\qquad

Instructions:

1. Ensure that all pages are printed.

2. Use Black ball pen only
3. Change in option is not allowed
4. There is no negative marking
5. Use of non -programmable scientific calculator is allowed
6. Value of 40 JTU is approximately equal to 40 NTU when standard used is
A Formazin
B Silica
C $\quad \mathrm{Pt}-\mathrm{Co}$
D Bentonite
7. Pure water dissociates to yield a solution having OH ion concentration of
A $\quad 10^{-5} \mathrm{~mol} / \mathrm{L}$
B $\quad 10^{-7} \mathrm{~mol} / \mathrm{L}$
C $\quad 10^{-8} \mathrm{~mol} / \mathrm{L}$
D $\quad 10^{-14} \mathrm{~mol} / \mathrm{L}$
8. For moderately hard water, hardness is in the range of
A $\quad 25-50 \mathrm{mg} / \mathrm{L}$
B
$50-75 \mathrm{mg} / \mathrm{L}$
C $\quad 75-150 \mathrm{mg} / \mathrm{L}$
D $\quad 150-200 \mathrm{mg} / \mathrm{L}$
9. What is total hardness of water in mg / L as CaCO_{3} in a sample having calcium $40 \mathrm{mg} / \mathrm{L}$ and magnesium zero mg / L
A 80
B $\quad 100$
C 200
D 92.2
10. End point for Total acidity in given sample of water occurs at pH ?
A
2.3
B
4.5
$\begin{array}{ll}\text { C } & 7.5\end{array}$
D
8.3
 consumed titrant of 5 ml when titrated with N/40 sulfuric acid till end point?
A 100
B
125
C 200
D 250
11. How much N/1 acid should be diluted to 1000 ml to get $\mathrm{N} / 50$ acid
A $\quad 20 \mathrm{ml}$
B $\quad 40 \mathrm{ml}$
C $\quad 50 \mathrm{ml}$
D $\quad 100 \mathrm{ml}$
12. Solubility of atmospheric oxygen at $35^{\circ} \mathrm{C}$ in fresh water is around?
A $\quad 4.0 \mathrm{mg} / \mathrm{L}$
B $\quad 7.0 \mathrm{mg} / \mathrm{L}$
C $\quad 10.0 \mathrm{mg} / \mathrm{L}$
D $\quad 14 \mathrm{mg} / \mathrm{L}$
13. Teeth problems are very rare when fluoride concentration is
A Greater than $1.5 \mathrm{mg} / \mathrm{l}$
B Lesser than $0.5 \mathrm{mg} / \mathrm{l}$
C \quad Between $1.0-1.5 \mathrm{mg} / \mathrm{l}$
D Zero
14. Methemoglobinemia disease is caused in infants by
A Chloride
B Sulfur
C Nitrate
D Fluoride
15. Theoretical Oxygen Demand of a glucose solution of $900 \mathrm{mg} / \mathrm{l}$ is
A $\quad 900 \mathrm{mg} / \mathrm{l}$
B $\quad 960 \mathrm{mg} / \mathrm{l}$
C $\quad 1020 \mathrm{mg} / \mathrm{l}$
D $\quad 1180 \mathrm{mg} / \mathrm{l}$
16. When white precipitate is formed after addition of MnSO_{4} and alkali-iodide reagent in DO test, it indicates
A Absence of oxygen
B Presence of excess oxygen
C Presence of Nitrogen
D None of these
17. 1 gram of molecular weight dissolved in 1 liter of water is called
A Molar solution
B Molal solution
C Normal solution
D None of these
18. Size of Dissolved Particles comes in the range
A $\quad 10^{-1} \mu \mathrm{~m}$ to $10^{-3 \mu \mathrm{~m}}$
B $\quad 10^{-3 \mu \mathrm{~m}}$ to $10^{-5} \mu \mathrm{~m}$
C $\quad 1^{\mu \mathrm{m}}$ to $100^{\mu \mathrm{m}}$
D $\quad 10^{\mu \mathrm{m}}$ to $10^{-1} \mu \mathrm{~m}$
19. Tree system of water distribution system is also called
A Dead end system
B Grid Iron system
C Radial system
D Ring system
20. How many moles are found in $10 \mathrm{~kg} \mathrm{CH}_{4}$
A 160
B
525
C 625
D
1250
21. Capacity of ESR in water supply scheme design is calculated by
A Mass curve method
B Hardy cross method
C Simplex method
D None of these
22. Water boils at room temperature if pressure above it is reduced to
A $\quad 0.4 \mathrm{psia}$
B $\quad 0.6 \mathrm{psia}$
C $\quad 0.8 \mathrm{psia}$
D None of these
23. Decomposition of radioactive element is simplest example of
A First order reaction
B Second order reaction
