30/08/2022 Slot-1

Time: 45 min.

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Answers & Solutions

M.M.: 200

CUET UG-2022

(Mathematics)

IMPORTANT INSTRUCTIONS:

- 1. The test is of 45 Minutes duration.
- 2. The test contains is divided into two sections.
 - a. Section A contains 15 questions which will be compulsory for all candidates.
 - b. Section B will have 35 questions out of which 25 questions need to be attempted.
- 3. Marking Scheme of the test:
 - a. Correct answer or the most appropriate answer: Five marks (+5)
 - b. Any incorrect option marked will be given minus one mark (-1).

Choose the correct answer:

Question ID: 9320101

Assume P, Q, R and S are matrices of order $2 \times m$, $k \times n$, $m \times 2$ and 2×3 respectively. The restrictions on k, m and n, so that PQ + RS is defined are

(1)
$$m = 3$$
, $n = 2$

(2)
$$m = n$$
, k is arbitrary

(3)
$$m = k$$
, n is arbitrary (4) $m = k = 2$, $n = 3$

Sol. Order of
$$P = 2 \times m$$

Order of
$$Q = k \times n$$

Order of
$$R = m \times 2$$

Order of
$$S = 2 \times 3$$

Now for PQ + RS to be defined.

PQ and RS is to be defined and PQ and RS should be of same order.

For PQ to be defined m = k

$$\Rightarrow$$
 Order of $PQ = 2 \times n$

For RS to be defined 2 = 2

$$\Rightarrow$$
 Order of RS = $m \times 3$

If order of PQ = Order of RS

$$\Rightarrow$$
 2 × n = m × 3

$$\Rightarrow$$
 $m=2$ $n=3$ $k=2$

Question ID: 9320102

The system of equations 3x + 4y = 5, 6x + 7y = -8is written in matrix from as

$$(1) \begin{bmatrix} 3 & 4 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} 5 & -8 \end{bmatrix}$$

$$(2) \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

(3)
$$\begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 6 & 7 \end{bmatrix} = \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$

$$(4) \quad \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} 5 & -8 \end{bmatrix}$$

Answer (4)

Sol.
$$3x + 4y = 5$$

$$6x + 7y = -8$$

In matrix form

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 6 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} 5 & -8 \end{bmatrix}$$

If
$$2\begin{bmatrix} a & d \\ b & c \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$$
, then the value of

Question ID: 9320103

|a+b-c-d| is

Sol.
$$2\begin{bmatrix} a & d \\ b & c \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} 2a+3 & 2d-3 \\ 2b & 2c+6 \end{bmatrix} = \begin{bmatrix} 9 & 15 \\ 12 & 18 \end{bmatrix}$$

$$\Rightarrow$$
 2a+3=9 \Rightarrow a=3

$$2d-3=15 \Rightarrow d=9$$

$$2b = 12$$
 $\Rightarrow b = 6$

$$2c + 6 = 18 \Rightarrow c = 6$$

$$|3 + 6 - 9 - 6|$$

= 6

Question ID: 9320104

Consider the function $f(x) = x^{\frac{1}{x}}$. Its

- (1) minimum value is ee
- (2) maximum value is ee
- (3) minimum value is ee
- (4) maximum value is $\left(\frac{1}{2}\right)^{e}$

Answer (2)

Sol.
$$f(x) = x^{\frac{1}{x}}$$

$$\log f(x) = \frac{1}{x} \log x$$

$$\frac{f'(x)}{f(x)} = \frac{1}{x^2} + (\log x) \left(-\frac{1}{x^2} \right)$$

$$f'(x) = \frac{x^{\frac{1}{x}} \left[1 - \log x\right]}{x^2}$$

$$f'(x) = 0$$

$$\Rightarrow 1 - \log x = 0$$

$$\therefore f(x)_{\max} = e^{\frac{1}{e}}$$

Question ID: 9320105

The given function $f(x) = x^5 - 5x^4 + 5x^3 - 1$; has/have

- (a) local maxima at x = 1
- (b) local maximum value is 0
- (c) local minimum at x = 3
- (d) local minimum value is -28
- (e) The point of inflexion is x = 1

Choose the **correct** answer from the options given below

- (1) (a), (b) only
- (2) (a), (b), (c) only
- (3) (a), (b), (c), (d) only (4) (a), (c), (e) only

Answer (3)

Sol.
$$f(x) = x^5 - 5x^4 + 5x^3 - 1$$

$$f'(x) = 5x^4 - 20x^3 + 15x^2$$

$$= 5x^2(x^2 - 4x + 3) = 0$$

$$= 5x^2(x - 3)(x - 1) = 0$$

$$x = 0, 3, 1$$

Now.

$$f''(x) = 20x^3 - 60x^2 + 30x$$
$$= 10x(2x^2 - 6x + 3)$$

- f''(x) = 0 $\Rightarrow x = 0$ $\therefore x = 0$ is point of inflexion.
- $f''(1) < 0 \Rightarrow x = 1$
- point of maxima.
- $f''(3) > 0 \Rightarrow x = 3$
- point of minima.

$$f(3) = (3)^5 - 5(3)^4 + 5(3)^3 - 1$$
$$= -28$$

$$f(1) = 1 - 5 + 5 - 1 = 0$$

Question ID: 9320106

Match List-I with List-II

List-I

List-II

- (a) If $x = t^2$ and $y = t^3$
 - then $\frac{d^2y}{dx^2}$ at t=1
- (b) If $f(x) = \sqrt{x} + 1$, (ii) -1then f''(1)
- (c) The minimum value (iii) $\frac{3}{4}$ of $f(x) = 9x^2 + 12x + 2$
- (d) The point of inflexion (iv) $-\frac{1}{4}$ of the function $f(x) = (x-2)^4 (x+1)^3$

