#### DU MPhil Phd in Mathematics

Topic:- DU\_J18\_MPHIL\_MATHS\_Topic01

#### 1) The mathematician who was awarded Abel's prize for a proof of Fermat's Last Theorem is [Question ID = 19249]

- 1. Andrew Wiles. [Option ID = 46987]
- Johan F. Nash. [Option ID = 46988]
- 3. S. R. Srinivasa Varadhan. [Option ID = 46989]
- 4. Lennart Carleson. [Option ID = 46990]

#### Correct Answer :-

Andrew Wiles. [Option ID = 46987]

#### Founder of Indian Mathematical Society(IMS) was [Question ID = 19252]

- Asutosh Mukherjee. [Option ID = 47000]
- 2. S. Narayana Aiyer. [Option ID = 47001]
- 3. M.T. Narayaniyengar. [Option ID = 47002]
- V. Ramaswamy Aiyer. [Option ID = 46999]

#### Correct Answer :-

V. Ramaswamy Aiyer. [Option ID = 46999]

## 3) Let R be a commutative ring with identity. If R is an Artinian domain, then the total number of prime ideals in R is [Question ID = 19280]

- 1. 1 [Option ID = 47111]
- 2. infinite. [Option ID = 47114]
- 3. 3 [Option ID = 47113]
- 4. 2 [Option ID = 47112]

#### Correct Answer :-

1 [Option ID = 47111]

## 4) Riemann hypothesis is associated with the function [Question ID = 19250]

$$f(s) = \int_0^\infty t^{s-1} e^{-t} dt$$
. [Option ID = 46991]

$$f(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
 [Option ID = 46992]

 $_{3.}$  Hermite polynomial  $_{[Option\ ID\ =\ 46994]}$ 

$$f(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \ s \in \mathbb{C}$$
 [Option ID = 46993]

## Correct Answer :-

$$f(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \ s \in \mathbb{C}$$
 [Option ID = 46993

## 5) For the stream function of a two dimensional motion, which of the following is not true

## [Question ID = 19297]

- Stream function is constant along a stream line. [Option ID = 47181]
- 2. Stream function is harmonic. [Option ID = 47180]
- 3. Stream function exists for steady motion of compressible fluid. [Option ID = 47179]
- 4. Stream function has dimension  $L^2T^{-2}$ . [Option ID = 47182]

## Correct Answer :-

. Stream function has dimension  $L^2T^{-2}$ . [Option ID = 47182]

## The famous Indian mathematician Srinivas Ramanujan passed away in the year [Question ID = 19248]

- 1. 1920 [Option ID = 46984]
- 2. 1922 [Option ID = 46985]
- 3. 1921 [Option ID = 46983]
- 4. 1919 [Option ID = 46986]

## Correct Answer :-

1920 [Option ID = 46984]

## 7) Let F be a finite field with 9 elements. How many elements of F have order 8? [Question ID = 19287]



```
1. 1 [Option ID = 47142]
2. 4 [Option ID = 47140]
```

3. 8 [Option ID = 47139]

4. 2 [Option ID = 47141]

#### Correct Answer :-

4 [Option ID = 47140]

- 8) For a viscous compressible fluid Consider the following statements:
  - (I) Stress matrix is symmetric.
  - (II) Kinematic coefficient of viscosity is dependent on the mass.
  - (III) Rate of dilatation is  $\nabla .\bar{q}$ .

Then

#### [Question ID = 19293]

- 1. all of I, II and III are true. [Option ID = 47163]
- 2. only I and III are true. [Option ID = 47164]
- only I and II are true. [Option ID = 47165]
- 4. only II and III are true. [Option ID = 47166]

#### Correct Answer :-

· only I and III are true. [Option ID = 47164]

- <sup>9)</sup> Let  $f: R \to R'$  be a ring homomorphism. Assume that 1 and 1' are multiplicative identities of the rings R and R' respectively. Then f(1) = 1' if
  - I f is onto.
  - II f is one-one.
  - III R is a domain.
  - IV R' is a domain.

