CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Radius of $2^{\text {nd }}$ orbit of Li^{2+} ion is x, radius of $3^{\text {rd }}$ orbit of Be^{3+} will be
(1) $\frac{27 x}{16}$
(2) $\frac{16 x}{27}$
(3) $\frac{4}{3} x$
(4) $\frac{3}{4} x$

Answer (1)

Sol. $r_{\mathrm{Li}^{2+}}=r_{0} \times \frac{2^{2}}{3}=\frac{4 r_{0}}{3}=x$
$\Rightarrow r_{0}=\frac{3 x}{4}$
$r_{B e^{3+}}=r_{0} \times \frac{3^{2}}{4}=\frac{9 r_{0}}{4}=\frac{9 \times 3 \times x}{4 \times 4}$
$r_{B e^{3+}}=\frac{27 x}{16}$
2. If X-atoms are present at alternate corners and at body centre of a cube and Y -atoms are present at $1 / 3^{\text {rd }}$ of face centres then what will be empirical formula?
(1) $\mathrm{X}_{2} \cdot 5 \mathrm{Y}$
(2) $\mathrm{X}_{5} \mathrm{Y}_{2}$
(3) $\mathrm{X}_{1.5} \mathrm{Y}_{2}$
(4) $X_{3} Y_{2}$

Answer (4)

Sol. Number of X -atoms per unit cell $=1+4 \times \frac{1}{8}$

$$
=\frac{3}{2}
$$

Number of Y-atoms per unit cell $=2 \times \frac{1}{2}=1$
$\therefore \quad$ Empirical formula of the solid is $\mathrm{X}_{3} \mathrm{Y}_{2}$.
3. Thionyl chloride on reaction with white phosphorous gives compound A. A on hydrolysis gives compound B which is dibasic. Identify A and B.
(1) $\mathrm{A}-\mathrm{PCl}_{5}, \mathrm{~B}-\mathrm{H}_{3} \mathrm{PO}_{2}$
(2) $\mathrm{A}-\mathrm{P}_{4} \mathrm{O}_{6}, \mathrm{~B}-\mathrm{H}_{3} \mathrm{PO}_{4}$
(3) $\mathrm{A}-\mathrm{POCl}_{3}, \mathrm{~B}-\mathrm{H}_{3} \mathrm{PO}_{4}$
(4) $\mathrm{A}-\mathrm{PCl}_{3}, \mathrm{~B}-\mathrm{H}_{3} \mathrm{PO}_{3}$

Answer (4)
Sol. $\mathrm{P}_{4}+8 \mathrm{SOCl}_{2} \rightarrow 4 \mathrm{PCl}_{3}+4 \mathrm{SO}_{2}+2 \mathrm{~S}_{2} \mathrm{Cl}_{2}$
(A)
$\mathrm{PCl}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}$

(B)

Correct answer is (4).
4. Which of the following shows least reactivity towards nucleophilic substitution reaction
(1)

(2)

(3)

(4)

Answer (3)
Sol. Aryl halides containing E.W.G at ortho or para position are more reactive than meta isomer towards nucleophilic substitution reaction.
5. The correct decreasing order of positive electron gain enthalpy for the following inert gases
$\mathrm{He}, \mathrm{Ne}, \mathrm{Kr}, \mathrm{Xe}$
(1) $\mathrm{He}>\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}$
(2) $\mathrm{He}>\mathrm{Ne}>\mathrm{Xe}>\mathrm{Kr}$
(3) $\mathrm{He}>\mathrm{Xe}>\mathrm{Ne}>\mathrm{Kr}$
(4) $\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}>\mathrm{He}$

Answer (4)

Sol. Correct order is $\mathrm{Ne}>\mathrm{Kr}>\mathrm{Xe}>\mathrm{He}$
6. Which of the following reaction is not involved in the extraction of copper metal?
(1)

$$
\mathrm{CuFeS}_{2} \xrightarrow[\text { roasting }]{\text { partial }} \mathrm{Cu}_{2} \mathrm{~S}+\mathrm{FeS}+\mathrm{SO}_{2}+\mathrm{Cu}_{2} \mathrm{O}
$$

(2) $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(3) $\mathrm{FeO}+\mathrm{SiO}_{2} \rightarrow \mathrm{FeSiO}_{3}$
(4) $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$

Answer (4)

Sol. Option (4) contains the reaction involved in the reduction of hematite ore not in copper extraction.
7. Match the List-I and List-II.

