	Marking Scheme: Physics (042)			
Code :55/C/1				
Q.No.	VALUE POINTS/ EXPECTED ANSWERS	Marks	Total Marks	
	SECTION- A			
1.	(C) Remains unchanged	1	1	
2.	$(C)\frac{F}{2}$	1	1	
3.	(B) evr	1	1	
4.	$(C) \left(\frac{r_1}{r_2}\right)^2$	1	1	
5.	(C) Perpendicular to each other and in the same phase.	٤1	1	
6.	$(A) + \frac{d}{4}$	8.1	1	
7.	(C) 1	or the	1	
8.	(C) A neutron is converted into a proton and the created electron is ejected from the nucleus.	1	1	
9.	(C) III	1	1	
10.	(D) Number of both the free electrons and holes increases equally.	1	1	
11.	Lower	1	1	
12.	$\frac{h}{\pi}$ OR 9×10^{14} J	1	1	
13.	Red	1	1	
14.	2π	1	1	
15.	90°	1	1	
16.	\mathbf{X}	1	1	
	Alternatively			
	Slope = $\frac{1}{R}$			
	$R = \rho \frac{l}{A}$			
	$R_x > R_y$			
	(Award half mark of this question, if a student writes the correct answer in terms of			
	Resistance.)			

collegedunia India's largest Student Review Platform

17.	$[ML^2T^{-2}A^{-2}]$	1	1
17.		1	1
18.			
10.			
	$_{\rm E}$ $ -$		
	\mathbf{v}		
		1	
	Potential /		
	'		
	Designation of D		
	Resistance R		
	Alternatively		
	V= E - Ir	0	
	$V=E-\left(\frac{E}{D+D}\right)r$	arm	
	(Award half mark of this question to the student if he/she write just formula.)	O.	1
10	a dilea.	4	1
19.	Virtual	1	L
	(Note: Award half mark if a child shows that focal length will become negative using		
	Lens maker formula and does not conclude about nature of image.)		
20.	X is α-particle	1	1
20.		1	1
	(Note: Award half mark when a child finds out the correct atomic number and mass		
	number of D ₂ i.e 70 & 176)		
	OR		
	curves 1 & 2		
	SECTION- B		
21.			
	(a) Depiction of equipotential surfaces		
	(b) Finding the amount of work done		
	(a)		
P.			

Page | 4

(b) $W=q_0$ Δ V As a small test charge q_0 is moving along x-axis which is equipotential line for a given system, therefore $\Delta V=0$ Hence $W=0$	1/ ₂ 1/ ₂	2
(a) Sequence of color bands (b) Two properties of wire (a) Yellow, Violet, Orange and Silver (Note: if student does not write silver award half mark of this part.) (b) (1) Low temperature coefficient of Resistivity. (2) High Resistivity	1/2 1/2	2
(a) Calculation of Impedance of Circuit $1^{1}/_{2}$ (b) Calculation of peak value of current $1/_{2}$ (a) $X_{c} = \frac{1}{\omega c} = 100 \Omega$ $X_{L} = \omega L = 400 \Omega$ $R = 400 \Omega$ $Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = 500 \Omega$ (b) $I_{o} = \frac{V_{o}}{Z} = \frac{40}{500} = 0.08 \text{ A}$	1/ ₂ 1/ ₂ 1/ ₂ 1/ ₂	
		2

24.			
	Reason for Infrared Radiation referred as heat waves		
	Name the Radiation which lies		
	(a) Shorter Wavelength side $\frac{1}{2}$		
	(b) Longer Wavelength side 1/2		
	Water molecules present in most material readily absorb IR waves After Absorption	1	
	thermal motion increases. Due to which, they heat up & heat their surroundings.	1,	
	(a) Visible	1/2	
	(b) Microwave	1/2	2
25.			
	Formula for half life $\frac{1}{2}$		
	Calculation of half life	E	
	Calculation of Critical mass	.	
		orm	
	$N=N_o \left(\frac{1}{2}\right)^n$	1/2	
	$\frac{1}{16} N_o = N_o \left(\frac{1}{2}\right)^n$ $n = 4$ $t = n \times T_{1/2}$ India's largest Studes	1/2	
	$T_{1/2} = \frac{t}{n} = \frac{4}{4} = 1 \text{ day}$	1/2	
	$N = N_o \left(\frac{1}{2}\right)^n = N_o \left(\frac{1}{2}\right)^{\frac{t}{2}}$		
	$4= N_o \left(\frac{1}{2}\right)$ $N_o = 256 \text{ g}$	1/2	
	Alternative Method		
	$N=N_{o} e^{-\lambda t}$ $\frac{1}{16}N_{o}=N_{o} e^{-\lambda 4}$	1/2	
	$16 = e^{4\lambda}$		
	$4 \log_e 2 = 4 \lambda$ $4x \ 2.303 \ x \ 0.3010 = 4 \lambda$ $\lambda = 0.693 \ \text{per day}$	1.	
	Half life	1/2	
		Danale	