The correct options are

## [Question ID = 19276]

- 1. III and IV only. [Option ID = 47096]
- 2. II and III only [Option ID = 47098]
- 3. I and IV only. [Option ID = 47097]
- I and II only. [Option ID = 47095]

## Correct Answer :-

I and IV only. [Option ID = 47097]

10)

For a solid stationary sphere of radius a placed in an incompressible fluid of uniform stream with velocity -Ui:

- (I) velocity potential  $\phi(r, \theta) = U \cos \theta (r + \frac{a^3}{2r^2})$ .
- (II) there exist two stagnation points  $(a, 0), (a, \pi)$
- (III) stagnation pressure  $p_{\infty} + \frac{1}{2}\rho U^2$ ,  $p_{\infty}$  is a pressure at  $\infty$ .
- (IV) velocity at any point of surface of sphere is  $(0, U \sin \theta, 0)$ .

Then

## [Question ID = 19296]

- 1. only I, II, IV are true. [Option ID = 47175]
- 2. only I, III, IV are true. [Option ID = 47177]
- 3. only I, II, III are true. [Option ID = 47176]
- only II, III, IV are true. [Option ID = 47178]

## Correct Answer :-

· only I, II, III are true. [Option ID = 47176]

Let  $R = \{a + ib : a, b \in \mathbb{Z}.$  Then R is a Euclidean domain with



#### [Question ID = 19277]

- 1. exactly two units. [Option ID = 47099]
- 2. exactly eight units. [Option ID = 47101]
- 3. exactly four units. [Option ID = 47100]
- 4. infinitely many units. [Option ID = 47102]

#### Correct Answer :-

- exactly four units. [Option ID = 47100]
- Consider the sequence of Lebesgue measurable functions  $(f_n)$  on  $\mathbb{R}$

$$f_n(x) = \begin{cases} 5, & x \ge 2^n \\ 0, & x < 2^n. \end{cases}$$

Then 
$$\lim_{n\to\infty} \int_{-\infty}^{\infty} f_n(x) dx$$

#### [Question ID = 19263]

- 1. does not exist [Option ID = 47046]
- 2. equals 0. [Option ID = 47043]
- 3. equals 5. [Option ID = 47044]
- 4. equals  $\infty$ . [Option ID = 47045]

#### Correct Answer :-

- . equals  $\infty$ . [Option ID = 47045]
- Let  $f(x) = \sin x + \cos x$  on  $[0, \pi]$ . Then  $||f||_{\infty}$  is equal to

#### [Question ID = 19269]

- 1. 1 [Option ID = 47067]
- $2\sqrt{2}$  [Option ID = 47070]
- $\sqrt{2}$  [Option ID = 47068]
- $1/\sqrt{2}$  [Option ID = 47069]

## Correct Answer :-

$$\sqrt{2}$$
 [Option ID = 47068]

Let f be a continuous function on a finite interval [a, b]. Then

$$\lim_{t \to \infty} \int_{a}^{b} f(x) \sin tx \, dx$$

## [Question ID = 19260]

- $_{\scriptscriptstyle 1.}\ equals\ 0\\ _{\scriptscriptstyle [Option\ ID\ =\ 47033]}$
- equals  $\sup_{x \in [a,\,b]} f(x)$  [Option ID = 47034]
- does not exist [Option ID = 47032]
- equals  $\int_{a}^{b} f(x) dx$ . [Option ID = 47031]

## Correct Answer :-

equals  $0_{[Option ID = 47033]}$ 

Let (X, d) be a metric space and  $A \subseteq X$ ,  $B \subseteq X$ . Consider the following statements:

I If  $x \notin A$  then d(x, A) > 0.

II If  $A \cap B = \phi$ , then  $d(A, B) \geq 0$ .

III If A is closed and  $x \notin A$  then d(x, A) > 0.