Choose the correct answer from the options given below

- (1) (a) (i), (b) (iii), (c) (ii), (d) (iv)
- (2) (a) (ii), (b) (iii), (c) (i), (d) (iv)
- (3) (a) (iii), (b) (iv), (c) (i), (d) (ii)
- (4) (a) (iv), (b) (i), (c) (iii), (d) (ii)

Answer (3)

Sol. (a)
$$x = t^2$$
, $y = t^3$

$$\frac{dx}{dt} = 2t$$
 $\frac{dy}{dt} = 3t^2$

$$\frac{dy}{dx} = \frac{3}{2}t$$

$$\frac{d^2y}{dx^2} = \frac{3}{2} \times \frac{dt}{dx}$$

$$=\frac{3}{2}\times\frac{1}{2}=\frac{3}{4}$$

(b)
$$f(x) = \sqrt{x} + 1$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$f''(x) = -\frac{1}{\frac{3}{4x^2}}$$
 $f''(1) = -\frac{1}{4}$

(c)
$$f(x) = 9x^2 + 12x + 2$$

$$f'(x) = 18x + 12 = 0$$

$$x=-\frac{2}{3}$$

$$f(x)_{\min} = 9\left(-\frac{2}{3}\right)^2 + 12\left(-\frac{2}{3}\right) + 2$$
$$= 9 \times \frac{4}{9} + (-8) + 2$$
$$= 4 - 8 + 2 = -2$$

(d)
$$f(x) = (x-2)^4 (x+1)^3$$

$$f'(x) = 3(x+1)^2(x-2)^4 + 4(x-2)^3(x+1)^3$$

$$f''(x) = 6(x+1)(x-2)^4 + 12(x-2)^3(x+1)^2 + 12(x+1)^2(x-2)^3 + 12(x-2)^2(x+1)^3$$

=
$$(x + 1) [6(x - 2)^4 + 12(x - 2)^3(x + 1) + 12(x + 1)(x - 2)^3 + 12(x - 2)^2(x + 1)^2] = 0$$

$$\Rightarrow$$
 $x = -1$ is point of inflexion.

$$\therefore$$
 a \rightarrow (iii), b \rightarrow (iv), c \rightarrow (i), d \rightarrow (ii)

The area enclosed by the curve $y^2 = 4ax$ and its latus - rectum is

(1)
$$\frac{8}{3}a^2$$

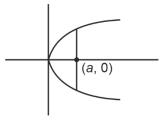
(2)
$$\frac{4}{3}a^2$$

(3)
$$\frac{1}{3}a^2$$

(4)
$$\frac{1}{12}a^2$$

Answer (1)

Sol.



Area =
$$2\int_{0}^{a} \sqrt{4ax} dx$$

= $2.2\sqrt{a}\int_{0}^{a} \sqrt{x} dx$
= $4\sqrt{a}\frac{\frac{3}{2}}{3} \times 2\Big|_{0}^{a}$
= $\frac{4a^{\frac{1}{2}}a^{\frac{3}{2}}}{3} \times 2 = \frac{8}{3}a^{2}$

Question ID: 9320108

$$\int \frac{xe^x}{(x+1)^2} dx =$$

$$(1) \quad \frac{e^x}{x+1} + c$$

(2)
$$\frac{e^x}{x-1} + c$$

$$(3) \quad \frac{x}{x+1} + c$$

(4)
$$\frac{x}{x-1} + c$$

Answer (1)

Sol.
$$\int \frac{xe^x}{(x+1)^2} dx$$

$$\int e^x \left[\frac{x+1-1}{(x+1)^2} \right] dx$$

$$= \int e^x \left[\frac{1}{x+1} - \frac{1}{(x+1)^2} \right] dx$$

$$\therefore \int e^x \left[f(x) + f\left(\frac{1}{x}\right) \right] dx = e^x f(x)$$

$$= \frac{e^x}{x+1} + c$$

Question ID: 9320109

The solution of the differential equation $(x+1)\frac{dy}{dx} = 1 + y$ is

(1)
$$\frac{1+y+y^2}{1+x^2} = C$$

(2)
$$\log(x+1) - \log\left(y + \frac{1}{2}\right) = C$$

$$(3) \quad \frac{x+1}{v+1} = C$$

(4)
$$\log(1+y) - \frac{\sqrt{3}}{2}\log(x+1) = C$$

Answer (3)

Sol.
$$(x+1)\frac{dy}{dx} = 1 + y$$

$$\frac{dy}{dx} - \frac{y}{x+1} = \frac{1}{x+1}$$

IF =
$$e^{-\int \frac{dx}{x+1}} = e^{-\log|x+1|} = \frac{1}{x+1}$$

$$\therefore \frac{y}{x+1} = \int \frac{1}{(x+1)^2} dx$$

$$\frac{y}{x+1} = -\frac{1}{x+1} + C$$

$$\frac{y+1}{x+1}+C$$

Question ID: 9320110

Order and degree of the differential equation

$$y\frac{dy}{dx} + \frac{4}{\frac{dy}{dx}} = 5$$
 are

- (1) 1, 2 respectively (2) 1, 1 respectively
- (3) 1, 0 respectively (4) 2, 1 respectively

Answer (1)

Sol.
$$y \frac{dy}{dx} + \frac{4}{\frac{dy}{dx}} = 5$$

$$y\left(\frac{dy}{dx}\right)^2 + 4 = 5\left(\frac{dy}{dx}\right)$$

Question ID: 9320111

Derivative of $x^3 + 1$ with respect to $x^2 + 1$ is

- (1) $\frac{2x}{3}$
- (2) $\frac{x}{3}$

(3) $\frac{x}{2}$

(4) $\frac{3x}{2}$

Answer (4)