Page | 6

	$\Gamma_{1/2} = \frac{0.693}{10.000} = \frac{0.693}{0.000} = 1 \text{ day}$	1,	
	7 0 603	1/2	
	$4 = N_0 e^{-\lambda t}$ $N_0 = 256 g$	1/2	
	(Note: Give full credit of this part, if student substitutes values correctly and is not able to calculate final answer.)		
	OR		
	Formula $\frac{1}{2}$		
	Conversion of kinetic energy in Joule $\frac{1}{2}$		
	Finding the distance of closest approach 1		
	$d = \frac{q_1 q_2}{4\pi\epsilon_0 K}$	1/2	
k	inetic energy= 5.12 MeV = $5.12 \times 1.6 \times 10^{-13} \text{ J}$ = $8.192 \times 10^{-13} \text{ J}$	1/ ₂	
	$d = \frac{q_1 q_2}{4\pi\epsilon_0 K} = \frac{9 \times 10^9 \times 2e \times 79e}{8.192 \times 10^{-13}} \text{ m}$	1/2	
	$= 4.443 \times 10^{-14} \text{ m}$ $= 44.4 \times 10^{-15} \text{ m}$	1/2	2
5.			
	Binding energy curve Explanation of middle flat portion of the curve 1		
	Say 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	
	9 4 0 3H 0		
	STREET LINEAU LI		
1	Note: please don't deduct marks if student does not mark all the nuclei on the curve.		

per nucleon is large and shows more stability.	1	2
Reason for part (a)		
Reason of part (b)		
(a) Zener diode is fabricated by heavy doping of both p-side, and n-side of the junction.		
Due to this, depletion region formed is very thin and the electric field of the junction	1	
is extremely high.		
(b) It is easier to observe the change in the current with change in the light intensity, if	1	
reverse bias is applied.	1	
OR		
Circuit Diagram ¹ / ₂		
Working of p-n junction	E	
I-V Characteristics	J. 0.	
	mzor	
In the forward bias the width of depletion layer decreases and barrier height is reduced.	1/2	
It supports the movement of majority charge carriers across the junction.		
As soon as supply voltage exceeds barrier potential instantaneously current begins to		
flow through junction and increases exponentially with forward biasing voltage.	1	
(Note: Accept any other relevant explanation for working)		
I-V characteristics		
100— 80— 60— 40—	1/2	
0 20 0.2 0.4 0.6 0.8 1.0 V (V)		2
SECTION- C		