IV If A and B are closed and  $A \cap B = \phi$  then  $d(A, B) \geq 0$ . Then,

#### [Question ID = 19259]

- all statements are correct. [Option ID = 47030]
- only III is correct. [Option ID = 47028]
- only II, III, IV are correct. [Option ID = 47027]
- 4. only III and IV are correct. [Option ID = 47029]

#### Correct Answer :-

The set  $A = \{x \in \mathbb{Q} \mid -\sqrt{7} \le x \le \sqrt{7}\}$  in the subspace  $\mathbb{Q}$  of the real line  $\mathbb{R}$  is

#### [Question ID = 19271]

- 1. neither open nor closed [Option ID = 47078]
- 2. open but not closed [Option ID = 47075]
- both open and closed [Option ID = 47077]
- 4. closed but not open [Option ID = 47076]

#### Correct Answer :-

both open and closed [Option ID = 47077]

A Lipschitz's constant associated with the function  $f(x, y) = y^{2/3}$  on  $R: |x| \leq$  $1, |y| \le 1$ 

## [Question ID = 19288]

- 1. does not exist. [Option ID = 47146]
- 2. equals 1/2. [Option ID = 47145]
- 3. equals 0. [Option ID = 47143]
- equals 1. [Option ID = 47144]

## Correct Answer :-

does not exist. [Option ID = 47146]

Let  $I = \int_C y \, dx + (x+2y) \, dy$ , where  $C = C_1 + C_2$ ,  $C_1$  being the line joining (0, 1)to (1, 1) and  $C_2$  is the line joining (1, 1) to (1, 0). The value of I is

## [Question ID = 19256]

- 1. 2 [Option ID = 47017]
- 2. -1 [Option ID = 47018]
- 3. 1 [Option ID = 47015]
- 4. 0 [Option ID = 47016]

## Correct Answer :-

1 [Option ID = 47015]

Let  $F(x) = \int_0^x \frac{\sin t}{t^{3/2}} dt$ ,  $0 < x < \infty$ . The local maximum value is at the point

## [Question ID = 19255]

$$x=\pi/2$$
 [Option ID = 47013]  $x=4\pi$ 

$$_{\text{2.}}$$
  $x=4\pi_{_{\text{[Option ID = 47014]}}}$ 



 $x=\pi$  [Option ID = 47011]  $x=2\pi$  [Option ID = 47012]

Correct Answer :-

 $x=\pi$  [Option ID = 47011]

20)

The general integral of the partial differential equation yzp + xzq = xy, where  $p = \frac{\partial z}{\partial x}$ ,  $q = \frac{\partial z}{\partial y}$  (G being an arbitrary function) is

[Question ID = 19289]

$$z^2 = x^2 - G(x^2 + y^2).$$
 [Option ID = 47150]

$$z^2 = y^2 + G(x^2 + y^2).$$
 [Option ID = 47147]

$$z^2 = y^2 + G(x^2 - y^2).$$
 [Option ID = 47149]

$$z^2 = x - G(x^2 - y^2).$$
 [Option ID = 47148]

Correct Answer :-

. 
$$z^2 = y^2 + G(x^2 - y^2)$$
. [Option ID = 47149]

Let  $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ . Then

[Question ID = 19257]

. For any  $\delta>0,\,f$  is not monotonic on  $[0,\,\delta)$   $_{_{[Option\;ID\;=\;47020]}}$ 

 $_{\mbox{\tiny 2.}} f$  has a local extremum at x=0  $_{\mbox{\tiny [Option ID = 47021]}}$ 

. For any  $\delta > 0, \, f$  is convex on  $[0, \, \delta)$  [Option ID = 47022]

 $_{\text{4.}}$  f' is continuous at x=0 [Option ID = 47019]

Correct Answer :-

For any  $\delta > 0$ , f is not monotonic on  $[0, \delta)$ 

Let  $F = \mathbb{Q}((\sqrt{2}, \sqrt{3}))$ . Then F is minimal splitting field of the polynomial  $(x^2 - 2)(x^2 - 3)$  over  $\mathbb{Q}$ . The field F is not the minimal splitting field of which of the following polynomials over  $\mathbb{Q}$ 