Sol. Derivative of $x^3 + 1$ w.r.t. $x^2 + 1$

$$f(x) = x^3 + 1$$

$$q(x) = x^2 + 1$$

$$\frac{f'(x)}{g'(x)} = \frac{3x^2}{2x} = \frac{3}{2}x$$

Question ID: 9320112

Solution of the differential equation $(x + xy)dy - y(1 - x^2)dx = 0$ is

(1)
$$y = \log \frac{x}{y} - \frac{x^2}{2} + C$$
 (2) $y = \log \frac{x}{y} + \frac{x^2}{2} + C$

(3)
$$y = \log xy - \frac{x^2}{2} + C$$
 (4) $y = \log xy + \frac{x^2}{2} + C$

Answer (1)

Sol. $(x + xy)dy - y(1 - x^2)dx = 0$

$$x(1 + y)dy - y(1 - x^2)dx = 0$$

$$\int \frac{(1+y)}{y} dy = \int \frac{(1-x^2)}{x} dx$$

$$\log y + y = \log x - \frac{x^2}{2} + C$$

$$y = \log \frac{x}{v} - \frac{x^2}{2} + C$$

Question ID: 9320113

Two numbers are selected at random (without replacement) from the first three positive integers. Let X denotes the larger of the two integers, then the probability distribution of X is

(3)
$$\begin{array}{c|cccc} X & 2 & 3 \\ \hline P(X=x) & 2/3 & 1/3 \end{array}$$

Answer (1)

Sol. S: {1, 2, 3}

Two numbers can be select as (1, 2) (2, 3) (1, 3) Now

X	2	3
P(X = x)	1/3	2/3

where X denotes larger of two integers.

Question ID: 9320114

The probability distribution of number of doublets in three throws of a pair of dice is

(1)
$$\begin{array}{c|ccccc} x & 0 & 1 & 2 & 3 \\ \hline P(X=x) & 125/216 & 75/216 & 15/216 & 1/216 \end{array}$$

Answer (1)

Sol. *X* = getting number of doublets *i.e.* success Probability of getting a doublet in a throw

$$P = \frac{6}{36} = \frac{1}{6}$$

$$P(X=0) = {}^{3}C_{0} \left(\frac{1}{6}\right)^{0} \left(\frac{5}{6}\right)^{3} = \frac{125}{216}$$

$$P(X=1) = {}^{3}C_{1} \left(\frac{1}{6}\right)^{1} \left(\frac{5}{6}\right)^{2} = \frac{75}{216}$$

$$P(X=2) = {}^{3}C_{2} \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{1} = \frac{15}{216}$$

$$P(X=3) = {}^{3}C_{3} \left(\frac{1}{6}\right)^{3} \left(\frac{5}{6}\right)^{0} = \frac{1}{216}$$

Question ID: 9320115

In linear programming, the optimal value of the objective function is attained at the points given by

- (1) intersection of the inequalities with the *x*-axis only
- (2) intersection of the inequalities with the axes only
- (3) corner points of the feasible region
- (4) intersection of the inequalities with the y-axis only

Answer (3)

Sol. The optimal values of the objective function is attained at the corner points of the feasible region.

If R is a relation on Z (set of all integers) defined by xRy, iff $|x-y| \le 1$, then

- (a) R is reflexive
- (b) R is symmetric
- (c) R is transitive
- (d) R is not symmetric
- (e) R is not transitive

Choose the **most appropriate** answer from the options given below

- (1) (a) and (d) only
- (2) (a), (b) and (c) only
- (3) (b) and (c) only
- (4) (a), (b) and (e) only

Answer (4)

Sol.
$$xRy$$
, $|x-y| \le 1$

For reflexive $(a, a) \Rightarrow |a - a| = 0 \le 1$.

.. Relation is reflexive.

For symmetric

$$(a, b) \Rightarrow |a - b| \le 1.$$

$$(b, a) \Rightarrow |b - a| \le 1.$$
 [True]

.. Relation is symmetric.

For transitive

$$(a, b) \Rightarrow |a - b| \le 1$$
 [Ex. $1R2 \Rightarrow |2 - 1| \le 1$

$$(b, c) \Rightarrow |b-c| \le 1$$
 $2R3 \Rightarrow |2-3| \le 1$

$$||a-c|| \le 1$$
 $||R3|| = ||1-3|| = 2 \le 1|$

:. Only reflexive and symmetric and not transitive.

Question ID: 9320117

If the vertices of a triangle ABC are A(1, 2, 1), B(4, 2, 3) and C(2, 3, 1), then the equation of the median passing through the vertex A, is

(1)
$$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{2}$$

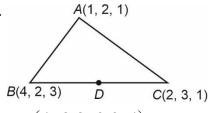
(2)
$$x-2=\frac{y-2}{1}=z-1$$

(3)
$$x-1=2y-4=z-1$$

(4)
$$\frac{x-1}{2} = 2y-4 = z-1$$

Answer (4)

Sol.



$$D \equiv \left(\frac{4+2}{2}, \frac{2+3}{2}, \frac{3+1}{2}\right)$$

$$\equiv \left(3, \frac{5}{2}, 2\right)$$

Equation of median through A

$$\frac{x-1}{2} = \frac{y-2}{\frac{1}{2}} = \frac{z-1}{1}$$

Question ID: 9320118 *(Options (1) and (4) are Same)

A line makes the angle θ with each of the x and z axes. If the angle β which it makes with y-axis is such that $\sin^2\beta = 3\sin^2\theta$, then the value of $\cos^2\theta$ is

$$(1) \frac{2}{5}$$

(2)
$$\frac{1}{5}$$

(3)
$$\frac{3}{5}$$

$$(4) \frac{2}{5}$$

Answer (3)