Page | 8

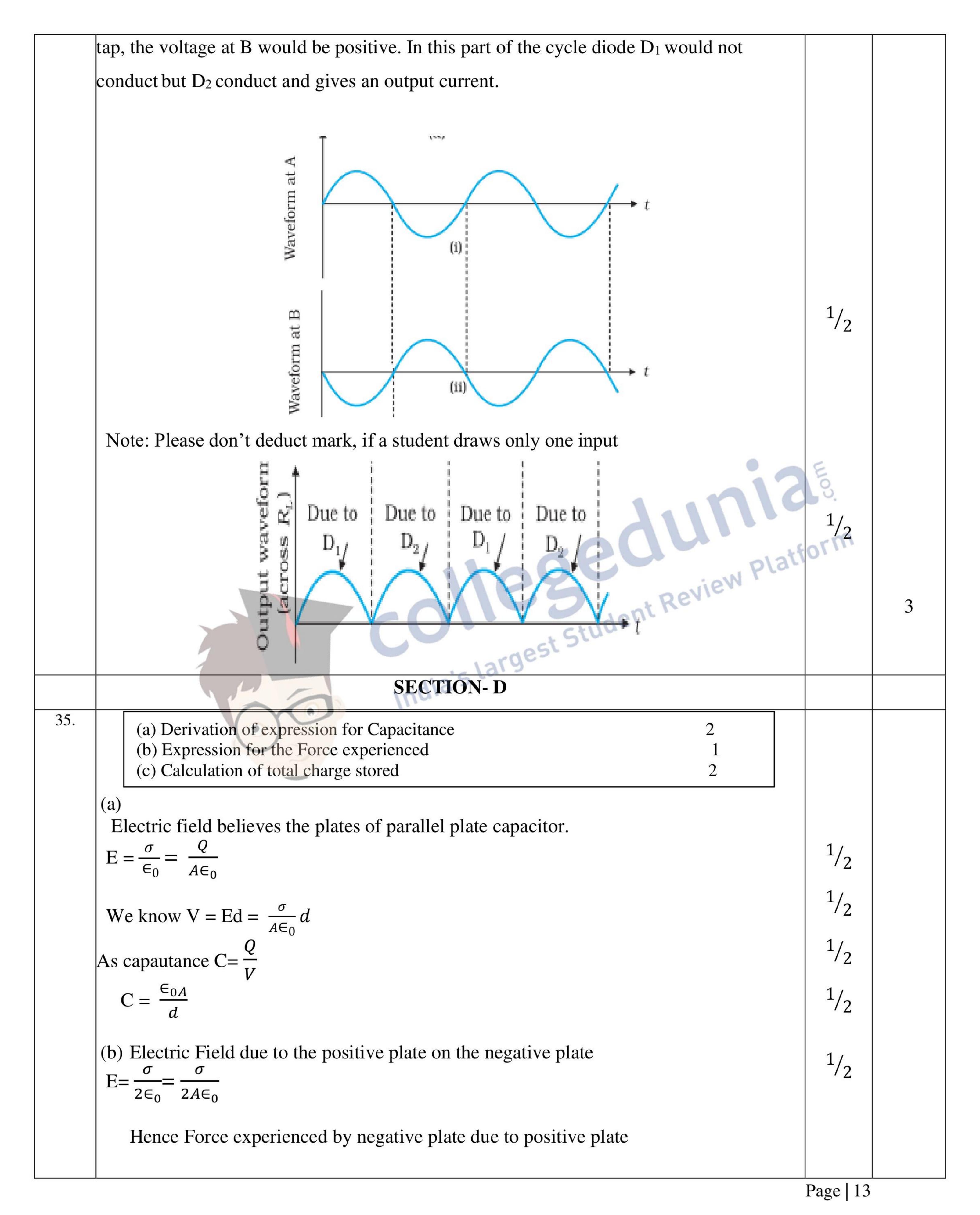
28.			
	Explanation of part (a)		
	Explanation of part (b)		
	Explanation of part (c)		
	(a) Electric field increases	1	
	$E = \frac{V}{l} = \frac{IR}{l} = \frac{I\rho l}{Al} = \frac{I\rho}{A}$		
	As area (A) decreases from end A to end B, E increases	1	
	(b) current density increases		
	$J = \frac{1}{A}$		
	As area (A) decreases, current density (J) increases	1	
	(c) Mobility of electron remain same		
	$\mu = \frac{V_d}{E} = \frac{eE\tau}{mE} = \frac{e\tau}{m}$		
	Since 'e', ' τ ' and 'm' are constant therefore (μ) is constant.	6	
	(Note: please do not deduct the marks if a student does not write the explanation and		3
	just writes the answers.)	orm	
29.	(a) Labeled diagram Explanation of Working (b) Explanation of motion on ions (a) Mugnetic field out of the paper		
	Charged particle D ₁ OSCILLATOR	1	
	Working: The charged particle is allowed to move under the influence of crossed electric		
	and magnetic field, the magnetic field provides the circular path to the particle and		
	Rotate it inside two semi circular discs, when it jumps from one disc to another disc		
	particle is accelerated by the electric field and each time the acceleration increases the	1	
	energy of the particle.		
	(b) Ions will not get accelerated.	1	2
30.			3
		Page 10	

