

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- Radius of 2nd orbit of Li²⁺ ion is x, radius of 3rd orbit of Be3+ will be
- (3) $\frac{4}{3}$ x

Answer (1)

Sol. $r_{L_1^{2+}} = r_0 \times \frac{2^2}{3} = \frac{4r_0}{3} = x$

$$\Rightarrow r_0 = \frac{3x}{4}$$

$$r_{Be^{3+}} = r_0 \times \frac{3^2}{4} = \frac{9r_0}{4} = \frac{9 \times 3 \times x}{4 \times 4}$$

$$r_{Be^{3+}} = \frac{27x}{16}$$

- If X-atoms are present at alternate corners and at 2. body centre of a cube and Y-atoms are present at 1/3rd of face centres then what will be empirical formula?
 - (1) $X_{2.5}Y$
 - (2) X_5Y_2
 - (3) $X_{1.5}Y_2$
 - $(4) X_3Y_2$

Answer (4)

Sol. Number of X-atoms per unit cell = $1 + 4 \times \frac{1}{8}$

$$=\frac{3}{2}$$

Number of Y-atoms per unit cell = $2 \times \frac{1}{2} = 1$

 \therefore Empirical formula of the solid is X_3Y_2 .

- 3. chloride Thionyl on reaction with white phosphorous gives compound A. A on hydrolysis gives compound B which is dibasic. Identify A and B.
 - (1) A-PCI₅, B-H₃PO₂ (2) A-P₄O₆, B-H₃PO₄
 - (3) A-POCl₃, B-H₃PO₄ (4) A-PCl₃, B-H₃PO₃

Answer (4)

Sol. P_4 + 8SOCl₂ \rightarrow 4 PCl₃ + 4SO₂ + 2S₂Cl₂

(A)

PCl₃ + H₂O → H₃PO₃

(B)

Correct answer is (4).

Which of the following shows least reactivity 4. towards nucleophilic substitution reaction

Answer (3)

- Sol. Aryl halides containing E.W.G at ortho or para position are more reactive than meta isomer towards nucleophilic substitution reaction.
- 5. The correct decreasing order of positive electron gain enthalpy for the following inert gases

He, Ne, Kr, Xe

- (1) He > Ne > Kr > Xe
- (2) He > Ne > Xe > Kr
- (3) He > Xe > Ne > Kr
- (4) Ne > Kr > Xe > He

Answer (4)

Sol. Correct order is Ne > Kr > Xe > He

6. Which of the following reaction is not involved in the extraction of copper metal?

(1)
$$CuFeS_2 \xrightarrow{partial roasting} Cu_2S + FeS + SO_2 + Cu_2O$$

(2)
$$Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$$

(3)
$$FeO + SiO_2 \rightarrow FeSiO_3$$

(4)
$$2Fe_2O_3 + 3C \rightarrow 2Fe + 3CO_2$$

Answer (4)

- **Sol.** Option (4) contains the reaction involved in the reduction of hematite ore not in copper extraction.
- 7. Match the List-I and List-II.

List-I

List-II

(A)
$$\alpha$$
-D-Glucopyranose (1) $\begin{pmatrix} CH_2OH \\ H \\ OH \\ H \end{pmatrix}$ $\begin{pmatrix} CH_2OH \\ H \\ OH \\ H \end{pmatrix}$

(B) β -D-Glucopyranose (2)

(C) α -D-Fructofuranose (3)

(D) β-D-Fructofuranose (4)

(1)
$$A \rightarrow 4$$
; $B \rightarrow 1$; $C \rightarrow 2$; $D \rightarrow 3$

(2)
$$A \rightarrow 1$$
; $B \rightarrow 4$; $C \rightarrow 3$; $D \rightarrow 2$

(3)
$$A \rightarrow 2$$
; $B \rightarrow 3$; $C \rightarrow 4$; $D \rightarrow 1$

(4)
$$A \rightarrow 1$$
; $B \rightarrow 3$; $C \rightarrow 2$; $D \rightarrow 4$

Answer (1)

Sol. The correct options is (1).