List-I

(A) α-D-Glucopyranose (1)

List-II

(B) β-D-Glucopyranose
(C) α-D-Fructofuranose
(3)

(2)

(D) β-D-Fructofuranose

(1) $\mathrm{A} \rightarrow 4$; $\mathrm{B} \rightarrow 1$; $\mathrm{C} \rightarrow 2$; $\mathrm{D} \rightarrow 3$
(2) $\mathrm{A} \rightarrow 1$; $\mathrm{B} \rightarrow 4$; $\mathrm{C} \rightarrow 3$; $\mathrm{D} \rightarrow 2$
(3) $\mathrm{A} \rightarrow 2 ; \mathrm{B} \rightarrow 3 ; \mathrm{C} \rightarrow 4 ; \mathrm{D} \rightarrow 1$
(4) $\mathrm{A} \rightarrow 1$; $\mathrm{B} \rightarrow 3$; $\mathrm{C} \rightarrow 2 ; \mathrm{D} \rightarrow 4$

Answer (1)

Sol. The correct options is (1).
8. Identify the correct sequence of reagents for the following conversion.
n-Heptane $\rightarrow \rightarrow \rightarrow \rightarrow \mathrm{PhCOOH}+\mathrm{PhCH}_{2} \mathrm{OH}$
(1) $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{3} \stackrel{+}{\mathrm{O}}$

$$
\text { Conc. } \mathrm{NaOH}, \mathrm{H}_{3} \stackrel{+}{\mathrm{O}}
$$

(2) $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{3} \stackrel{+}{\mathrm{O}}$
$\mathrm{H}_{3} \stackrel{+}{\mathrm{O}}$, Conc. NaOH
(3) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$,

Conc. $\mathrm{NaOH}, \mathrm{H}_{3} \stackrel{+}{\mathrm{O}}$
(4) $\mathrm{Sn} / \mathrm{HCl}, \mathrm{NaOH}$

Conc. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{HNO}_{3}$

Answer (1)

Sol.

9. Which of the following option contains the correct match?

Table-1 (Elements) Table-2 (Flame colour)
(A) K
(P) Violet
(B) Ca
(Q) Brick red
(C) Sr
(R) Apple green
(D) Ba
(S) Crimson red
(1) (A) $\rightarrow P$, (B) $\rightarrow Q$, (C) $\rightarrow S$, (D) $\rightarrow R$
(2) $(A) \rightarrow Q,(B) \rightarrow P,(C) \rightarrow S,(D) \rightarrow R$
(3) (A) $\rightarrow R$, (B) $\rightarrow S$, (C) $\rightarrow P$, (D) $\rightarrow Q$
(4) $(A) \rightarrow S$, (B) $\rightarrow R$, (C) $\rightarrow Q$, (D) $\rightarrow P$

Answer (1)
Sol. K \rightarrow Violet
$\mathrm{Ca} \rightarrow$ Brick red
$\mathrm{Sr} \rightarrow$ Crimson red
$\mathrm{Ba} \rightarrow$ Apple green
10. Consider the following sequence of reaction

Which of the following options contains the correct structure?
(1) A is

(2) B is

(3)

(4)

Answer (2)

Sol.

(C)

(B)
11. Correct order of basic strength for

is
(1) $2>1>3>4$
(2) $3>2>1>4$
(3) $4>2>1>3$
(4) $2>4>3>1$

Answer (1)
Sol. The correct order of basic strength in aqueous medium is

12. Consider the following conversion

Which of the following option contains the correct structure of 'A'?
(1)

(2)

(3)

(4)

Answer (2)
Sol.

13. Consider the following sequence of reactions
$\mathrm{NO}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} A+B$
$\mathrm{B}+\mathrm{O}_{2} \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$
A is?
(1) $\mathrm{N}_{2} \mathrm{O}$
(2) NO
(3) $\mathrm{N}_{2} \mathrm{O}_{3}$
(4) N_{2}

Answer (2)

Sol. $\mathrm{NO}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underset{\substack{\text { (g) } \\ \text { (A) }}}{\mathrm{NO}}+\underset{(\mathrm{g})}{(\mathrm{B})}$

$$
\mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{3}(\mathrm{~g})
$$

14. Which one of the following complexes is paramagnetic in nature?
(1) $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{2-}$
(2) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(3) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$

Answer (3)

Sol.
(1)
$\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{CN})_{4}\right]^{2-}$

$$
\mathrm{Fe}^{2+} \quad 3 d^{8} \quad \begin{array}{|l|l|l|l|}
\hline 1 L & 1 & 1 & 1 \\
\hline
\end{array}
$$