Page | 9

(a) Working Principle of ac generator		
Derivation of expression for induced emf		
(b) Function of Slip Rings		
(a) It is based upon the principle of electromagnetic induction.	1	
Magnetic Flux $\Phi = NBA \cos \theta$	1/	
$\Phi = NBA \cos \omega t$	/2	
According to Faradays law		
$\operatorname{Emf} e = \frac{-d\Phi}{H} = \frac{-d(\operatorname{NBA}\cos\omega t)}{H}$		
dt dt	1,	
$e = NBA \omega \sin \omega t$	1/2	
(b) it helps current to change its direction after every half rotation.	1	
OR OR	3 8	
Explanation of parts (a),(b) & (c) (1+1+1)		
(a) As power P=V I, In step-up voltage transformer output voltage (V) is more than the	form	
input voltage. Hence output current is less than the input current.	1	
(b) To minimize the eddy currents.	.	
(c) Input power is more than the output power because in actual transformer small	4	
energy loses occur due to flux leakage, resistance of winding, eddy current and	1	_
hysteresis etc.		3
31.		
(a) Finding the focal length of mirror $1\frac{1}{2}$		
(b) Calculation of displacement and direction $1 \frac{1}{2}$		
(a) For virtual image m=+2	_	
$m=2=\frac{-v}{-v}$	1/2	
u 10am		
u = -10cm $v = -2u = 20 cm$		
Using mirror formula		
	1/2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	/	
$\frac{1}{f} = \frac{1}{20} - \frac{1}{10}$	1 /	
f = -20 cm	7/2	
	I	I

Page | 10

	(b) For real image		
	m=-2		
	$m=-2=\frac{-v}{u}$	1/2	
	v=2u	100 - 100 P	
	$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$		
	$\frac{1}{-20} = \frac{1}{2u} + \frac{1}{u}$		
	2u= - 60	12	
	u=-30 cm	$1/_2$	
	∴ displacement of object = $30 - 10$		
	= 20 cm Away from mirror	1/2	
22			3
32.	(a) Ray Diagram $1\frac{1}{2}$	EO	
	(a) Ray Diagram	.	
	(b) Expression of magnifying power 1 1/2	orm	
	Ray diagram Figure Figure	1 ¹ / ₂	
	Note: deduct half mark, if a student does not mark the direction of propagation of the rays)		
	Expression for magnification		
	$m_0 = \frac{h'}{-} = \frac{L}{-}$	1,	
	where we have used the result	1/2	
	$\tan \beta = (\frac{h}{fo}) = \frac{h'}{L}$		
	$m_e = (1 + \frac{D}{fe})$	1/2	
	Magnifying power of microscope at near point.		


Page | 11



		1
$m = m_o m_e$ $m = \frac{L}{fo} (1 + \frac{D}{fe})$	1/2	3
33.		
(a) Calculation of kinetic energy 2		
(b) Effect of intensity of light 1		
(a) $E_{\text{max}} = \frac{hc}{\lambda} - \phi_0$	1/2	
$= \left(\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{2000 \times 10^{-10} \times 1.6 \times 10^{-19}} - 4.2\right) \text{ eV}$	1/2	
$=\left(\frac{19.89}{3}-4.2\right) \text{ eV}$	1/2	
= (6.22 - 4.2) eV	1/2	
= 2.02 eV	3.5	3
(b) No effect		
Circuit Diagram Working of full wave rectifier Draw input and output waveform Centre-Tap Transformer Diode 1(D ₁) R _L Output		
Working: The input voltage to A with respect to the centre tap at any instant is positive, At that instant voltage at B being out of phase will be negative. So diode D ₁ gets forward biased and conducts while D ₂ being reversed biased is not conducting. Hence during this positive half cycle we get an output current.	1/2	
In the course of the ac cycle when voltage at A becomes negative with respect to centre	1/ ₂ Page 12	

$\mathbf{F} - \mathbf{a}\mathbf{F} - \mathbf{a}\mathbf{v}$	q	q_2
$F = - qE = - q \times$	$2A \in_0$	$2A \in_0$
		C

-ve sign shows attractive force.