C Zero order reaction
D None of these
24. Minimum self-cleansing velocity to be maintained in sewer is
A $\quad 0.45 \mathrm{~m} / \mathrm{sec}$
B $\quad 1.0 \mathrm{~m} / \mathrm{sec}$
C $\quad 1.5 \mathrm{~m} / \mathrm{sec}$
D $\quad 2.0 \mathrm{~m} / \mathrm{sec}$
25. Crown corrosion in sewer is caused by oxidation of
$\mathrm{A} \quad \mathrm{CH}_{4}$
B CUS
C $\quad \mathrm{H}_{2} \mathrm{~S}$
D None of these
26. Coliform bacteria are determined by
A MPN test
B Jar test
C DO test
D None of these
27. Shape, size and specific gravity of particles do not changes in the process of
A Discrete settling
B Flocculant settling
C Zone settling
D Compression settling
28. As per inorganic chemistry, maximum oxidation states of nitrogen can be
A 3
B 4
C 5
D 7
29. Mostly used coagulant in India is
A Copperas
B Alum
C Sodium Aluminate
D Chlorinated copperas
30. For colloidal particles, energy barrier in coagulation mechanism is removed by
A Vaan der waal force
B Brownian motion
C Electrical charge
D Water hydration
31. Settling velocity in primary settling tank depends on
A Length of tank
B Width of tank
C Depth of tank
D Length and Width of tank
32. Value of velocity gradient((G) taken for the design of blades of flocculator is
A 30-60/s
B $\quad 100-150 / \mathrm{s}$
C 200-400/s
D 400-600/s
33. What value of velocity gradient shown below can be taken for design of flash mixer
A $50 / \mathrm{s}$
B $\quad 100 / \mathrm{s}$
C 200/s
D 600/s
34. Surface overflow rate $\left(\mathrm{m}^{3} / \mathrm{m}^{2} / \mathrm{d}\right)$ for Secondary sedimentation tank is in the range
A $25-50$
B $\quad 100-150$
C 200-250
D 250-300
35. Back washing is generally used in
A Slow sand filter
B Rapid sand filter
C Pressure filter
D None of these
36. What is weir loading for a tank of diameter of 28 m and flow rate entering to tank of $880 \mathrm{~m}^{3} / \mathrm{hr}$
A $\quad 240 \mathrm{~m}^{3} / \mathrm{m} / \mathrm{d}$
B $\quad 340 \mathrm{~m}^{3} / \mathrm{m} / \mathrm{d}$
C $\quad 440 \mathrm{~m}^{3} / \mathrm{m} / \mathrm{d}$
D $\quad 540 \mathrm{~m}^{3} / \mathrm{m} / \mathrm{d}$
37. What is diameter of sewer if hydraulic mean depth is 0.15 m
A $\quad 0.3 \mathrm{~m}$
B $\quad 0.45 \mathrm{~m}$
C $\quad 0.6 \mathrm{~m}$
D $\quad 0.75 \mathrm{~m}$
38. What is approximate value of effective size of sand used for slow sand filter
A $\quad 0.2-0.4 \mathrm{~mm}$
B $\quad 0.5-0.6 \mathrm{~mm}$
C $\quad 0.6-0.8 \mathrm{~mm}$
D $\quad 1-2 \mathrm{~mm}$
39. To protect contamination in the distribution system, the chemical used is
A Ozone
B Chlorine
C Lime
D None of these
40. The most widely used adsorbent in India is
A Silica
B Activated carbon
C Alumina
D Lime
41. What is the approximate velocity to be maintained in horizontal flow in PST
A $\quad 0.1 \mathrm{~m} / \mathrm{min}$
B $\quad 0.3 \mathrm{~m} / \mathrm{min}$
C $\quad 0.6 \mathrm{~m} / \mathrm{min}$
D $\quad 1 \mathrm{~m} / \mathrm{min}$
42. Which method is not used for reducing TDS in softening process is
A Reverse osmosis
B Electrodialysis
C Lime -Soda method
D None of these
43. In the determination of BOD for 5 days, oxidation of organic matter completed is around
A $30-40 \%$
B $60-70 \%$
C $\quad 75-85 \%$
D $85-95 \%$
44. Trunk sewer is also called as
A Main sewer
B Lateral sewer
C Outfall sewer
D None of these
45. Basic and main important characteristic of dairy wastewater is
A High BOD
B High COD
C Acidic pH
D High Ph
46. Process involved to mix two different pH streams of wastewater is
