both in marine and
	fresl	n water environment :		
	(1)	Calcareous nannoplankton	(2)	Chitinizoe
	(3)	Ostracoda	(4)	Acritarche

75.	An e	xample of larger	foraminife	era is :	
	(1)	Globigerina	C	(2)	Uvigerina
	(3)	Fusulina		(4)	Orbulina
76.	Pter	opods are :			
	(1)	Bryozoans		(2)	Brachiopods
	(3)	Gastropods		(4)	Trilobites
77.	The	study of fossil s	spores and	pollen g	rains is called:
	(1)	Taphonomy		(2)	Agronomy
	(3)	Palynology		(4)	Paleobiology
78	. The	bivalve shell of	an ostraco	de is cal	led:
	(1)	Conch	•	(2)	Protoconch
	(3)	Carapace		(4)	Coccolithophore
79). W	nich of the follow	ving is a bi	polar sp	ecies ?
	(1)	Globigerina t			
	(2)	Neogloboquad	drina pach	yderma	(sinistrally coiled)
	(3)				
	(4) Neogloboqua	drina pach	yderma	(dextrally coiled)

80	. Du	iring upwelling condition, the	uppe	er thermocline in	the Arabian
		a becomes :		•	
	(1)	Shallower	(2)	Deeper	
	(3)	Oligotrophic	(4)	Warmer	2
81.	An	example of thermocline planks	ic for	raminifera is :	
	(1)	· Neogloboquadrina dutertrei	(2)	Cibicides .	
	(3)	Globigerina	(4)	Textularia	
82.	Hig	h abundance of infaunal benthic	fora	minifera in sedimen	t indicates :
	(1)	Low organic matter export flu			
	(2)	Well oxygenated environment			
	(3)	High organic matter export fi	ux at	nd low oxygen envi	ronment
	(4)	Low organic matter export flu			
83.	Exti	nction of Disconster group is	gen	erally considered	as a good
	stra	tigraphic marker for :		• • • •	
	(1)	Miocene/Pleistocene boundar	У		
	(2)	Pliocene/Pleistocene boundar	y		
	(3)	Oligocene/Miocene boundary			
	(4)	Pleistocene/Holocene boundar	ry		
		21			
		21			P.T.O.

84.	Lowe	est species diversity in plankti	c fore	miniferal assemblages occurs			
	in:	•					
	(1)	Tropical water mass	(2)	Sub-tropical water mass			
	(3)	Temperate water mass	(4)	Polar water mass			
85.	Coar	rsening upward depositional s	seque	nces are characteristics of:			
	(1)	Glacial environment	(2)	Fluvial environment			
	(3)	Deltaic environment	(4)	Lacustrine environment			
86.	Wed	lge shaped deposition of finer	sedin	nents which dip away from the			
	char	nnel are formed as:					
	(1)	Point-bar deposit by rivers					
	(2)	Fine grained deposit by shall	llow s	sea			
	(3)	Channel deposit by rivers					
	(4) Over bank deposit by rivers						
87	. In t	the lower flow regime, Froude	num	ber is:			
	(1)	Less than 0.5	(2)	Less than 1			
	(3)	Greater than 0.5	(4)	Greater than 1			
		•					

88. The clay is deposited in :

- (1) High energy environment
- (2) Cold environment
- (3) Evaporite environment
- (4) Low energy environment

89. Flute Cast is a:

- (1) Sole structure
- (2) Secondary structure
- (3) Biogenic structure
- (4) Desiccation structure

90. Alluvial soils are:

- (1) Transported soils by various rivers
- (2) Transported soils by various glaciers
- (3) Residual soils formed by ocean
- (4) Zonal soils formed by differential weathering

91. In a graded bedding particle size :

- (1) Decreases in the upward direction
- (2) Decreases in the downward direction
- (3) Decreases in the direction of flow
- (4) particle size remains the same

92.	Hum	mocky Cross Bedding is typica	al to	:
	(1)	Deep sea deposits	(2)	Storm deposits
	(3)	Lacustrine deposits	(4)	Fluvial deposits
93.	Chai	nnel bars deposited on the ins	ide o	f meander curves are called :
	(1)	Dunes	(2)	Point bars
	(3)	Cut banks	(4)	Braid Bars
94.	Well	sorted sediments explain dep	ositi	on under :
	(1)	Fluctuating energy condition	(2)	Constant energy condition
	(3)	High energy condition	(4)	Low energy condition
95.	Ark	ose is a :		
	(1)	Sandstone with less than 159	% ma	atrix and 25% of feldspar
	(2)	Sandstone with more than 18		
	(3)			atrix and 25% rock fragments
	(4)	Sandstone with more than 15	% ma	atrix and 25% of rock fragment
96	. A li	mestone with round particles than 2 mm in diameter withou	s fine	e grained calcium carbonate y concentric or radial structur
	is:			
	(1)	- tit 1'tone	(2)	Pellatic limestone
	(3)		(4)	Bioclastic limestone