(c) C₂, C₃ and C₄ are connected in series.

$$\frac{1}{Cs} = \frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4} = \frac{1}{12} + \frac{1}{12} + \frac{1}{12}$$

$$Cs = 4 \mu F$$

Equivalent capacitance of the Network

$$\mathbf{C} = \mathbf{C}_{\mathrm{s}} + \mathbf{C}_{\mathrm{s}}$$

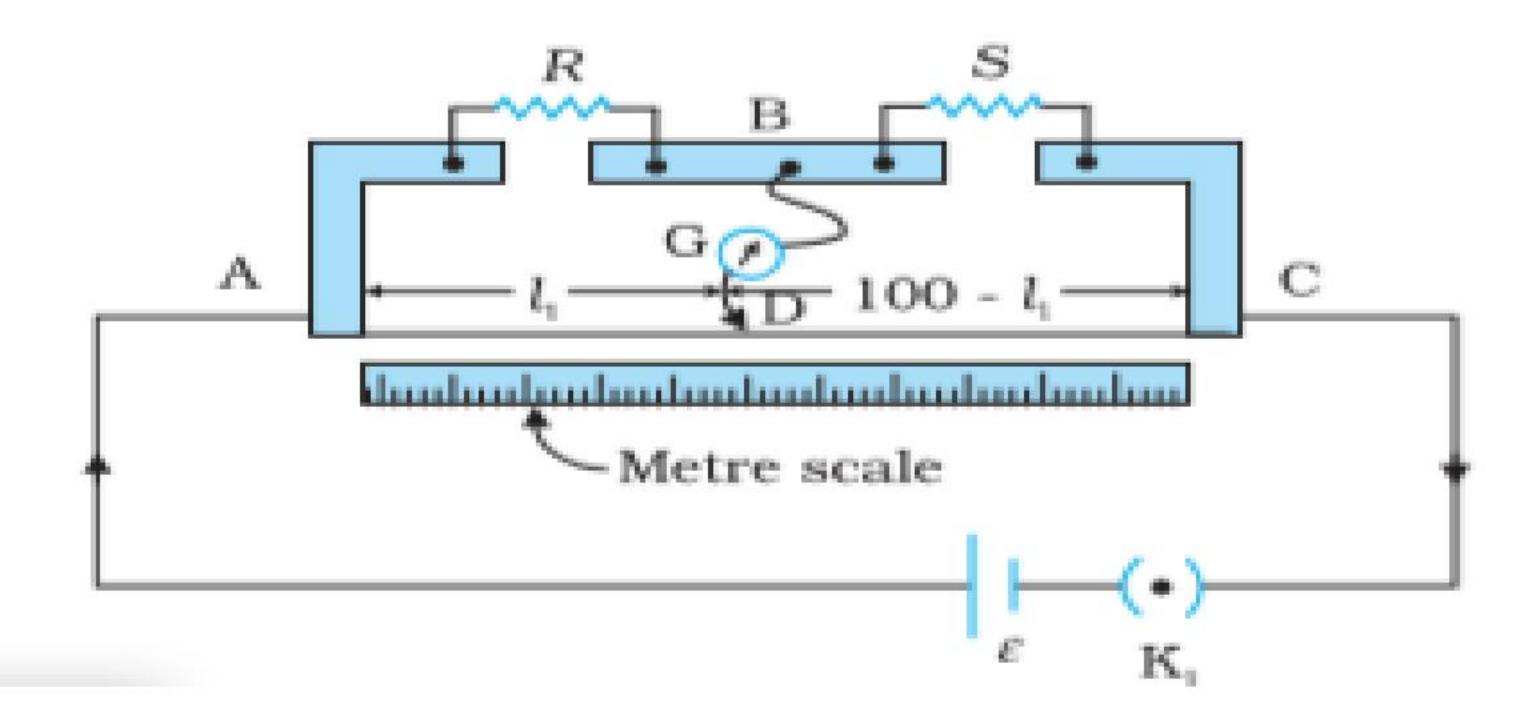
$$C = C_s + C_4$$
$$= 4\mu F + 12 \mu F$$

 $^{1}/_{2}$

$$=16 \times 10^{-16} \times 100$$

OR

Principle of Wheatstone Bridge


Circuit Diagram

Determination of specific resistance

(a) Principle: If four resistors R₁, R₂, R₃ and R₄ are connected in the four sides of a quadrilateral. The galvanometer is connected in one of the diagonal and battery is connected across another diagonal then the conductors.