[Question ID = 19286]

$$_{\scriptscriptstyle 1.} x^4 - 10x^2 + 1.$$
 [Option ID = 47135]

$$_{\text{\tiny 2.}}\,x^{-4}-x^2+6._{\text{\tiny [Option ID = 47137]}}$$

$$_{\rm 3.}~x^4+x^2+1.~_{\rm [Option~ID~=~47136]}$$

$$_{\text{4.}}\,x^4+x^2+25..$$
 [Option ID = 47138]

Correct Answer :-

An elementary solution of the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

is of the form  $(\bar{r} = xi + yj, \ \bar{r'} = x'i + y'j)$ 

[Question ID = 19290]

$$u=\log |\bar{r}\bar{r'}|.$$
1. [Option ID = 47154]
 $u=\log \frac{1}{|\bar{r}+\bar{r'}|}.$ 
 $u=\log \frac{1}{|\bar{r}\bar{r'}|}.$ 
3. [Option ID = 47153]
 $u=\log \frac{1}{|\bar{r}-\bar{r'}|}.$ 
4. [Option ID = 47152]

Correct Answer :-

$$u=\lograc{1}{|ar{r}-ar{r'}|}.$$
 [Option ID = 47152]

24)

Let  $E = \{x \in (0, \sqrt{2}] : x \text{ is a rational number}\} \cup \{y \in [2, 3] : y \text{ is an irrational number}\}$ Then the Lebesgue measure of E is

[Question ID = 19264]

1. 1 [Option ID = 47048]

2. 
$$\sqrt{2}$$
 [Option ID = 47049]

$$\sqrt{2+1}$$
 [Option ID = 47047]

Correct Answer :-

• 1 [Option ID = 47048]

25)

Let H be a Sylow p-subgroup and K be a p-subgroup of a finite group G. Which of the following is incorrect is incorrect (H char G means H is characteristic in G)

[Question ID = 19282]

$$_{\text{\tiny 1.}} \ K \triangleleft G \Rightarrow K \subset H.$$
 [Option ID = 47119]

$$_{\mathbf{2.}}\ K \triangleleft G \Rightarrow K\mathrm{char}H.$$
 [Option ID = 47121]

3. 
$$K \subset H \text{ if } K \triangleleft G$$
. [Option ID = 47120]

$$_{\text{\tiny 4.}} K \triangleleft G \not\Rightarrow H \cap K \triangleleft H$$
 . [Option ID = 47122]

Correct Answer :-

. 
$$K \triangleleft G \not\Rightarrow H \cap K \triangleleft H$$
 . [Option ID = 47122]

26)



A two dimensional motion with complex potential  $w=U(z+\frac{a^2}{z})+ik\log\frac{z}{a}$  has (I) stream lines as circle |z|=a. (II) circulation zero about circle |z|=a. (III) has two stagnation points in general. (IV) velocity at infinity equal to (-U). Then

## [Question ID = 19295]

```
    only I, II, IV are true. [Option ID = 47172]
    only I, III, IV are true. [Option ID = 47173]
    only I, II, III are true. [Option ID = 47171]
    only II, III, IV are true. [Option ID = 47174]
```

#### Correct Answer :-

• only I, III, IV are true. [Option ID = 47173]

#### 27)

Let G be an abelian group of order 15. Define a map  $\phi: G \to G$  by  $\phi(g) = g^8$  for all  $g \in G$ . Consider the statements:

I  $\phi$  is a homomorphism.

II  $\phi$  is one-to-one.

III  $\phi$  is onto.

Then

#### [Question ID = 19281]

```
    only I and III are true. [Option ID = 47117]
    only I and II are true. [Option ID = 47116]
    only I is true. [Option ID = 47115]
    all statements are true. [Option ID = 47118]
```

## Correct Answer :-

all statements are true. [Option ID = 47118]

## 28)

Let  $\xi$  be a primitive  $n^{th}$  root of unity where  $n \equiv 2 \pmod{4}$ . Then  $[\mathbb{Q}(\xi) : \mathbb{Q}(\xi^2)]$  is

(Here [V:F] denotes the dimension of the vector space V over F)

## [Question ID = 19285]

```
1. 1 [Option ID = 47131]  
2. 2 [Option ID = 47132]  
\phi(n)
3. \phi(n) [Option ID = 47133]  
\phi(n)/2
4. [Option ID = 47134]
```

