09/04/2024 Evening

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based

Answers & Solutions

Time : 3 hrs.

M.M.: 300

JEE (Main)-2024 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 90 questions. Each subject (PCM) has 30 questions. The maximum marks are 300.
- (3) This question paper contains Three Parts. Part-A is Physics, Part-B is Chemistry and Part-C is Mathematics. Each part has only two sections: Section-A and Section-B.
- (4) Section A : Attempt all questions.
- (5) Section B : Attempt any 05 questions out of 10 Questions.
- (6) Section A (01 20) contains 20 multiple choice questions which have only one correct answer.
 Each question carries +4 marks for correct answer and -1 mark for wrong answer.
- (7) Section B (21 30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.

Aakashians Conquer JEE (Main) 2024 SESSION-1

PHYSICS

- 5. Two cars A and B are moving towards each other with speed 20 m/s each. When 300 m apart, they both apply breaks which causes deceleration of 2 m/s². The distance between them when they stop will be :
 - (1) 100 m
 - (2) 50 m
 - (3) 150 m
 - (4) 200 m

Answer (1)

Sol. $\vec{v}_{AB} = 40\hat{i}$ m/s

$$\vec{a}_{AB} = -4\hat{i}$$
 m/s

$$\Rightarrow v^2 = u^2 + 2as$$

0 = 1600 - 8s

$$\Rightarrow$$
 s = 200 m

Distance between them = 300 - 200 = 100 m

- For a wire, original resistance was 50 Ω at initial 6. temperature was 27°C. When temperature is increased, its resistance becomes 62 Ω . If the thermal coefficient of resistivity of wire is 2.4×10^{-2} K⁻¹, find final temperature.
 - (1) 45°C
 - (2) 32°C
 - (3) 37°C
 - (4) 48°C

Answer (3)

Sol. $R = R_0(1 + \alpha \Delta T)$ $62 = 50(1 + 2.4 \times 10^{-2} \Delta T)$ $1.24 = 1 + 2.4 \times 10^{-2} \Delta T$ $\Delta T = 10$

sheet and NTA an

 $T = 37^{\circ}C$

7. Find work done by monatomic gas from A to B. Here temperature of gas (1 mole) changes from 330 K to 300 K.

ALL INDIA RANK

2022

Find the induced emf in the square loop of side
 15 cm moving with 2 cm/s after 10 seconds.

Answer (1)

- **Sol.** At t = 10 seconds, $\phi =$ Constant
 - $\Rightarrow \frac{d\phi}{dt} = 0$
- 10. A spring exerts force on block $\vec{F} = -50 x^{-b}$ where *x* is change in length of spring. Find time period of oscillations. (*m* = 0.5 kg)

- (1) 0.63 sec.
- (2) 3.14 sec.
- (3) 1.57 sec.
- (4) 0.31 sec.

Answer (1)

Sol.
$$T = 2\pi \sqrt{\frac{0.5}{50}} = \frac{2\pi}{10} = \frac{\pi}{5}$$
 sec.

11. A proton and deuteron, having same kinetic energy, enters a transverse uniform magnetic field. Radius of circular paths for proton and deuteron are in ratio of

(1)
$$\sqrt{2}$$

(2)
$$\frac{1}{2\sqrt{2}}$$

(3)
$$\frac{1}{\sqrt{2}}$$

Answer (3)

Sol.
$$r = \frac{\sqrt{2mk}}{qB}$$

$$\frac{r_p}{r_d} = \sqrt{\frac{m_p}{m_d}}$$

 $\sqrt{2}$

- 12. A satellite of mass 10³ kg is orbiting in an orbit of radius 2*r* from centre of the planet of radius *r*. If satellite is given energy $E = \frac{GM}{6r}$, then find new radius of orbit in which satellite will revolve. (M = mass of planet)
 - (1) 14*r*
 - (2) 6*r*
 - (3) 8*r*
 - (4) 12*r*