Sol.
$$\cos^2\theta + \cos^2\beta + \cos^2\theta = 1$$

or
$$2\cos^2\theta + 1 - 3\sin^2\theta = 1$$

or
$$2\cos^2\theta = 3\sin^2\theta$$

or
$$2\cos^2\theta = 3 - 3\cos^2\theta$$

$$\Rightarrow \cos^2\theta = \frac{3}{5}$$

Question ID: 9320119

If $x = 2\sin\theta$ and $y = 2\cos\theta$, then the value of $\frac{d^2y}{dx^2}$

at
$$\theta = 0$$
 is

$$(1) -\frac{1}{2}$$

Answer (1)

Sol.
$$\frac{dy}{dx} = \frac{-2\sin\theta}{2\cos\theta} = -\tan\theta$$

$$\frac{d^2y}{dx^2} = -\sec^2\theta \cdot \frac{d\theta}{dx}$$

$$=\frac{-\sec^2\theta}{2\cos\theta}=-\frac{1}{2}\sec^3\theta$$

at
$$\theta = 0$$

$$\Rightarrow \frac{d^2y}{dx^2} = -\frac{1}{2}$$

Question ID: 9320120

If $x = e^{y + e^{y + e^{y + ...\infty}}}$, x > 0, then $\frac{dy}{dx}$ is equal to

- (1) $\frac{x}{1+x}$
- (2) $\frac{1}{x}$
- $(3) \ \frac{1-x}{x}$
- $(4) \frac{1+x}{x}$

Answer (3)

Sol.
$$x = e^{y+x}$$

Differentiating w.r.t. x

$$1 = e^{x+y} \left(1 + \frac{dy}{dx} \right)$$

$$\Rightarrow \frac{1}{x} = 1 + \frac{dy}{dx}$$

or
$$\frac{dy}{dx} = \frac{1-x}{x}$$

Question ID: 9320121

 $\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{\pi}{2}$, than x is equal to

(a) 0

(b) 1

(c) $\frac{1}{2}$

(d) 2

Choose the **most appropriate** answer from the options given below:

- (1) (a) and (b) only
- (2) (a) and (c) only
- (3) (a) only
- (4) (c) only

Answer (3)

Sol. Domain for x is [0, 1]

$$\sin^{-1}(1-x)\Big|_{\max} = \frac{\pi}{2}$$

$$\sin^{-1}(x)\bigg|_{\min}=0$$

So, only possible condition is when

$$x = 0$$

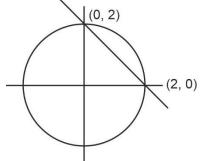
Question ID: 9320122

The smaller of the areas enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is

- (1) $2(\pi 2)$
- (2) $\pi 2$
- (3) $2\pi 1$
- (4) $2\pi + 2$

Answer (2)

Sol.



Area of smaller region

$$=\frac{1}{4}\times 4\pi-\frac{1}{2}\cdot 2\cdot 2$$

=
$$(\pi - 2)$$
 sq. units

Question ID: 9320123

If $0 < x < \pi$ and the matrix $\begin{bmatrix} 4\sin x & -1 \\ -3 & \sin x \end{bmatrix}$ is

singular, then the values of x are

- (1) $\frac{\pi}{3}$, $\frac{2\pi}{3}$
- (2) $\frac{\pi}{6}$, $\frac{5\pi}{6}$
- (3) $\frac{\pi}{6}, \frac{\pi}{3}$
- (4) $\frac{\pi}{6}$, $\frac{2\pi}{3}$

Answer (1)

Sol. $4\sin^2 x - 3 = 0$

$$\Rightarrow \sin^2 x = \frac{3}{4}$$

$$\Rightarrow x = \frac{\pi}{3} \text{ OR } \frac{2\pi}{3}$$

Question ID: 9320124

$$\int_{\frac{1}{3}}^{1} \frac{(x-x^3)^{\frac{1}{3}}}{x^4} dx =$$

(1) 3

(2) 4

(3) 6

(4) 0

Answer (3)

Sol.
$$I = \int_{1/3}^{1} \frac{x \left(\frac{1}{x^2} - 1\right)^{1/3}}{x^4} dx = \int_{1/3}^{1} \frac{\left(\frac{1}{x^2} - 1\right)^{1/3}}{x^3} dx$$

Let
$$\frac{1}{x^2} - 1 = t \Rightarrow \frac{-2}{x^3} dx = dt$$

So
$$I = \int_{8}^{0} \frac{-t^{1/3}}{2} dt = \frac{1}{2} \int_{0}^{8} t^{1/3} dt$$

$$= \frac{1}{2} \cdot \frac{t^{4/3}}{\frac{4}{3}} \Big|_{0}^{8}$$

$$=\frac{3}{8}\cdot 8^{4/3}=6$$

The function $f(x) = e^{|x|}$ is

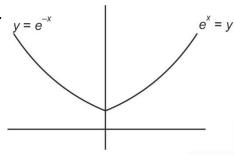
- (a) continuous everywhere on R
- (b) not continuous at x = 0
- (c) Differentiable everywhere on R
- (d) not differentiable at x = 0
- (e) continuous and differentiable on R

Choose the **most appropriate** answer from the options given below:

- (1) (e) only
- (2) (b) and (c) only
- (3) (a) and (d) only
- (4) (b) and (d) only

Answer (3)

Sol.



$$f(x) = \begin{cases} e^x & x \ge 0 \\ e^{-x} & x < 0 \end{cases}$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0) = 1 \quad \text{so} \quad f(x) \quad i$$

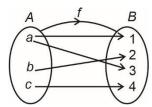
continuous.

But RHD at x = 0 is 1

LHD at x = 0 is -1

So f(x) is not differentiable at x = 0.

Question ID: 9320126



Which of the following is **true** on the basis of above diagram?