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$
 provides no current flows through the galvanometer

b) Calculation of potential difference between A & C

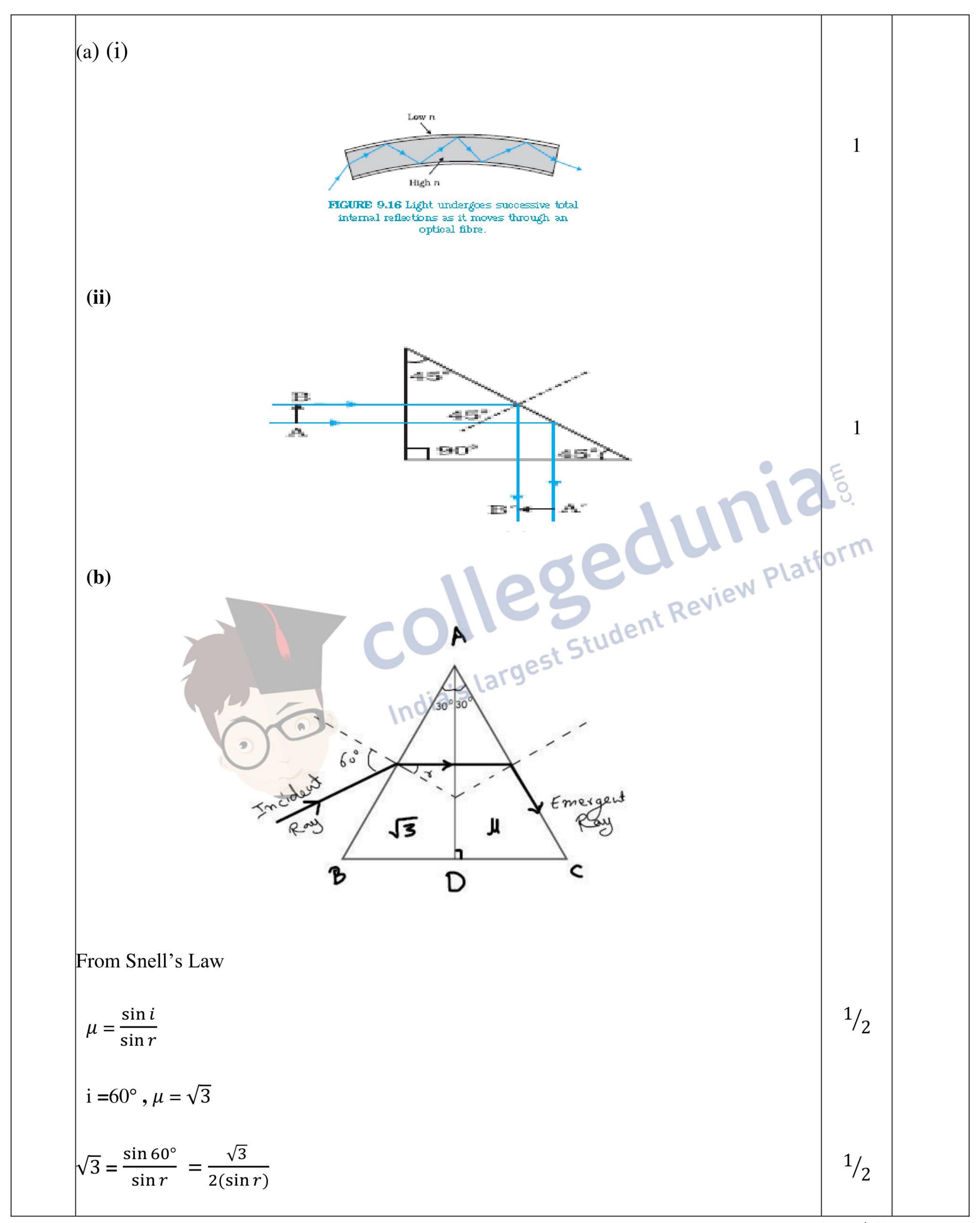
For specific resistance when no current flows in galvanometer