A Flow control
B Flow neutralization
C Flow adjustment
D Flow equalization
47. Domestic wastewater is directly discharged into the water body if dilution factor is
A Less than 150
B Between 150 to 300
C \quad Between 300 to 500
D Above 500
48. The unit, in which the Velocity control device is provided is
A Screen
B Grit chamber
C Primary settling tank
D Secondary settling tank
49. Tolerance limit of TSS for sewage effluent discharged into surface water source is
A $\quad 30 \mathrm{mg} / \mathrm{l}$
B $\quad 100 \mathrm{mg} / \mathrm{l}$
C $\quad 200 \mathrm{mg} / \mathrm{l}$
D None of these
50. Recirculation factor (F) for wastewater for R / I of 1.4 for trickling filter is
A $\quad 2.85$
B
2.4
C $\quad 0.85$
D
1.85
51. Range of value of MCRT for conventional Activated sludge process is
A
5-15 d
B $\quad 15-25 \mathrm{~d}$
C $\quad 25-35 \mathrm{~d}$
D $\quad 20-30 \mathrm{~d}$
52. What is HRT for ASP, when the inflow is 30 MLD and volume of $5000 \mathrm{~m}^{3}$
A $\quad 2.5 \mathrm{hrs}$
B $\quad 4 \mathrm{hrs}$
C $\quad 6 \mathrm{hrs}$
D $\quad 12 \mathrm{hrs}$
53. For DWW, percentage of CH_{4} generated from solids of sludge digestion tank is
A $\quad 30-40 \%$
B $40-50 \%$
C 60-70\%
D
80-90\%
54. Lowest BOD/COD ratio is generally found in
A Dairy wastewater
B
Tannery wastewater
C Distillery wastewater
D
Paper and pulp wastewater
55. "Black liquor" is generated in the process of digestion in the
A Dairy wastewater
B Tannery wastewater
C Textile wastewater
D Paper and pulp wastewater
56. What is BOD of sample if 5 ml of sample is diluted to 500 ml and loss of DO during test is $2 \mathrm{mg} / \mathrm{l}$.
A $\quad 30 \mathrm{mg} / \mathrm{l}$
B $\quad 100 \mathrm{mg} / \mathrm{l}$
C $\quad 200 \mathrm{mg} / \mathrm{l}$
D $\quad 250 \mathrm{mg} / \mathrm{l}$
57. What is the percentage contribution of CO_{2} in greenhouse effect in troposphere?
A 20%
B 30%
C 50%
D $\quad 70 \%$
58. Depletion of ozone in the atmosphere is mainly caused by
A Aerometric compounds
B PAN
C Chlorofluorocarbons
D Nitrogenous compounds
59. Dobson unit is used to measure
A $\quad \mathrm{O}_{3}$
B $\quad \mathrm{SOx}$
C NOx
$\mathrm{D} \quad \mathrm{CO}_{2}$
60. PAN is air pollutant, which is in the category of
A Primary air pollutant
B
Secondary air pollutant
C
Stationary air pollutants
61. Oxygen carrying capacity of blood is reduced by which air pollutant
A $\quad \mathrm{CO}$
B $\quad \mathrm{CO}_{2}$
C $\quad \mathrm{SO}_{\mathrm{x}}$
D $\quad \mathrm{O}_{3}$
62. Which air pollutant has no contribution in Global warming
A $\quad \mathrm{CH}_{4}$
B $\quad \mathrm{CO}_{2}$
C $\quad \mathrm{H}_{2} \mathrm{~S}$
D $\quad \mathrm{O}_{3}$
63. When mist is dense enough to obscure vision it is
A Dense mist
B Fog
C Fume
D Smoke
64. In air pollution the meaning of "soot" is as
A Release of carbon particles B after incomplete combustion
B Release of carbon particles after complete combustion
C Release of SOx and NOx D
D Release of SOx and NOx from
from exhaust of vehicles exhaust of vehicles
65. Air pollutant causing yellowish pattern in plant leaves is called
A Necrosis
B Chlorosis
C Abscission
D Epinasty
66. Arsines pollutants can cause
A Damages to Kidney
B Nausea
C Asthma
D Eye irritation
67. Particulates as well as gaseous pollutants are simultaneously removed by
A Scrubbers
B Fabric filters
C Cyclone separators
D Gravity settlers
68. As per ambient air quality standards SO_{2} concentration in 24 hrs in air is
A $\quad 40 \mu \mathrm{~g} / \mathrm{m}^{3}$