8. Identify the correct sequence of reagents for the following conversion.

n-Heptane $\rightarrow \rightarrow \rightarrow$ PhCOOH + PhCH₂OH

(1) Al₂O₃/Cr₂O₃, CrO₂Cl₂ / H₃ O

Conc. NaOH, H₃ $\overset{\scriptscriptstyle{+}}{\mathsf{O}}$

(2) Al₂O₃/Cr₂O₃, CrO₂Cl₂ / H₃ O

H₃ $\overset{\scriptscriptstyle{+}}{\mathsf{O}}$, Conc. NaOH

(3) CrO₂Cl₂, Al₂O₃,

Conc. NaOH, H₃ $\overset{\scriptscriptstyle{+}}{\mathsf{O}}$

(4) Sn/HCl, NaOH Conc. CrO₂Cl₂, HNO₃

Answer (1)

Sol.

$$\begin{array}{c|c} CH_3 & CHO \\ \hline AI_2O_3/Cr_2O_3 & \hline O & \frac{CrO_2CI_2}{H_3O} & \hline O \\ \hline CH_2OH & \hline C - O \\ \hline \hline O & + \hline \hline O & \frac{Conc.}{NaOH} \\ \hline \hline O & \hline \hline \\ \hline O & \hline \end{array}$$

9. Which of the following option contains the correct match?

Table-1 (Elements) Table-2 (Flame colour)

- (A) K
- (P) Violet

(B) Ca

- (Q) Brick red
- (C) Sr
- (R) Apple green
- (D) Ba
- (S) Crimson red
- (1) $(A) \rightarrow P$, $(B) \rightarrow Q$, $(C) \rightarrow S$, $(D) \rightarrow R$
- (2) $(A) \rightarrow Q$, $(B) \rightarrow P$, $(C) \rightarrow S$, $(D) \rightarrow R$
- (3) $(A) \rightarrow R$, $(B) \rightarrow S$, $(C) \rightarrow P$, $(D) \rightarrow Q$
- (4) $(A) \rightarrow S$, $(B) \rightarrow R$, $(C) \rightarrow Q$, $(D) \rightarrow P$

Answer (1)

Sol. $K \rightarrow Violet$

 $Ca \rightarrow Brick red$

 $Sr \rightarrow Crimson red$

Ba → Apple green

10. Consider the following sequence of reaction

$$\begin{array}{c|c} CH_3 \\ \hline \\ H_2SO_4 \end{array} \begin{array}{c} A \\ (major) \end{array} \begin{array}{c} Br_2/Fe \\ (major) \end{array} \begin{array}{c} Sn + HCI \\ (major) \end{array} \begin{array}{c} C \\ (major) \end{array}$$

Which of the following options contains the correct structure?

(1) A is
$$O_{NO_2}$$

(2) B is
$$\bigcap_{NO_2}^{CH_3}$$
 Br

(3) C is
$$\bigvee_{NH_2}^{CH_3}$$
 Br

(4) C is
$$R$$
 Br R

Answer (2)

11. Correct order of basic strength for

$$CH_3 - NH_2$$
 , $CH_3 - N - CH_3$ (2) (2) $CH_3 - N - CH_3$, NH_3 (4) CH_3 (3)

is

- (1) 2 > 1 > 3 > 4
- (2) 3 > 2 > 1 > 4
- (3) 4 > 2 > 1 > 3
- (4) 2 > 4 > 3 > 1

Answer (1)

Sol. The correct order of basic strength in aqueous medium is

12. Consider the following conversion

$$\begin{array}{c} CH_{3} \\ H_{3}C - C - H \\ \hline \end{array} \xrightarrow{(i) O_{2}, hv} A \xrightarrow{H_{3} \mathring{O}_{3}^{0} \Delta} \begin{array}{c} OH \\ \hline \\ + CH_{3} - C - CH_{3} \end{array}$$

Which of the following option contains the correct structure of 'A'?

Answer (2)

Sol.

JEE (Main)-2023 : Phase-1 (25-01-2023)-Morning

13. Consider the following sequence of reactions

$$NO_2 \xrightarrow{H_2O} A + B$$

$$B+O_2 \longrightarrow O_3(g)$$

A is?

- (1) N₂O
- (2) NO
- (3) N₂O₃
- (4) N₂

Answer (2)

$$O_{(B)}(g) + O_2(g) \Longrightarrow O_3(g)$$

- 14. Which one of the following complexes is paramagnetic in nature?
 - (1) $\left[\text{Fe}(\text{NH}_3)_2 (\text{CN})_4 \right]^{2-}$
 - (2) $\left[Ni(CN)_{4} \right]^{2-}$
 - (3) $\left[Ni \left(H_2 O \right)_6 \right]^{2+}$
 - $(4) \left[\mathsf{Co}(\mathsf{NH}_3)_4 \mathsf{Cl}_2 \right]^{+}$

Answer (3)

Sol.