## Correct Answer :-

• 1 [Option ID = 47131]

## 29)

The closed topologist's sine curve  $\{(x, \sin \frac{1}{x}) \mid x \in (0, 1]\}$  as subspace of real line  $\mathbb{R}$  is

## [Question ID = 19272]

a path connected space [Option ID = 47081]
 connected but not locally connected [Option ID = 47079]



3. a locally path connected space [Option ID = 47082]

4. locally connected but not connected [Option ID = 47080]

#### Correct Answer :-

connected but not locally connected [Option ID = 47079]

Let R(T) and N(T) denote the range space and null space of the linear transformation  $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$  which is given by

$$T(f) = \begin{pmatrix} f(1) - f(2) & 0 \\ 0 & f(0) \end{pmatrix}.$$

# Then

## [Question ID = 19275]

$$_{\mbox{\tiny 1.}} \dim(R(T)) = 2$$
 and  $\dim(N(T)) = 1$   $_{\mbox{\tiny [Option ID = 47094]}}$ 

$$\dim(R(T))=0$$
 and  $\dim(N(T))=2$  [Option ID = 47093]

$$\dim(R(T)) = 2$$
 and  $\dim(N(T)) = 0$  [Option ID = 47091]

$$\dim(R(T))=1$$
 and  $\dim(N(T))=1$  [Option ID = 47092]

## Correct Answer :-

. 
$$\dim(R(T))=2$$
 and  $\dim(N(T))=1$  [Option ID = 47094]

The bilinear transformation on  $\mathbb{C}$  which maps z=0,-i,-1 into w=i,1,0 is

## [Question ID = 19265]

$$-i\frac{z+1}{z-1}$$
1.  $\frac{z+1}{z-1}$  [Option ID = 47053]
2.  $\frac{z+1}{z-1}$  [Option ID = 47052]
3.  $i\frac{z+1}{z-1}$  [Option ID = 47051]

$$i\frac{z-1}{z+1} \ _{\text{[Option ID = 47054]}}$$

## Correct Answer :-

$$-irac{z+1}{z-1}$$
 [Option ID = 47053]

Let  $A, B \in M_n(\mathbb{C})$ . Consider the following statements

I If A, B and A + B are invertible, then  $A^{-1} + B^{-1}$  is invertible.

II If A, B and A + B are invertible, then  $A^{-1} - B^{-1}$  is invertible.

III If AB is nilpotent, then BA is nilpotent.

IV Characteristic polynomials of AB and BA are equal if A is invertible.

Then

## [Question ID = 19274]

1. only I, III, and IV are true [Option ID = 47089]

2. all the statements are true.. [Option ID = 47090]

3. only III is true [Option ID = 47088]

4. only I and II are true [Option ID = 47087]

## Correct Answer :-

only I, III, and IV are true [Option ID = 47089]



For the boundary value problem: L(y) = y'' = 0, y(0) = 0, y'(1) = 0, the Green's function is

[Question ID = 19291]

$$G(x,\,\xi) = \begin{cases} \xi, & x \leq \xi \\ x, & x > \xi \end{cases}$$
 [Option ID = 47156] 
$$G(x,\,\xi) = \begin{cases} -x, & x \leq \xi \\ -\xi, & x > \xi \end{cases}$$
 [Option ID = 47157]

$$G(x, \xi) = \begin{cases} -x, & x \le \xi \\ -\xi, & x > \xi \end{cases}$$
[Option ID = 47157]

$$G(x,\,\xi) = egin{cases} -x, & x \leq \xi \\ -\xi, & x > \xi \end{cases}$$
 [Option ID = 47158]

3. 
$$G(x, \xi) = \begin{cases} x, & x \leq \xi \\ \xi, & x > \xi \end{cases}$$
 [Option ID = 4715]

Correct Answer :-

$$G(x,\,\xi) = \begin{cases} x, & x \leq \xi \\ \xi, & x > \xi \end{cases}$$
 [Option ID = 47155]