Sol.
$$E_1 = -\frac{GMm}{4r}$$

 $E_f = -\frac{GMm}{4r} + \frac{GMm}{6r} = -\frac{GMm}{2x}$
 $-\frac{1}{12r} = -\frac{1}{2x}$
 $x = 6r$

13. For which of the following is the *FV* characteristics shown below is possible?

- (1) Transistor
- (2) Zener diode
- (3) Solar cell
- (4) Diode used as rectifier

Answer (2)

- **Sol.** As Zener diode operates in reverse bias, it is for Zener diode.
- 14. For the circuit shown, the truth table

(1) 0, 0
(2) 0, 1
(3) 1, 0
(4) 1, 1

Sol.
$$Y = AB + \overline{AB}$$

- 15. A ball of radius 10^{-4} m and density 10^{5} kg/m³ is dropped from a height *h* into water (viscosity = 9.8×10^{-6} *Pa*-*s*) such that after falling into liquid, its speed does not change. Find the approximate value of *h*.
 - (1) 2200 m
 - (2) 2350 m
 - (3) 2470 m
 - (4) 2520 m

Answer (3)

Sol. Velocity just before entering water = Terminal velocity

$$\sqrt{2 \times g \times h} = \frac{2}{9}r^2g\frac{(\rho-\sigma)}{\eta}$$

$$\sqrt{2g \times h} = \frac{2}{9} \times 10^{-8} \times g \times \frac{(10^5 - 10^3)}{9.8 \times 10^{-6}}$$

h ≈ 2470 m

16. 17.

18.

19. 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. In given ray diagram, find distance *u* (in cm) between two convex lenses.

Answer (25)

Sol. $f_1 + f_2 = L = 25$ cm

22. Find the work done (in J) by force $F = 3x^2 + 2x - 5$ in moving a particle from x = 2 to x = 4.

Answer (58)

Sol. $W = \int_{2}^{4} F \cdot dx$ $= \left[x^{3} + x^{2} - 5x \right]_{2}^{4}$ = 58 J

23. There is an imaginary cube of side 2 m where edges are along axes. The electrostatic field varies as $\vec{E}(x) = 2x\hat{i}$, then flux through cube in Nm²/C is

Answer (16)

Sol. $E_1 = 4$

$$E_2 = 8$$

$$\Rightarrow \Delta \phi = (8 - 4) 2^2 = 16$$

24. If work function of a metal is 2.13 eV and energy per photon of incident light is 3.13 eV, then maximum kinetic energy of photoelectrons (in eV) will be

Answer (1)

Sol. $KE_{max} = hr - \phi_0$

25. A photon of energy of 10.2 eV is incident on hydrogen atom in ground state. Thereafter number of emitted lines will be

Answer (1)

Sol. $\Delta E = 10.2 \text{ eV}$ *e*⁻ will be excited to n = 2

26.

27.

28.

29.

30.

6. Match the complexes given in List-I with the hybridisation of central metal atom/ion given in List-II and choose the correct option.

	List-I		List-II
	(Complexes)		(Hybridisation)
(A)	K2[Ni(CN)4]	(I)	sp ³
(B)	[Ni(CO)4]	()	sp³d²
(C)	[Co(NH ₃) ₆]Cl ₃	(111)	dsp²
(D)	Na₃[CoF ₆]	(IV)	d²sp³

- (1) (A)-(I); (B)-(II) (C)-(III); (D)-(IV)
- (2) (A)-(III); (B)-(I) (C)-(IV); (D)-(II)
- (3) (A)-(IV); (B)-(III) (C)-(II); (D)-(I)
- (4) (A)-(I); (B)-(II) (C)-(IV); (D)-(III)

Answer (2)

Sol.