B $\quad 60 \mu \mathrm{~g} / \mathrm{m}^{3}$
C $\quad 80 \mu \mathrm{~g} / \mathrm{m}^{3}$
D $\quad 120 \mu \mathrm{~g} / \mathrm{m}^{3}$
69. Carbon monoxide concentration in 8 hrs in atmosphere, as per ambient air quality is
A $\quad 2 \mu \mathrm{~g} / \mathrm{m}^{3}$
B $\quad 10 \mu \mathrm{~g} / \mathrm{m}^{3}$
C $\quad 20 \mu \mathrm{~g} / \mathrm{m}^{3}$
D $\quad 30 \mu \mathrm{~g} / \mathrm{m}^{3}$
70. How many times more reactive is CO compared to O_{2} with hemoglobin
A 50
B $\quad 100$
C 150
D 200
71. Metal used as catalyst along with Platinum to prevent lead poisoning in exhaust of cars
A Copper
B Gold
C Bronze
D Palladium
72. Low intensity sounds are measured on scales as
A dBA
B dBB
C dBC
D $\quad \mathrm{dB}$
73. Noise level for rail traffic is around
A $\quad 50-60 \mathrm{~dB}$
B
$70-80 \mathrm{~dB}$
C $\quad 90-110 \mathrm{~dB}$
D
$120-150 \mathrm{~dB}$
74. What is the limit of sound level in Industrial area as per ambient noise standards
A
B
$65-75 \mathrm{~dB}$
C $\quad 95-105 \mathrm{~dB}$
D $\quad 105-120 \mathrm{~dB}$
75. What is the range of moisture content during the composting process
A $10-20 \%$
B $\quad 30-40 \%$
C $\quad 50-60 \%$
D $\quad 70-80 \%$
76. Waste minimization, resource conservation and recovery of by product is a major goal of
A EIA
B EPA
C CPCB
D WHO
77. For any project EIS report is prepared for
A Feedback of people B
B Approval or rejection of project
C Sustainable development D None of these
78. In which method of the following, there is sludge generation problem
A Reverse osmosis
B Electrodialysis
C Lime-Soda method
D None of these
79. Main cause of rising sludge in ASP is
A Nitrification
B Denitrification
C Acidification
D Neutralization
80. Detention time for high rate digestion process is around
A $\quad 15$ d
B $\quad 30 \mathrm{~d}$
C $\quad 45 \mathrm{~d}$
D $\quad 60 \mathrm{~d}$
81. Well designed and operated sludge thickeners should at least reduce sludge volume by
A 10%
B
20\%
C 30%
D 50%
82. Typical Indian solid waste has calorific value which is in the range of
A $\quad 500-800 \mathrm{kcal} / \mathrm{kg}$
B $\quad 800-1000 \mathrm{kcal} / \mathrm{kg}$
C $\quad 1200-1800 \mathrm{kcal} / \mathrm{kg}$
D $\quad 2000-2500 \mathrm{kcal} / \mathrm{kg}$
83. Complete destruction of pathogens from solid waste is achieved in the process of
A Incineration
B
Open window Composting
C Land filling
D Mechanical composting
84. Which of these solid waste disposal technologies is Environmental friendly?
A Mechanical composting
B Incineration
C Plasma Pyrolysis
D Sanitary land filling
85. Laplace Transform is a
A Linear transform
B Binomial transform
C Canonical transform
D None of these
86. The Particular Integral of $\left(D^{2}+D-2\right) y=e^{x}$
A $\quad \frac{x e^{2}}{3}$
B $\frac{x e^{2}}{4}$
C
$\frac{x e^{2}}{5}$
D $\frac{x e^{2}}{6}$
87. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. What is the probability that the ticket drawn has a number which is a multiple of 3 or 5 ?
A $\frac{1}{2}$
B $\quad \frac{2}{5}$
C $\quad \frac{8}{15}$
D $\quad \frac{9}{20}$
88. If $f(x)=x[\sqrt{x}-\sqrt{x+1}]$ then

A $\quad f(x)$ is continuous but not \quad B $\quad \mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$ differentiable at $\mathrm{x}=0$.

C $\quad f(x)$ is not differentiable at
D None of these $\mathrm{x}=0$
85.

If . $f(x)=\left\{\begin{array}{ll}1, & x<0 \\ 1+\sin x, & 0 \leq x \leq \pi / 2\end{array}\right.$ then at $x=0$, the derivative $f^{\prime}(x)$ is.