- (1) 'f is a function from $A \rightarrow B$
- (2) 'f is one-one function from $A \rightarrow B$
- (3) 'f is onto function from $A \rightarrow B$
- (4) 'f is not a function from $A \rightarrow B$

Answer (4)

Sol. f(a) = 1 and 4, which is not possible for any function.

Question ID: 9320127

If the points (2, -3), $(\lambda, -1)$ and (0, 4) are collinear, then the value of λ is :

- (1) $\frac{7}{10}$
- (2) $\frac{3}{10}$

(3) $\frac{7}{3}$

(4) $\frac{10}{7}$

Answer (4)

Sol.
$$\begin{vmatrix} \lambda & -1 & 1 \\ 0 & 4 & 1 \\ 2 & -3 & 1 \end{vmatrix} = 0$$

 $\Rightarrow \lambda(7) + 1(-2) + 1(-8) = 0$

$\Rightarrow 7\lambda - 10 = 0$ **Question ID: 9320128**

The value of $\sin \left[2\cot^{-1} \left(\frac{-5}{12} \right) \right]$ is :

- (1) $\frac{120}{169}$
- (2) $\frac{-120}{169}$
- (3) $\frac{-60}{169}$
- (4) $\frac{60}{160}$

Answer (2)

Sol.
$$\sin\left(2\pi - 2\cot^{-1}\frac{5}{12}\right) = -\sin\left(2\cot^{-1}\frac{5}{12}\right)$$

Let
$$\cot^{-1} \frac{5}{12} = \theta \implies \cot \theta = \frac{5}{12}$$

$$\sin 2\theta = \frac{2\tan\theta}{1+\tan^3\theta} = \frac{\frac{24}{5}}{1+\frac{144}{25}} = \frac{\frac{24}{5}}{\frac{169}{25}}$$

$$=\frac{120}{169}$$

Question ID: 9320129

Let $y = m \sin rx + n \cos rx$. What is the value of $\frac{d^2y}{dx^2}$?

- (1) *ry*
- (2) -ry

- (3) r^2y
- $(4) -r^2y$

Answer (4)

Sol.
$$\frac{dy}{dx} = m \cdot r(\cos rx) - nr(\sin rx)$$

$$\Rightarrow \frac{d^2y}{dx^2} = mr^2(-\sin rx) - nr^2(\cos rx)$$

$$=-r^2y$$

Question ID: 9320130

The integrating factor of the differential equation

$$\cos x \frac{dy}{dx} + y \sin x = 1 \text{ is}$$

- (1) $\sec x$
- $(2) \cos x$
- (3) $\sec x + \tan x$
- (4) tan x

Answer (1)

Sol. Dividing by $\cos x$

$$\frac{dy}{dx} + y \tan x = \sec x$$

So I.F. =
$$e^{\int \tan x \, dx} = e^{\ln(\sec x)} = \sec x$$

Question ID: 9320131

The order and degree of the differential equation

$$\left[\left(\frac{d^2 y}{dx^2} \right)^2 - 3 \right]^{\frac{1}{3}} = 2 \left(\frac{dy}{dx} \right)^{\frac{1}{4}} \text{ are }$$

- (1) order = 2, degree = 2
- (2) order = 2, degree = 4
- (3) order = 2, degree = 8
- (4) order = 1, degree = 1

Answer (3)

Sol. Differential equation can be reduced to

$$\left(\left(\frac{d^2 y}{dx^2} \right)^2 - 3 \right)^4 = 2^{12} \left(\frac{dy}{dx} \right)^3$$

So order = 2, Degree = 8

Question ID: 9320132

$$\int \sqrt{1-49x^2} \, dx$$
 is equal to

(1)
$$\frac{x}{2} \left(\sqrt{1 - 49x^2} \right) + \frac{1}{98} \sin^{-1} 7x + C$$

(2)
$$\frac{7x}{2}\sqrt{1+49x^2}+\frac{1}{49}\sin^{-1}x+C$$

(3)
$$\frac{x}{2}\sqrt{1+\frac{1}{7x^2}}-\frac{1}{49}\sin^{-1}7x+C$$

(4)
$$\frac{x}{2}\sqrt{1-49x^2} + \frac{1}{14}\sin^{-1}7x + C$$

Answer (4)

Sol.
$$I = 7 \int \sqrt{\frac{1}{49} - x^2} dx$$

$$=7\left(\frac{x}{2}\sqrt{\frac{1}{49}-x^2}+\frac{1}{98}\sin^{-1}\frac{x}{\frac{1}{7}}\right)+C$$

$$=\frac{x}{2}\sqrt{1-49x^2}+\frac{1}{14}\sin^{-1}(7x)+C$$

Question ID: 9320133

The shortest distances of the point (1, 2, 3) from x, y, z axes respectively are

- (1) 1, 2, 3
- (2) $\sqrt{5}$, $\sqrt{13}$, $\sqrt{10}$
- (3) $\sqrt{10}$, $\sqrt{13}$, $\sqrt{5}$
- (4) $\sqrt{13}$, $\sqrt{10}$, $\sqrt{5}$

Answer (4)

Sol.
$$D_{v} = \sqrt{2^2 + 3^2} = \sqrt{13}$$

$$D_V = \sqrt{1^2 + 3^2} = \sqrt{10}$$

$$D_z = \sqrt{1^2 + 2^2} = \sqrt{5}$$

Question ID: 9320134

Distance between two planes x + 2y - z = 5 and 2x + 4y - 2z + 2 = 0 is

- (1) $\sqrt{6}$ unit
- (2) 7 unit
- (3) $\frac{5}{\sqrt{6}}$ unit
- (4) $\frac{4}{\sqrt{6}}$ unit

Answer (1)

Sol.
$$P_1: 2x + 4y - 2z = 10$$

$$P_2: 2x + 4y - 2z = -2$$

$$d = \frac{12}{\sqrt{2^2 + 4^2 + 2^2}} = \frac{12}{\sqrt{24}} = \sqrt{6} \text{ units}$$

Question ID: 9320135

If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ are two non zero vectors inclined at an angle θ , then identify the correct option out of the given options.