Let  $E = \{x \in [0, \pi) : \sin 4x < 0\}$ . Then Lebesgue measure of E is

[Question ID = 19262]

1. 
$$\pi/2$$
 [Option ID = 47040]

2. 
$$\pi/4$$
 [Option ID = 47039]

$$3\pi/4$$
 [Option ID = 47041]

$$_{4.} \pi/3$$
 [Option ID = 47042]

Correct Answer :-

$$\pi/2$$
 [Option ID = 47040]

35)

Let  $x_1, x_2, \dots, x_n$  be non-zero real numbers. With  $x_{ij} = x_i x_j$ , let X be the  $n \times n$ matrix  $(x_{ij})$ . Then

[Question ID = 19273]

the matrix X is positive definite if  $(x_1, x_2, \dots, x_n)$  is a non-zero vector [Option ID = 47084]

the matrix X is positive semi definite for all  $(x_1, x_2, \dots, x_n)$  [Option ID = 47085]

for all  $(x_1, x_2, \dots, x_n)$ , zero is an eigenvalue of X. [Option ID = 47086]

 $_{4}$  it is possible to chose  $x_1, x_2, \cdots, x_n$  so as to make the matrix X non singular  $_{\text{[Option]}}$ ID = 470831

Correct Answer :-



Let  $A = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous on } \mathbb{Q} \text{ and discontinuous } \mathbb{Q}' \}$ , where  $\mathbb{Q}$  is the set of all rational numbers and  $\mathbb{Q}'$  is the set of all irrational numbers. Let  $\mu$  be a counting measure on A. Then

## [Question ID = 19258]

$$\mu(A) = \sum_{q \in \mathbb{Q}} \frac{1}{2^q}$$
 [Option ID = 47026]  
2.  $\mu(A)$  is infinite [Option ID = 47023]

$$_{\scriptscriptstyle 3.}\,\mu(A)=0$$
 [Option ID = 47024]

$$_{\text{\tiny 4.}} \, \mu(A) = 2 \, _{\text{\tiny [Option ID = 47025]}}$$

#### Correct Answer :-

, 
$$\mu(A)=0$$
 [Option ID = 47024]

Let  $R = \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5$ . Then the total number of zero divisors in R is

## [Question ID = 19278]

- 1. 15 [Option ID = 47106]
- 2. 10 [Option ID = 47105]
- 3. 20 [Option ID = 47104] 4. 22 [Option ID = 47103]

#### Correct Answer :-

#### 38)

Let  $a, b \in \mathbb{C}$  such that 0 < |a| < |b|. Then the Laurent expression of  $\frac{1}{(z-a)(z-b)}$  in the annulus |a| < |z| < |b| is

## [Question ID = 19266]

$$\frac{1}{a-b} \left[ \sum_{n=0}^{\infty} \frac{z^n}{b^n} + \sum_{n=0}^{\infty} \frac{a^n}{z^{n+1}} \right]_{\text{[Option ID = 47057]}}$$

$$\frac{1}{a-b} \left[ \sum_{n=0}^{\infty} \frac{z^n}{b^{n+1}} + \sum_{n=0}^{\infty} \frac{a^n}{z^{n+1}} \right]_{\text{[Option ID = 47055]}}$$

$$\frac{1}{a-b} \left[ \sum_{n=0}^{\infty} \frac{z^n}{a^{n+1}} + \sum_{n=0}^{\infty} \frac{b^n}{z^{n+1}} \right]_{\text{[Option ID = 47056]}}$$

$$\frac{1}{a-b} \left[ \sum_{n=0}^{\infty} \frac{z^n}{a^n} + \sum_{n=0}^{\infty} \frac{b^{n+1}}{z^n} \right]_{\text{[Option ID = 47058]}}$$

## Correct Answer :-

. 
$$\frac{1}{a-b} \left[ \sum_{n=0}^{\infty} \frac{z^n}{b^{n+1}} + \sum_{n=0}^{\infty} \frac{a^n}{z^{n+1}} \right]$$
 [Option ID = 47055]

Consider the following statements:

I  $x^3 - 9$  is not irreducible over  $\mathbb{Z}_7$ .