97.	Se	lect an index fossil fr	om the follow	ing for intertrappean Beds ?
	(1)			
	(2)	Physa (Bullinus) p	rinsapii	
	(3)	Macrocephalites m	acrocephalus	
	(4)	Protoretopora ampl	la ·	
		*		
98.	Wh	ich of the following p	arts is not pr	esent in brachiopods?
	(1)	Adductor muscles	(2)	Didductor muscles
	(3)	Delthyrium	(4)	Ligament
99.	Pali	ntrope is a specific g	rowth feature	found in:
	(1)	Bruchiopods	~(2)	Bivalves
	(3)	Gastropeds	. (4)	Cephalopods
00.	The	facial suture which i	s present alor	ng ventral margin of cephalon
		OWII 88 :		
	(1)	Proparian	(2)	Hypoparian
((3)	Gonatoparian	(4)	Opisthoparian
		162		

101.	101. The bryozoan colony which acquires a netlike or window shape due					
	to joi	ining and rejo	oining of branche	s, is	known as :	
	(1)	Foliaceous	ζ.	(2)	Ferestrate	
	(3)	Dendroid		(4)	Upward Growing	
102.	Whi	ch of the follo	wing subclasses o	of crit	oids is represented in modern	
	envi	ronment?				
	(1)	Inadunata		(2)	Camerala	
	(3)	Articulata		(4)	Flexibilia	
103	.The	serially repr	eated lamellar/fi	brous	s internal ligament in bivalves	
	is k	nown as :				
	(1)	Alvinclular		(2)	Duplivincular	
4	(3)	Parvincular		(4)	Multivincular	
104. Which of the following is not a basement rock in Indian stratigraphy?						
	(1)	Charnockit	te	(2)	Porcellanite	
	(3)	Khondalite	:	(4)	Gondile	
		•				

105.Ha	denstroemia beds bel	ongs to :	
(1)	Early Triassic	.(2) Middle Triassic
(3)	Late Triassic	. (4) Early Jurassic
106. Baj	ocian is a stage of :		•
(1)	Middle Jurassic	(2	Late Jurassic
(3)	Early Jurassic	(4)	Early Cretaceous
107.Wh	at is the age of uttatti	ır Group ?	
(1)	Turonian	(2)	Coniacian - Suntonian
(3)	Campanian	(4)	
108. The	Palacosene succession	n in Himals	ya is represented by which of
the:	following formations i		
(1)	Subathu	(2)	Kasauli
(3)	Murec	(4)	Kamalial
109.The	most prominent textu	iral feature i	n regional metamorphic rocks
is:			de la metamorpine rocks
(1)	Foliation	(2)	Bedding
(3)	Porphyroblast	(4)	Nematoblast
4	Dist.	·	

110. Identify the false statements about metamorphism of shale:

- (1) Clay minerals break down to form micas with increasing grade of metamorphism
- (2) The grain size becomes smaller with increasing grade of metamorphism
- (3) Foliations develop with increasing grade of metamorphism
- (4) Shale looses water with increasing grade of metamorphism

111. Identify the factor that will not cause metamorphism:

- (1) A change in the chemical environment
- (2) An increase in temperature
- (3) An increase in pressure
- (4) Geological time

112. Which series is arranged in order of increasing grade of metamorphism?

- (1) Shale-phyllite-slate
- (2) Phyllite-gneiss-schist
- (3) Phyllite-shale-schist
- (4) Phyllite-schist-gneiss

113. Bladed habit characterizes:

(1) Sillimanite

(2) Kyanite

(3) Feldspar

(4) Andalusite

114. A mineral form is said to be reticulate if:

- (1) Fibres or columns cross in "Net like" crystalline growth
- (2) The crystals are oriented hair like
- (3) The crystals show a tree-like form
- (4) The crystals are fine needle shaped

115. Which of the following instrument is generally used for determining sp. gr. of rock specimens?

- (1) Jolly's spring blance
- (2) Specific gravity bottle
- (3) Chemical balance
- (4) Walker's steel yard balance

116. What distinguishes a petrological microscope from a biological microscope?

- (1) 'High magnification of petrological microscope
- (2) Petrological microscope is a precise measuring instrument
- (3) Petrological microscope has a circular stage while a biological microscope has a rectangular stage
- (4) Higher intensity illumination is required for petrological microscope because rocks are less transparent

117.	Mille	r indices for octahedral plane	in c	ubic crystal are :
	(1)	(100)	(2)	(110)
	(3)	(111)	(4)	(001)
118.	8. The highest degree of crystal symmetry is shown by and the lowest degree of crystal symmetry is shown by respectively: (1) Cubic system and triclinic system (2) Cubic system and hexagonal system (3) Monoclinic system and trigonal system (4) Cubic system and monoclinic system			
119		ich of the following is characted axes of 4 fold symmetry 2 axes of 4 fold symmetry		of Isometric System? 4 axes of 3 fold symmetry
120. It is well known that the faces, edges and solid angles have a definite relationship with each other. Which of the following formula expresses this?				
	(1)	1 1 - C10	(2)	Prowen's formula
	(3)		(4)	Steno's formula

ROUGH WORK एक कार्य

31 .

P.T.O.

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बालं-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 30 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अदिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा।
 केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- उपर्बुक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना खाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल औ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित .
 दंड का/की, भागी होगा/होगी।