- (a) $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$
- (b) \vec{a} and \vec{b} are perpendicular, if $a_1b_1+a_2b_2+a_3b_3=0$
- (c) \vec{a} and \vec{b} are perpendicular, if $\frac{a_1}{b_1} = \frac{a_2}{b_2} \neq \frac{c_1}{c_2}$
- (d) for $\theta = \pi$, $\vec{a} \times \vec{b} = 0$
- (e) $\cos \theta = \frac{\left| \vec{a} \times \vec{b} \right|}{\left| \vec{a} \right| \cdot \left| \vec{b} \right|}$

Choose the **most appropriate** answer from the options given below

- (1) (a), (b) and (d) only (2) (a), (b) and (e) only
- (3) (b), (d) and (e) only (4) (a) and (b) only

Answer (1)

Sol. Given $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$

$$\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$$

Let, angle between \vec{a} and \vec{b} is θ

So,
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

and if \vec{a} is perpendicular to \vec{b} then

$$\vec{a} \cdot \vec{b} = 0 \implies a_1b_1 + a_2b_2 + a_3b_3 = 0$$

and if $\theta = \pi$, then $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \pi \hat{n}$

$$=\vec{0}$$

So, option (1) is correct.

Question ID: 9320136

If $\vec{p}=\hat{i}+\hat{j}-2\hat{k}$ and $\vec{q}=2\hat{i}+\hat{j}-\hat{k}$, then the area of parallelogram having diagonals

$$(\vec{p} + \vec{q})$$
 and $(\vec{p} - \vec{q})$ is

- (1) $4\sqrt{11}$ sq. unit
- (2) $\sqrt{44}$ sq. unit
- (3) $\sqrt{11}$ sq. unit
- (4) $3\sqrt{11}$ sq. unit

Answer (3)

Sol. Given: $\vec{p} = \hat{i} + \hat{j} - 2\hat{k}$ and $\vec{q} = 2\hat{i} + \hat{j} - \hat{k}$

So, diagonals $\overrightarrow{d_1} = \overrightarrow{p} + \overrightarrow{q} = 3\hat{i} + 2\hat{j} - 3\hat{k}$

$$\overrightarrow{d_2} = \overrightarrow{p} - \overrightarrow{q} = -\hat{i} - \hat{k}$$

 \therefore Area of parallelogram = $\frac{1}{2} \left| \overrightarrow{d_1} \times \overrightarrow{d_2} \right|$

Now,

$$\overrightarrow{d_1} \times \overrightarrow{d_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -3 \\ -1 & 0 & -1 \end{vmatrix} = -2\hat{i} + 6\hat{j} + 2\hat{k}$$

$$\therefore$$
 Area = $\frac{1}{2}\sqrt{4+36+4} = \sqrt{11}$ sq. units

Question ID: 9320137

If \vec{a} , \vec{b} and \vec{c} are three unit vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$, then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is

- (1) 3
- (2) $-\frac{3}{2}$
- (3) $\frac{3}{2}$
- (4) -3

Answer (2)

Sol. Given: $\vec{a} + \vec{b} + \vec{c} = 0$

Taking dot product with $(\vec{a} + \vec{b} + \vec{c})$ on both sides

$$(\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0$$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\therefore \quad (\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -\frac{3}{2}$$

Question ID: 9320138

The corner points of the feasible region for an L.P.P. are (0, 10), (5, 5), (15, 15) and (0, 20). If the objective function is z = px + qy; p, q > 0, then the condition on p and q so that the maximum of z occurs at (15, 15) and (0, 20) is

- (1) p = q
- (2) p = 2q
- (3) q = 3p
- (4) q = 2p

Answer (3)

Sol. Given the corner points of feasible region for L.P.P. are (0, 10), (5, 5), (15, 15) and (0, 20) and since objective function z = px + qy; p, q > 0 is maximum for (15, 15) and (0, 20)

 \therefore z will be maximum for all $x, y \in$ which belongs to feasible region and lies on the line joining (15, 15) and (0, 20)

$$\therefore L: y-20=\frac{-5}{15}(x-0) \implies 5x+15y=300$$

$$\Rightarrow x + 3y = 600$$

So,
$$q = 3p$$

Question ID: 9320139

 $\int x\sqrt{x+2} dx$ is equal to :

(1)
$$\frac{2}{5}(x+2)^{\frac{5}{2}} - \frac{4}{3}(x+2)^{\frac{3}{2}} + C$$

(2)
$$\frac{2}{5}(x+2)^{\frac{5}{2}} + \frac{4}{3}(x+2)^{\frac{3}{2}} + C$$

(3)
$$\frac{1}{5}(x+2)^{\frac{5}{2}} - \frac{2}{3}(x+2)^{\frac{3}{2}} + C$$

(4)
$$\frac{2}{5}(x+2)^{\frac{5}{2}} + \frac{4}{3}(x+2)^{\frac{3}{2}} + C$$

Answer (1)

Sol.
$$I = \int x\sqrt{x+2} \ dx$$

Let
$$\sqrt{x+2} = t$$

$$\Rightarrow x + 2 = t^2$$

$$\Rightarrow$$
 $dx = 2t dt$

$$\therefore I = \int (t^2 - 2) t(2t) dt$$

$$= \int \left(2t^4 - 4t^2\right) dt = \frac{2}{5}t^5 - \frac{4}{3}t^3 + C$$

$$=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+C$$

Question ID: 9320140

Three urns contain 6 red, 4 black; 4 red, 6 black and 5 red, 5 black marbles respectively. One of the urns is selected at random and a marble is drawn from it. If the marble drawn is red, then the probability that it is drawn from the first urn is