II  $x^3 - 9$  is not irreducible over  $\mathbb{Z}_{11}$ .

Then

## [Question ID = 19279]

- 1. II is false but I is true. [Option ID = 47107]
- 2. both I and II are true. [Option ID = 47109]
- 3. both I and II are false. [Option ID = 47110]



#### Correct Answer :-

• I is false but II is true. [Option ID = 47108]

The contour integral  $\int_C \frac{e^z}{(z^2+\pi^2)^2} dz$ , where C is the circle |z|=4 taken anti-clockwise equals

#### [Question ID = 19267]

1. 
$$\frac{i}{2\pi}$$
 [Option ID = 47061]

2. 
$$\frac{4}{\pi i}$$
 [Option ID = 47059]

3. 
$$\frac{4}{\pi}$$
 [Option ID = 47060]

4. 
$$\pi$$
 [Option ID = 47062]

## Correct Answer :-

$$\frac{i}{\pi}$$
[Option ID = 47062]

The pressure p(x, y, z) in steady flow of inviscid incompressible fluid of density  $\rho$  with velocity  $\bar{q} = (kx, -ky, 0)$ , k is a constant, under no external force when  $p(0, 0, 0) = p_0$ , is

## [Question ID = 19341]

$$p_0 - \rho k^2 (y^2 - x^2)/2.$$
 [Option ID = 47358]

$$_{\text{2.}} p_0 - \rho k^2 (y^2 + x^2).$$
 [Option ID = 47354]

$$_{\mbox{\tiny 3.}} \; p_0 - 
ho k^2 (y^2 - x^2). \;_{\mbox{\tiny [Option ID = 47352]}}$$

$$_{\text{4.}} p_0 - 
ho k^2 (y^2 + x^2)/2.$$
 [Option ID = 47356]

## Correct Answer :-

$$p_0 - \rho k^2 (y^2 + x^2)/2$$
. [Option ID = 47356]

let E be a Lebesgue non-measurable subset of  $\mathbb{R}$ . Define  $f: \mathbb{R} \to \mathbb{R}$  by

$$f(x) = \begin{cases} 2, & x \in E \\ -2, & x \in E^c. \end{cases}$$

Then

## [Question ID = 19261]

neither f nor |f| is Lebesgue measurable [Option ID = 47038]

 $_{\mbox{\tiny 2}}$  f is Lebesgue measurable but |f| is not Lebesgue measurable

[Option ID = 47036]

 $_{_{3}}$  f is not Lebesgue measurable but |f| is Lebesgue measurable

[Option ID = 47037]

<sub>4.</sub> f and |f| both are Lebesgue measurable. [Option ID = 47035]

Correct Answer :-



. f is not Lebesgue measurable but |f| is Lebesgue measurable

Every non trivial solution of the equation  $y'' + (\sinh x)y = 0$  has

[Question ID = 19292]

only finitely many zeros in  $(0, \infty)$ .

infinitely many zeros in  $(-\infty, 0)$ . [Option ID = 47160]

infinitely many zeros in  $(0, \infty)$ . [Option ID = 47159]

at most one zero in  $(0, \infty)$ . [Option ID = 47161]

infinitely many zeros in  $(0, \infty)$ . [Option ID = 47159]

44) Which of the following statements is true [Question ID = 19253]

If  $0 \le a_n \le b_n$  and  $\sum b_n$  diverges then  $\sum a_n$  diverges [Option ID = 47005]

If  $\lim_{n\to\infty} a_n = 0$ , then  $\sum \frac{a_n}{a_n^2 + n^2}$  converges

 $\sum_{k=1}^{\infty} \left( \tan^{-1} \frac{1}{k} - \tan^{-1} \frac{1}{k+1} \right) = \frac{\pi}{8}$  [Option ID = 47003]  $\sum_{n=1}^{\infty} \frac{1}{n^n} \ge 2$  [Option ID = 47006]

If  $\lim_{n\to\infty} a_n = 0$ , then  $\sum \frac{a_n}{a_n^2 + n^2}$  converges

45) Which of the following statements is not true [Question ID = 19254]