$\frac{R}{S} = \frac{R_{AD}}{R_{DC}} \qquad \dots \dots$		
$\frac{R_{AD}}{R_{DC}} = \frac{l}{100 - l} \qquad \dots \dots 2$		
From equation 1 & 2		
R l		
$\frac{K}{S} = \frac{l}{100 - l}$	1,	
	1/2	
$R = S\left(\frac{c}{100 - l}\right)$		
Resistivity of the wire	1/2	
$RA \pi r^2$		
$\rho = \frac{1}{L} = R \frac{1}{L}$		
where L = Length of unknown resistance wire		
r = radius of unknown resistance wire		
	E	
(b)	60.	
2V		
A = I - I $A = I - I$ $A = I$ $A = I - I$ $A = I$	OLW	
iew Plat		
t Review		
The Transfer of the Total !		
42 m arges		
undia's 'Y		
The terms of the t		
OU 2D I C		
8V 23c		
In loop ACDA	1,	
$4I_{1+}2I=8$	$^{1}/_{2}$	
$2I_1 + I = 4$ (1)		
In loop ABCA		
$(I-I_1) \times 1 - 4I_1 = -2$		
$I - I_1 - 4I_1 = -2$		
$I-5I_1=-2$		
	1/2	
$5I_1 - I = 2$ (2)	1/2	
\mathbf{D}_{-} = 1.1' = \mathbf{E}_{-} (1) = 0 (2)		
By adding Equation (1) & (2)		

		1
$5I_1 - I = 2$		
$2I_1 + I = 4$		
$7I_1 = 6$	1,	
$I_1 = \frac{6}{7}A$	1/2	
$V = I_1 R = \frac{6}{7} \times 4$		
$V = \frac{24}{7} \text{ volt}$	1/2	5
36.		
(a) Diagram of moving coil galvanometer		
Working 1		
Justification for using radial magnetic field $1/2$		
(b) Calculation of Resistance $2^{1/2}$		
	5	
	C.	
(a)	FOLL	
Pointer Permanent magnet Cotl Soft-iron core Uniform radial magnetic field	1	
Working: when a current flow through the coil, a torque acts on it.		
τ=NIAB		
Where symbols have their usual meaning. since the field is radial by design, we have		
taken $\sin\theta = 1$ in the above expression for torque. The magnetic torque NIAB tends to		
rotate the coil. A spring provide a counter torque kØ that balances the magnetic torque		
NIAB; resulting in a steady angular deflection Ø. In equilibrium	1 .	
k Ø= NIAB	$\frac{1}{2}$	
Where k is the tensional constant of the spring. The deflection Ø is indicated on the sc	ale	
by a pointer attached to the spring. We have		

Page | 16

$\emptyset = (\frac{NAB}{I})I$	1,
$\sim \kappa$	1/2
To calibrate the scale of galvanometer/to make scale linear	1/2
(b) $R = \frac{V}{I_g} - G$	
$R_1 = \frac{V}{I_g} - G = 2000 = \frac{V}{I_g} - G \dots (1)$	1/2
$R_2 = \frac{V}{I_g} - G = 5000 = \frac{2V}{I_g} - G$ (2)	1/2
$R = \frac{V}{2I_g} - G \qquad \dots (3)$	1/2
from equation 1 & 2	
$3000 = \frac{V}{I_g}$	
From equation (1)	
2000=3000-G	E
$G=1000 \Omega$	1/2
$R = \frac{3000}{2} - 1000$	arm.
R = 1500 - 1000	O I -
$R=500 \Omega$	1/2
OR ost Stude"	
(a) (i) Expression for emf induced and polarity $1\frac{1}{2} + \frac{1}{2}$	
(ii) Magnitude and direction $\frac{1}{2} + \frac{1}{2}$	
(b) Calculation of mutual inductance	
(a) (i) Magnetic flux linked with the loop at any instant of time is	
$\emptyset_B = \mathbf{B}(l\mathbf{x})$	1/2
$\left \frac{d\phi_B}{dt} \right = Bl \frac{dx}{dt}$	/ <u>Z</u>
$\left \frac{d\phi_B}{dt} \right = Bl_v \qquad \qquad \because \left(\frac{dx}{dt} = v \right)$	1/2
According to Faradays Law of Electromagnetic induction	
$\left \frac{d\phi_B}{dt} \right = e$	
Hence $e = Blv$	1,
Alternative Method	1/2
(i) When rod moves outwards, according to Lorentz magnetic force	