(1)
$$\frac{6}{10}$$

(2)
$$\frac{2}{1}$$

(3)
$$\frac{5}{10}$$

(4)
$$\frac{2}{5}$$

Answer (4)

Sol.
$$6R, 4B$$
 $4R, 6B$ $5R, 5B$ U_2

Let

E: Drawn marble is red

E₁: Drawn marble from urn I

 E_2 : Drawn marble from urn II

 E_3 : Drawn marble from urn III

So,
$$P(E_1) = P(E_2) = P(E_3) = \frac{1}{3}$$

Now,

$$P\left(\frac{E_1}{E}\right) = \frac{P(E \cap E_1)}{P(E)} = \frac{P(E_1) P\left(\frac{E}{E_1}\right)}{P(E_1) P\left(\frac{E}{E_1}\right) + P(E_2) P\left(\frac{E}{E_2}\right) + P(E_3) P\left(\frac{E}{E_3}\right)}$$

$$\frac{\frac{6}{10}}{\frac{6}{10} + \frac{4}{10} + \frac{5}{10}} = \frac{6}{15} = \frac{2}{5}$$

Question ID: 9320141

Read the text carefully and answer the questions:

Three persons A, B and C were given a task, whose probabilities of completion their task on time are

 $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively. They were asked to

complete the task on time independently.

The probability that exactly one of them complete the task on time is

(1)
$$\frac{2}{15}$$

(2)
$$\frac{2}{5}$$

(3)
$$\frac{3}{20}$$

(4)
$$\frac{13}{30}$$

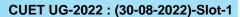
Answer (4)

Sol. Given:
$$P(A) = \frac{1}{3}, P(B) = \frac{1}{4}; P(C) = \frac{1}{5}$$

So, probability that exactly one of them complete the task on time.

$$P = \frac{1}{3} \times \frac{3}{4} \times \frac{4}{5} + \frac{2}{3} \times \frac{1}{4} \times \frac{4}{5} + \frac{2}{3} \times \frac{3}{4} \times \frac{1}{5}$$

$$=\frac{12+8+6}{60}=\frac{26}{60}=\frac{13}{30}$$



Read the text carefully and answer the questions:

Three persons A, B and C were given a task, whose probabilities of completion their task on time are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively. They were asked to complete the task on time independently.

The probability that exactly two of them complete the task on time is

- (1) $\frac{3}{20}$
- (2) $\frac{13}{30}$

(3) $\frac{1}{5}$

(4) $\frac{2}{15}$

Answer (1)

Sol. Given:
$$P(A) = \frac{1}{3}$$
, $P(B) = \frac{1}{4}$, $P(C) = \frac{1}{5}$

So, probability that exactly two of them complete the task on time is

$$P = \frac{1}{3} \times \frac{1}{4} \times \frac{4}{5} + \frac{2}{3} \times \frac{1}{4} \times \frac{1}{5} + \frac{1}{3} \times \frac{3}{4} \times \frac{1}{5}$$
$$= \frac{4+2+3}{60} = \frac{9}{60} = \frac{3}{20}$$

Question ID: 9320143

Read the text carefully and answer the questions:

Three persons A, B and C were given a task, whose probabilities of completion their task on time are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively. They were asked to complete the task on time independently.

The probability that *B* alone complete the task on time is:

- (1) $\frac{13}{30}$
- (2) $\frac{3}{20}$

(3) $\frac{2}{5}$

(4) $\frac{2}{15}$

Answer (4)

Sol. Given
$$P(A) = \frac{1}{3}$$
; $P(B) = \frac{1}{4}$; $P(C) = \frac{1}{5}$

So, the probability that *B* alone complete the task on time

$$P = \frac{2}{3} \times \frac{1}{4} \times \frac{4}{5} = \frac{2}{15}$$

Question ID: 9320144

Read the text carefully and answer the questions:

Three persons A, B and C were given a task, whose probabilities of completion their task on time are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively. They were asked to complete the task on time independently.

The probability that the task is completed on time by none of them is

- (1) $\frac{3}{20}$
- (2) $\frac{2}{5}$
- (3) $\frac{13}{30}$
- (4) $\frac{2}{15}$

Answer (2)

Sol. Given
$$P(A) = \frac{1}{3}$$
; $P(B) = \frac{1}{4}$; $P(C) = \frac{1}{5}$

So, probability that the task is completed on time by none of them

$$P = \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} = \frac{2}{5}$$

Question ID: 9320145

Read the text carefully and answer the questions:

Three persons A, B and C were given a task, whose probabilities of completion their task on time are $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively. They were asked to complete the task on time independently.

The probability that task is completed on time by at least one of them is:

(1) $\frac{2}{5}$

(2) $\frac{3}{20}$

(3) $\frac{3}{5}$

(4) $\frac{2}{15}$

Answer (3)

Sol. Given
$$P(A) = \frac{1}{3}$$
; $P(B) = \frac{1}{4}$; $P(C) = \frac{1}{5}$

So, probability that the task is completed on time by at least one of them

$$P = 1 - \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} = 1 - \frac{2}{5} = \frac{3}{5}$$

Question ID: 9320146

Read the text carefully and answer the questions:

Mohan wants to donate a rectangular plot of land for a hospital in his village. When he was asked to give dimensions of the plot, he told that if its length (x) is decreased by 50 m and breadth (y) is increased by 50 m, then its area will remain same, but if length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by $500 \, \text{m}^2$.