1. The set of all algebraic numbers is countable. [Option ID = 47010]

2. The set of rational numbers is equivalent to the set of natural numbers [Option ID = 47008]

Given a set A, there exists a function  $f: A \to P(A)$  that is onto

(P(A) denotes power set of A)

[Option ID = 47009]

There is one-one function taking (-1, 1) onto  $\mathbb{R}$ . [Option ID = 47007]

Given a set A, there exists a function  $f: A \to P(A)$  that is onto

(P(A) denotes power set of A)

[Option ID = 47009]

46) Which of the following statements is not true [Question ID = 19270]

An uncountable discrete space is not separable. [Option ID = 47072]

- Every closed subspace of a separable space is separable. [Option ID = 47073]
- 3. Every compact metric space is Lindelof. [Option ID = 47074]
- Every second countable space is separable. [Option ID = 47071]

Correct Answer :-

Every closed subspace of a separable space is separable. [Option ID = 47073]

47) Which of the following is not correct (Here [V:F] denotes the dimension of the vector space V over F) [Question ID = 19284]

 $\mathbb{Q}(\sqrt{2}, \sqrt{3}, i, \sqrt{6}) : \mathbb{Q}] = 16.$  [Option ID = 47130]

 $_{\mbox{\tiny 2.}}\left[\mathbb{Q}(\sqrt{2},\,\sqrt{3},\,i):\,\mathbb{Q}\right]=8.$  [Option ID = 47129]

 $\mathbb{Q}[\mathbb{Q}(\sqrt{3}):\mathbb{Q}]=2.$  [Option ID = 47127]



 $_{_{4}}\left[ \mathbb{Q}(\sqrt{3},\,i):\,\mathbb{Q}\right] =4._{_{\text{[Option ID = 47128]}}}$ 

#### Correct Answer :-

. 
$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}, i, \sqrt{6}) : \mathbb{Q}] = 16$$
. [Option ID = 47130]

#### 48) Which of the following Banach spaces is not a Hilbert space [Question ID = 19268]

$$(L^2([0, 1]), ||.||_2)$$
 [Option ID = 47064]

$$\mathbb{R}^{n} \text{ with the norm } ||x|| = \sqrt{\xi_{1}^{2} + \xi_{2}^{2} + \dots + \xi_{n}^{2}}, \text{ where } x = (\xi_{1}, \xi_{2}, \dots \xi_{n})$$

$$\mathbb{R}^{n} \text{ with the norm } ||x|| = \max\{|\xi_{1}|, |\xi_{2}|, \dots, |\xi_{n}|\}, \text{ where } x = (\xi_{1}, \xi_{2}, \dots \xi_{n})$$

$$\mathbb{R}^{n} \text{ with the norm } ||x|| = \max\{|\xi_{1}|, |\xi_{2}|, \dots, |\xi_{n}|\}, \text{ where } x = (\xi_{1}, \xi_{2}, \dots \xi_{n})$$
[Option ID =

$$(l^2, ||.||_2)$$
 [Option ID = 47063]

## Correct Answer :-

$$\mathbb{R}^n$$
 with the norm  $||x|| = \max\{|\xi_1|, |\xi_2|, \cdots, |\xi_n|\}$ , where  $x = (\xi_1, \xi_2, \cdots, \xi_n)$  [Option ID =

## 49) Which of the following websites is of Mathematical Reviews [Question ID = 19251]

- 1. https://mathscinet.ams.org [Option ID = 46997]
- 2. https://mathscinet.ac.in [Option ID = 46995]
- 3. https://math.ac.au [Option ID = 46996]
- https://www.mathjournal.org. [Option ID = 46998]

#### Correct Answer :-

https://mathscinet.ams.org [Option ID = 46997]

#### 50) Let G be a cyclic group of order 42. The number of distinct composition series of G is [Question ID = 19283]

- 1. 8 [Option ID = 47126]
- 2. 16 [Option ID = 47123]
- 3. 10 [Option ID = 47125]
- 4. 6 [Option ID = 47124]

## Correct Answer :-

6 [Option ID = 47124]