$\overrightarrow{F_m} = \mathbf{q}(\overrightarrow{V} \times \overrightarrow{B})$	1/2	
Free electrons inside the conductor experience force towards the end X. the positive		
charge moves towards end y of the conductor due to accumulation of charges emf is		
developed across the conductor. Consider a charge 'q' at the end X, work done by		
magnetic field in moving it through the length ' l ' of the conductor is	1,	
$W = F_m l$	$\frac{1}{2}$	
$= (qvB \sin\theta) l$		
$W = qvBl \ (: \theta = 90^{\circ})$		
According to definition of emf		
$e = \frac{W}{V} = vBl$		
q	1/2	
Hence, emf e= vBl	, ,	
The end X of coil be at lower potential and Y will be at higher potential.	$\frac{1}{2}$	
$(ii) I = \frac{e}{r}$	3.	
- Bul	1./	
$I = \frac{r}{r}$	or V2	
Direction of induced current is from end X to end Y	1,	
C C C Studen	1/2	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$\mu_0\pi r_1^2$		
$M = \frac{r_0}{2r_2}$	$1/_2$	
$4\pi \times 10^{-7} \times \pi \times 0.5^{2} \times 10^{-4}$		
$= \frac{1}{2 \times 11 \times 10^{-2}} H$	$1/_2$	
$= 2 \times (0.25) \times 10^{-9} \times \frac{\pi^2}{11} H$	1/2	
	1 /	
$= 4.49 \times 10^{-10} \text{ H}$	1/2	5
() (') D 1' (TTD ' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1		
(a) (i) Ray diagram of TIR in optical fiber 1 (ii) Pay diagram for TIP in priors		
(ii) Ray diagram for TIR in prism (b) Colculation for value of u		
(b) Calculation for value of μ 3		
	Page 18	

Page | 18

Page | 19

$\sin r = \frac{1}{2} = \sin 30^{\circ}$		
r= 30°	1/2	
So, ray will go perpendicular to AD For II nd prism		
$i_c = 30^{\circ}$	1/2	
$\therefore \sin i_c = \frac{1}{\mu}$	1 /	
$\sin 30^{\circ} = \frac{1}{\mu}$	1/2	
$\mu = 2$	1/2	
(a) Derivation of the relation between μ_1 , μ_2 and R	orm orm	
(b) Find the intensity of light transmitted by P ₁ and P ₂		
(a) India's largest Stude.		
M R D	1/2	
MN		
$\tan \angle NOM = \frac{MN}{OM}$	1/_	
$\tan \angle NCM = \frac{MN}{MC}$	72	
$\tan \angle NIM = \frac{MN}{MI}$		
Now, for Δ NOC, L_i is the exterior angle		
	Page 20	

Page | 20

Therefore, $\angle_i = \angle NOM + \angle NCM$	1 ,	
$\angle \mathbf{i} = \frac{MN}{OM} + \frac{MN}{MC} \qquad \dots (1)$	1/2	
Similarly,		
$r = \angle NCM - \angle NIM$		
i.e $r = \frac{MN}{MC} - \frac{MN}{MI}$ (2)	1/2	
By snells law		
$\mu_1 \sin i = \mu_2 \sin r$		
For small angle	LEO.	
μ_1 i = μ_2 r	form	
Substituting i and r from equation 1 & 2, we get		
$\frac{\mu_1}{OM} + \frac{\mu_2}{MI} = \frac{\mu_2 - \mu_1}{MC}$ Here $OM = -u, MI = +v, MC = +R$	1/2	
On substituting in equation 3, we get		
$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$	1/2	
Note: Give full credit of this part, if a student takes medium of μ_1 as denser and μ_2 as rarer		
(b) According to Malus's law, intensity of light transmitted from P ₂		
$I_{p_2} = I_o \cos^2 \theta$	1/2	
Where $I_o = \frac{2}{2} \text{ mW} = 1 \text{mW}$	1/2	
	Page 21	

Page | 21

Here $\theta = 60^{\circ}$		
$I_{p_2} = (1 \text{ mW}) \cos^2 60^\circ$	1/2	
$I_{p_2} = \frac{1}{4} \mathrm{mW} = 0.25 \mathrm{mW}$	1/2	5