(A)	K ₂ [Ni(CN) ₄] Ni ²⁺ : 3 <i>d</i> ⁸		<i>dsp</i> ² hybridisation as CN [–] is strong field ligand
(B)	[Ni(CO) ₄] Ni ⁰ : 3d ⁸ 4s ²	;	<i>sp</i> ³ hybridisation as CO is strong field ligand
(C)	[Co(NH ₃) ₆]Cl ₃ Co ³⁺ : 3d ⁶	- ,	<i>d²sp</i> ³ hybridisation as NH ₃ is strong field ligand
(D)	Na ₃ [CoF ₆] [CoF ₆] ³⁻ ;Co ³⁺ : 3 <i>d</i> ⁶	;	<i>sp</i> ³ <i>d</i> ² hybridisation as F⁻ion is a weak field ligand

- 8. Which of the following is correct for strong electrolyte (B > 0)
 - (1) $\lambda_m \lambda_m^0 B\sqrt{C} = 0$
 - (2) $\lambda_m + \lambda_m^0 B\sqrt{C} = 0$
 - (3) $\lambda_m \lambda_m^0 + B\sqrt{C} = 0$

(4)
$$\lambda_m + \lambda_m^0 + B\sqrt{C} = 0$$

Sol.
$$\lambda_m = \lambda_m^0 - B\sqrt{C}$$

 $\lambda_m - \lambda_m^0 + B\sqrt{C} = 0$

- 9. Which one of the following statements regarding glucose is incorrect?
 - (1) Glucose is one of the monosaccharides of sucrose
 - (2) Glucose dissolves in water because it has aldehyde group.
 - (3) Glucose has six carbon atoms in its structure
 - (4) Glucose is an aldose

Answer (2)

Sol. Glucose is an aldohexose having molecular formula $C_6H_{12}O_6$. It is soluble in water due to number of hydroxyl groups which can form H-bonds with water. $\alpha(D)$ Glucose condenses with $\beta(D)$ fructose to form sucrose.

What is the work done on the gas in cyclic process ABCA

Medical

- (1) +773.7 J
- (2) –773.7 J
- (3) +4762.3 J
- (4) –4762.3 J
- Answer (1)
- **Sol.** $W_{AB} = 0$

 $W_{BC} = -10 (4 - 2)$

- = -20 atm. Lit
- $W_{CA} = 2.303(40) \log 2$
- = 27.636 atm. Lit
- W_{total} = 7.636 atm. Lit
 - = 773.7 Joule
- 11. Which of the following compounds does not give Tollen's test?
 - (1) Formaldehyde
 - (2) Formic acid
 - (3) Benzaldehyde
 - (4) Acetone

Answer (4)

Sol. Aldehyde and Formic acid can give Tollen's test with ammoniacal silver nitrate solution.

(1)
$$CH_3 - CH_2 - CH_2 - CHO$$

(2) $CH_3 - CH - CH_3$
(3) $CH_3 - CH_2 - C - CH_2 - CH_3$
(4) $CH_3 - CH_2 - CH_2 - CH_2 - OH$

Answer (2)

Sol. Molecules having

Groups as
$$\parallel \\ -C - CH_3$$
 or $-CH - CH_3$ gives

OH

positive iodoform test.

13. Match the List and choose correct option.

		List-I		List-II
	(i)	Ni-Cd cell	(a)	Rechargeable
	(ii)	Fuel cell	(b)	Anode (Zn \rightarrow Zn ²⁺ + 2e ⁻)
	(iii)	Mercury cell	(c)	Used in hearing aid
•	(iv)	Leclanche cell	(d)	Combustion energy in to electrical energy

- (1) (i)-(a); (ii)-(d); (iii)-(c), (iv)-(b)
- (2) (i)-(b); (ii)-(a); (iii)-(c), (iv)-(d)
- (3) (i)-(d); (ii)-(a); (iii)-(c), (iv)-(b)
- (4) (i)-(a); (ii)-(b); (iii)-(c), (iv)-(d)

Answer (1)

- **Sol.** Ni-Cd cell is secondary cell and are rechargeable mercury cell is used in hearing aid.
- 14. What is the correct order of C C bond length of ethane, ethene and ethyne?
 - (1) Ethane > Ethene > Ethyne
 - (2) Ethene > Ethane > Ethyne
 - (3) Ethyne > Ethene > Ethane
 - (4) Ethyne > Ethane > Ethene

Answer (1)

Sol. Correct order of C – C bond length is

Ethane > Ethene > Ethyne

C-C > C=C > $C\equiv C$

16.