 $d^{2} s p^{3}$ hybridisation

Complex is diamagnetic
(2) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} d s p^{2}$ hybridisation, diamagnetic
(3) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} s p^{3} d^{2}$ hybridisation, paramagnetic
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} d^{2} s p^{3}$ hybridisations, diamagnetic
15. Which of the following options contains the correct graph between $\frac{\pi}{c}$ and c at constant temperature? [where π is osmotic pressure and c is concentration of solute]
(1)

(2)

(3)

(4)

Answer (1)

Sol. $\pi=\mathrm{cRT}$
$\therefore \frac{\pi}{c}=\mathrm{RT}$

\therefore The value of $\frac{\pi}{c}$ is constant at constant temperature.
16. Which of the following is correct about antibiotics.
(1) Antibiotics are the substances that promote the growth of microorganism
(2) Penicillin has bacteriostatic effect
(3) Erythromycin has Bactericidal effect
(4) These are synthesized artificially

Answer (4)
Sol. Antibiotics are synthesized artificially.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. How many of the following complexe(s) is(are) paramagnetic:
$[\mathrm{Fe}(\mathrm{CN}) 6]^{3-},\left[\mathrm{Fe}(\mathrm{CN}) \mathrm{C}^{4-},\left[\mathrm{NiCl}_{4}\right]^{2-},[\mathrm{Ni}(\mathrm{CN}) 4]^{2-}\right.$, $[\mathrm{CuCl} 4]^{2-},[\mathrm{Cu}(\mathrm{CN}) 4]^{3-},\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$

Answer (4)

Sol. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \rightarrow d^{5}$ paramagnetic
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \rightarrow d^{6} \quad$ diamagnetic
$\left[\mathrm{NiCl}_{4}\right]^{2-} \rightarrow d^{8}$ paramagnetic
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \rightarrow d^{8}$ diamagnetic
$\left[\mathrm{CuCl}_{4}\right]^{2-} \rightarrow d^{9}$ paramagnetic
$\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-} \rightarrow d^{10}$ diamagnetic
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+} \rightarrow d^{9}$ paramagnetic
22. For a first order reaction $A \longrightarrow B, t_{1 / 2}$ is 30 min . Then find the time (in minutes) required for 75%. Completion of reaction

Answer (60.00)

Sol. $A \xrightarrow[50 \%]{\mathrm{t}_{1 / 2}} B$
$A \xrightarrow[75 \%]{2 t_{1 / 2}} B$
$\therefore \quad$ In 75% completion, two $\mathrm{t}_{1 / 2}$ will be required.
$\therefore \quad$ Time required will be 60 minutes.
23. Consider the following cell representation:

$$
\begin{gathered}
\mathrm{Pt}\left|\mathrm{H}_{2}\right| \mathrm{H}^{+}| | \mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+} \\
(1 \text { atm })(1 \mathrm{M})
\end{gathered}
$$

Then find the ratio of concentration of Fe^{2+} to Fe^{3+}
[Given: $\mathrm{E}_{\text {cell }}=0.712$ and $\mathrm{E}_{\text {Cell }}^{\circ}=0.771$]

Answer (10.00)

Sol. $\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.059}{2} \log \left[\frac{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{Fe}^{3+}\right]}\right]^{2}$
$0.712=0.771-\frac{0.059}{2} \times 2 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$
$-0.059=-0.059 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}$
$\therefore \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}=10$
24. How many of the following ions/elements has/have same value of spin magnetic moment?
$\mathrm{V}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}$

Answer (2)

Sol. $\mathrm{V}^{3+}=\mathrm{d}^{2} \rightarrow 2$ unpaired electrons
$\mathrm{Cr}^{3+}=\mathrm{d}^{3} \rightarrow 3$ unpaired electrons
$\mathrm{Fe}^{2+}=\mathrm{d}^{6} \rightarrow 4$ unpaired electrons
$\mathrm{Ni}^{2+}=\mathrm{d}^{8} \rightarrow 2$ unpaired electrons
25. An athlete is given 100 g of glucose energy equivalent to 1560 kJ . He utilizes 50% of this gained energy in an event. Enthalpy of evaporation of $\mathrm{H}_{2} \mathrm{O}$ is $44 \mathrm{~kJ} /$ mole. In order to avoid storage of energy in body, mass of water (in g) he would need to perspire is:

Answer (319)

Sol. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$h=\frac{100}{180}$
$\therefore \quad$ Energy needed to perspire water $=1560 \times \frac{1}{2}$

$$
=780 \mathrm{~kJ}
$$

$\therefore \quad$ Moles of water evaporated $=\frac{780}{44}$ mole
$\therefore \quad$ Weight of water evaporated $=\frac{780}{44} \times 18$

$$
=319 \mathrm{~g}
$$

Assuming water is contained in the body.
26.
27.
28.
29.
30.