A $\quad 1$
B $\quad 0$
C Infinite
D does not exist
86. Which of the following substitution reduce the differential equation $\frac{d z}{d x}+\frac{z}{x} \log z=\frac{z}{x^{2}}(\log z)^{2}$ in to the form $\frac{d u}{d x}+P(x) u=Q(x) ?$
A $\quad u=\log z$
B $\quad u=e^{z}$
C $\quad u=(\log z)^{-1}$
D $\quad u=(\log z)^{2}$
87. Which of the following could represent a function, $f(x, y)$, with first-order partial derivatives? $\quad f_{x}(x, y, z)=3 x y(x y+2), f_{y}(x, y, z)=x^{2}(2 x y+3)$
A $\quad f=x^{2} y(x y+3)-6$
B
$f=x y\left(x^{2} y+3\right)$
C $\quad f=x^{3} y^{2}+2 x^{2} y^{3}+1$
D None of these
88. The fixed point of the transformation $W=Z^{2}$ are
A 0,1
B $0,-1$
C $\quad-1,1$
D $i .-i$
89. Following are the values of a function $y(x): y(-1)=5, y(0), y(1)=8 \frac{d y}{d t}$ at $x=0$ as per Newton's central difference scheme is
A $\quad 0$
B $\quad 1.5$
C $\quad 2.0$
D
3.0
90. $L\left(t^{2} \sin (2 t)\right)$.
A $\frac{12 s^{2}-16}{\left(s^{2}+4\right)^{4}}$
B $\quad \frac{3 s^{2}-4}{\left(s^{2}+4\right)^{3}}$
C $\frac{12 s^{2}-16}{\left(s^{2}+4\right)^{6}}$
D $\frac{12 s^{2}-16}{\left(s^{2}+4\right)^{3}}$
91. To solve $\left(D^{2}+16\right) y=\tan 4 x$ by Variation of parameter, then wronskian W is :
A 4
B
3
C $\quad 2$
D None of these
92. If $f(x, y, z)=x^{2}+y^{2}+z-9=0$ then the tangent plane at the point $P_{0}(1,2,4)$ is
A $\quad 2 x+4 y+z=14$
B $\quad 2 x-4 y+z=14$
C $\quad 2 x+4 y-z=14$
D $\quad 2 x+2 y+z=14$
93. The general solution of $(x+1)^{2} y^{\prime \prime}+(x+1) y^{\prime}+y=0$ is :
A
C1 $\operatorname{Cos} x+C 2 \operatorname{Sin} x$
B
$\mathrm{C} 1 \operatorname{Cos}(\ln \mathrm{x})+\mathrm{C} 2 \operatorname{Sin}(\ln \mathrm{x})$
C
$\left(C_{1}+C_{2} x\right) e^{x}$
D None of these
94. A Partial differential equation has.
A One indepdent variable
B Two or more indepdent variables
C More than one dependent
D
Equal number of dependent and independent variables. variable
95.

The partial differential equation $5 \frac{\partial^{2} u}{\partial x^{2}}+6 \frac{\partial^{2} u}{\partial y^{2}}=x y$ is classified as
A elliptic
B
Parabolic
C hyperbolic
D None of the above.
96. The root of $x^{3}-2 x-5=0$ correct to three decimal places by using Newton-Raphson method is.
A $\quad 2.0946$
B $\quad 1.0404$
C 1.7321
D $\quad 0.701$.
97. Find the equations of normal line to the surface $x^{2}+2 y^{2}+z=3$ at point $(2,1,-3)$
A $\quad \frac{x-2}{4}=-\frac{y-1}{1}=\frac{z+3}{1}$
B
$\frac{x-2}{8}=\frac{y-1}{1}=\frac{z+3}{1}$
C $\quad \frac{x-2}{4}=\frac{y-1}{1}=\frac{z+3}{2}$
D $\quad \frac{x-2}{4}=\frac{y-1}{4}=\frac{z+3}{1}$
98. The general solution of $\left(x^{2} D^{2}-3 x D+4\right) y=0$ is :
A
$C_{1} e^{2 X}+C_{2} e^{-2 x}$
B
$\left(C_{1}+C_{2} x\right) e^{2 x}$
C
$\left(\mathrm{C}_{1}+\mathrm{C}_{2} \ln \mathrm{x}\right) \mathrm{x}^{2}$
D None of these
99. Number of observations are 30 and value of arithmetic mean is 15 then sum of all values is
A 15
B $\quad 450$
C 200
D 45
100. In which of the following methods, proper choice of initial value is very important?
A Bisection method
B
False position
C Newton-Raphson
D Bairsto method