- 17.
- 18.
- 10.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Fuming sulphuric acid has how many oxygen atoms?

Answer (7)

- Sol. Fuming sulphuric acid is oleum (H₂S₂O₇)
 - ... 7 O-atoms are present in fuming sulphuric acid.
- 22. Total sum of number of electrons in π^* orbitals of O₂. O₂⁺ and O₂⁻ is

Answer (6)

Sol. O2 (16e⁻) :

$$\sigma_{1s}^{2} \sigma_{1s}^{*2} \sigma_{2s}^{2} \sigma_{2s}^{*2} \sigma_{2\rho_{z}}^{*2} \left(\begin{array}{c} \pi_{2\rho_{x}}^{2} \\ \pi_{2\rho_{y}}^{2} \end{array} \right) \left(\begin{array}{c} \pi_{2\rho_{x}}^{*1} \\ \pi_{2\rho_{y}}^{*1} \end{array} \right) \sigma_{2\rho_{z}}^{*2}$$

Total number of e^- in π^* orbitals of O_2, O_2^+, O_2^- = 2 + 1 + 3 = 6

23. How many total number of stereoisomers are possible for the following structure

Answer (4)

The structure has two stereogenic centres, one geometrical centre and one optical centre. Hence it has total 4 stereoisomers.

 $2^2 = 4$

 Among the elements – Sc, Ti, V, Cr, Mn find magnetic moment of element which have highest ionization enthalpy in +2 oxidation state. [Nearest integer]

Answer (6)

Sol. Sc+2 Ti+2 V+2 Cr+2 Mn+2

Mn⁺² will have highest I.E. due to its stable half filled configuration.

Mn
$$\rightarrow$$
 [Ar] $4s^2$ $3d^5 \rightarrow 5$ unpaired e^{\in}

$$\mu_{spin} = \sqrt{5(5+2)} BM$$

= $\sqrt{35}$

≃ 6

25. How many of the following compounds will give Friedel Craft's reaction?

Answer (3)

Sol. Friedel Craft's reaction is not given by those aromatic compounds which have strong deactivating groups like –NO₂ group. Even aniline does not give Friedel Crafts reaction because the Lewis acid AlCl₃ will from co-coordinate bond with –NH₂ group thus converting it into strongly deactivating group, Friedel Crafts reaction is given

26.

27.

- 28. 29.
- 30.