The equations in terms of x and y are:

(1)
$$x - y = 50$$
, $2x + y = 550$

(2)
$$x + y = 40$$
, $2x - y = 550$

(3)
$$x - y = 10$$
, $2x + y = 50$

(4)
$$x - y = 30$$
, $2x + y = 505$

Answer (1)

Sol. Let length of the plot is = x m

and breadth of the plot is = y m

Then, According to question

$$(x-50) (y+50) = xy$$
 ... (i)

$$(x-10)(y-20) = xy-5300...(ii)$$

From (i)
$$50x - 50y - 2500 = 0$$

$$\Rightarrow$$
 $x - y = 50$

From (ii)
$$-20x - 10y + 200 = -5300$$

$$\Rightarrow$$
 20x + 10y = 5500

$$\Rightarrow$$
 2x + y = 550

Question ID: 9320147

Read the text carefully and answer the questions:

Mohan wants to donate a rectangular plot of land for a hospital in his village. When he was asked to give dimensions of the plot, he told that if its length (x) is decreased by 50 m and breadth (y) is increased by 50 m, then its area will remain same, but if length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by $5300 \, \text{m}^2$.

The value x is:

(1) 150 m

(2) 100 m

(3) 200 m

(4) 300 m

Answer (3)

Sol. Let length of the plot is = x m

and breadth of the plot is = y m

Then, According to question

$$(x-50) (y+50) = xy$$
 ... (i

$$(x-10)(y-20) = xy - 5300 ...(ii)$$

From (i)
$$50x - 50y - 2500 = 0$$

$$\Rightarrow x - y = 50$$

From (ii)
$$-20x - 10y + 200 = -5300$$

$$\Rightarrow$$
 20x + 10y = 5500

$$\Rightarrow$$
 2x + y = 550

$$x - y = 50$$
 ... (iii)

$$2x + y = 550$$
 ...(iv)

$$(iii) + (iv)$$

 \Rightarrow 3x = 600

 $\Rightarrow x = 200$

Question ID: 9320148

Read the text carefully and answer the questions:

Mohan wants to donate a rectangular plot of land for a hospital in his village. When he was asked to give dimensions of the plot, he told that if its length (x) is decreased by 50 m and breadth (y) is increased by 50 m, then its area will remain same, but if length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by 5300 m².

The value of y is

(1) 50 m

(2) 100 m

(3) 240 m

(4) 150 m

Answer (4)

Sol. Let length of the plot is = x m

and breadth of the plot is = y m

Then, According to question

$$(x-50)(y+50) = xy$$
 ... (i)

$$(x-10) (y-20) = xy-5300 ...(ii)$$

From (i)
$$50x - 50y - 2500 = 0$$

$$\Rightarrow x - y = 50$$

From (ii) -20x - 10y + 200 = -5300

$$\Rightarrow$$
 20x + 10y = 5500

$$\Rightarrow$$
 2x + y = 550

$$x - y = 50$$
 ... (iii)

$$2x + y = 550$$
 ...(iv)

$$(iii) + (iv)$$

$$\Rightarrow$$
 3x = 600

$$\Rightarrow x = 200$$

$$x - y = 50$$
 and $x = 200$

then
$$y = 150 \text{ m}$$

Read the text carefully and answer the questions:

Mohan wants to donate a rectangular plot of land for a hospital in his village. When he was asked to give dimensions of the plot, he told that if its length (x) is decreased by 50 m and breadth (y) is increased by 50 m, then its area will remain same, but if length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by 5300 m².

The value of the expression $\frac{x^2 + y^2}{x - y}$ is:

- (1) 625
- (2) 1250
- (3) 312.5
- (4) 3125

Answer (2)

Sol. Let length of the plot is = x m

and breadth of the plot is = y m

Then, According to question

$$(x-50) (y+50) = xy$$
 ... (i)

$$(x-10) (y-20) = xy - 5300 \dots (ii)$$

From (i)
$$50x - 50y - 2500 = 0$$

$$\Rightarrow$$
 $x - y = 50$

From (ii) -20x - 10y + 200 = -5300

$$\Rightarrow$$
 20 x + 10 y = 5500

$$\Rightarrow$$
 2x + y = 550

$$x - y = 50 \qquad \dots \text{ (iii)}$$

$$2x + y = 550$$
 ...(iv)

$$(iii) + (iv)$$

$$\Rightarrow$$
 3x = 600

$$\Rightarrow x = 200$$

$$x = 200, y = 150$$

$$\frac{x^2 + y^2}{x - y} = \frac{\left(200\right)^2 + \left(150\right)^2}{50} = \frac{62500}{50} = 1250$$

Question ID: 9320150

Read the text carefully and answer the questions:

Mohan wants to donate a rectangular plot of land for a hospital in his village. When he was asked to give dimensions of the plot, he told that if its length (x) is decreased by 50 m and breadth (y) is increased by 50 m, then its area will remain same, but if length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by 5300 m².

The area of rectangular field is:

- (1) 30000 sq. m
- (2) 3000 sq. m
- (3) 300000 sq. m
- (4) 60000 sq. m

Answer (1)

Sol. Let length of the plot is = x m

and breadth of the plot is = y m

Then, According to question

$$(x-50) (y+50) = xy$$
 ... (i)

$$(x-10) (y-20) = xy - 5300 ...(ii)$$

From (i)
$$50x - 50y - 2500 = 0$$

$$\Rightarrow x - y = 50$$

From (ii)
$$-20x - 10y + 200 = -5300$$

$$\Rightarrow$$
 20x + 10y = 5500

$$\Rightarrow$$
 2x + y = 550

$$x - y = 50$$
 ... (iii)

$$2x + y = 550$$
 ...(iv)

$$(iii) + (iv)$$

$$\Rightarrow$$
 3x = 600

$$\Rightarrow x = 200$$

$$x = 200, y = 150$$

Area =
$$200 \times 150 = 30000$$
 sq. m.