(1)
$$\left[\text{Fe} \left(\text{NH}_{3} \right)_{2} \left(\text{CN} \right)_{4} \right]^{2-}$$

Fe²⁺ 3d⁸ 111111
3d

[Fe(NH₃)₂(CN)₄]²⁻ 11111×××× ×× ×× ×× 4s 4p 4p 4s 4p

Complex is diamagnetic

- (2) $\left[\text{Ni}(\text{CN})_4 \right]^{2-} dsp^2$ hybridisation, diamagnetic
- (3) $\left[\text{Ni} \left(\text{H}_2 \text{O} \right)_6 \right]^{2+} sp^3 d^2$ hybridisation, paramagnetic
- (4) $\left[\text{Co} \left(\text{NH}_3 \right)_4 \text{Cl}_2 \right]^+ d^2 s p^3$ hybridisations, diamagnetic

15. Which of the following options contains the correct graph between $\frac{\pi}{c}$ and c at constant temperature? [where π is osmotic pressure and c is concentration of solute]

Answer (1)

Sol.
$$\pi = cRT$$

$$\therefore \frac{\pi}{c} = RT$$

- .. The value of $\frac{\pi}{c}$ is constant at constant temperature.
- 16. Which of the following is correct about antibiotics.
 - (1) Antibiotics are the substances that promote the growth of microorganism
 - (2) Penicillin has bacteriostatic effect
 - (3) Erythromycin has Bactericidal effect
 - (4) These are synthesized artificially

Answer (4)

- Sol. Antibiotics are synthesized artificially.
- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. How many of the following complexe(s) is(are) paramagnetic:

$$\begin{split} [Fe(CN)_6]^{3-}, \ [Fe(CN)_6]^{4-}, \ [NiCl_4]^{2-} \ , \ [Ni(CN)_4]^{2-}, \\ [CuCl_4]^{2-}, \ [Cu(CN)_4]^{3-}, \ [Cu(H_2O)_4]^{2+} \end{split}$$

Answer (4)

Sol. $[Fe(CN)_6]^{3-}$ \rightarrow d^5 paramagnetic $[Fe(CN)_6]^{4-}$ \rightarrow d^6 diamagnetic $[NiCl_4]^{2-}$ \rightarrow d^8 paramagnetic $[Ni(CN)_4]^{2-}$ \rightarrow d^8 diamagnetic $[CuCl_4]^{2-}$ \rightarrow d^9 paramagnetic $[Cu(CN)_4]^{3-}$ \rightarrow d^{10} diamagnetic

 $[Cu(H_2O)_4]^{2+} \rightarrow d^9$ paramagnetic

22. For a first order reaction $A \longrightarrow B$, $t_{1/2}$ is 30 min. Then find the time (in minutes) required for 75%. Completion of reaction

Answer (60.00)

Sol. $A \xrightarrow{t_{1/2}} B$ $A \xrightarrow{2t_{1/2}} B$

- .: In 75% completion, two t_{1/2} will be required.
- .: Time required will be 60 minutes.
- 23. Consider the following cell representation:

Then find the ratio of concentration of Fe²⁺ to Fe³⁺

[Given: $E_{cell} = 0.712$ and $E_{Cell}^{o} = 0.771$]

Answer (10.00)

Sol.
$$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} log \left[\frac{\left[Fe^{2+} \right] \left[H^{+} \right]}{\left[Fe^{3+} \right]} \right]^{2}$$

$$0.712 = 0.771 - \frac{0.059}{2} \times 2 log \frac{\left[Fe^{2+} \right]}{\left[Fe^{3+} \right]}$$

$$-0.059 = -0.059 \log \frac{\left[\text{Fe}^{2+} \right]}{\left[\text{Fe}^{3+} \right]}$$

$$\therefore \quad \frac{\left[Fe^{2+} \right]}{\left[Fe^{3+} \right]} = 10$$

24. How many of the following ions/elements has/have same value of spin magnetic moment?

Answer (2)

Sol. $V^{3+} = d^2 \rightarrow 2$ unpaired electrons

 $Cr^{3+} = d^3 \rightarrow 3$ unpaired electrons

 $Fe^{2+} = d^6 \rightarrow 4$ unpaired electrons

 $Ni^{2+} = d^8 \rightarrow 2$ unpaired electrons

25. An athlete is given 100 g of glucose energy equivalent to 1560 kJ. He utilizes 50% of this gained energy in an event. Enthalpy of evaporation of H₂O is 44 kJ/mole. In order to avoid storage of energy in body, mass of water (in g) he would need to perspire is:

Answer (319)

Sol.
$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O(I)$$

$$h = \frac{100}{180}$$

- ∴ Energy needed to perspire water = $1560 \times \frac{1}{2}$ = 780 kJ
- $\therefore \text{ Moles of water evaporated} = \frac{780}{44} \text{ mole}$
- :. Weight of water evaporated = $\frac{780}{44} \times 18$ = 319 g

Assuming water is contained in the body.

26.

27.

28.

29.

30.