(2) $\frac{e}{4}$ (4) $\frac{11}{24}e$

MATHEMATICS

Aakash

4. In the given data $ \frac{x_{f}}{C} = \frac{f_{i}}{2} $ $ \frac{2C}{2C} = 1 $ $ \frac{3C}{4C} = 1 $ $ \frac{4C}{5C} = 1 $	Sol. $\int_{-1}^{2} 1 \cdot \log(x + \sqrt{x^{2} + 1}) dx$ $= x \log(x + \sqrt{x^{2} + 1}) - \int_{-1}^{2} \left(\frac{1 + \frac{x}{\sqrt{x^{2} + 1}}}{x + \sqrt{x^{2} + 1}}\right) x dx$ $= x \log(x + \sqrt{x^{2} + 1}) - \int_{-1}^{2} \frac{x}{\sqrt{x^{2} + 1}} dx$
If $\sigma^2 = 160$. Find the value of $ C $. (1) 7 (2) 5 (3) 6 (4) 4 Answer (1)	$= x \log(x + \sqrt{x^{2} + 1}) - \sqrt{x^{2} + 1} \Big]_{-1}^{2}$ $= [2 \log(2 + \sqrt{5}) - \sqrt{5}] - [-\log(\sqrt{2} - 1) - \sqrt{2}]$
$\begin{array}{c} \text{All Swell} \left(1 \right) \\ \text{Ocl.} \text{w.} \left f(w) \right wf(w) \left w^2 f(w) \right \end{array}$	$= \log[(2 + \sqrt{5})^2(\sqrt{2} - 1)] - \sqrt{5} + \sqrt{2}$
Sol. $\frac{x_i}{C} + \frac{f(x_i)}{2} + \frac{xf(x)}{xf(x)} + \frac{x^2f(x)}{2C^2}$ $\frac{2C}{2C} + \frac{1}{2C} + \frac{2C}{4C^2} + \frac{2C^2}{4C} + \frac{2C}{4C} + \frac{1}{4C} + \frac{1}{4C} + \frac{1}{6C^2} + \frac{1}{5C} + \frac{1}{5C$	6. The sum of coefficients of $x^{\frac{2}{3}}$ and $x^{\frac{2}{5}}$ in the binomial expansion of $\left(x^{\frac{2}{3}} + \frac{x^{\frac{-2}{5}}}{2}\right)^9$ is (1) $\frac{{}^9C_4}{2^5}$ (2) $\frac{{}^9C_6}{2^4}$ (3) 0 (4) $\frac{63}{8}$ Answer (1) Sol. $T_{r+1} = {}^9C_r \left(\frac{x^{\frac{-2}{5}}}{2}\right)^r \left(x^{\frac{2}{3}}\right)^{9-r}$
5. $\int_{-1}^{2} \log(x + \sqrt{x^{2} + 1}) dx$ (1) $\log[(2 + \sqrt{5})^{2}(\sqrt{2} - 1)] - \sqrt{5} + \sqrt{2}$ (2) $\log[(2 + \sqrt{5})^{2}(\sqrt{2} - 1)] + \sqrt{5} - \sqrt{2}$ (3) $\log[(2 + \sqrt{5})^{2}(\sqrt{2} - 1)] + \sqrt{5} + \sqrt{2}$ (4) $\log(2 + \sqrt{5})^{2} + \sqrt{5} + \sqrt{2}$	$= {}^{9}C_{r} \frac{1}{2^{r}} x^{3} x^{6-\frac{16r}{5}}$ $= {}^{9}C_{r} \frac{1}{2^{r}} x^{6-\frac{16r}{15}}$ Coefficient of $x^{\frac{2}{3}} \implies 6 - \frac{16r}{15} = \frac{2}{3}$ $\implies 90 - 16r = 10$ $\implies r = 5$
Answer (1)	v

JEE (Main)-2024 : Phase-2 (09-04-2024)- Evening

|3√2

Coefficient of
$$x^{\frac{2}{5}} \Rightarrow 6 - \frac{16r}{5} = \frac{2}{5}$$

 $\Rightarrow 90 - 16r = 6$
 $\Rightarrow r = \frac{84}{16} \approx t$
 $\Rightarrow Sum = ^{6}C_{3} + \frac{2}{2} + 0$
 $\Rightarrow \frac{63}{16}$
7. Dice is thrown 3 times, then find the probability that
 $x_{1} < x_{2} < x_{3}$ (here $x_{1}, x_{2}, x_{3} = [1, 6]$)
(where x_{1}, x_{2}, x_{3} are outcomes on dice)
(1) $\frac{7}{54}$ (2) $\frac{5}{54}$
(3) $\frac{11}{54}$ (4) $\frac{17}{54}$
Answer (2)
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
Sol. Given condition is $x_{1} < x_{2} < x_{3}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (2) $\frac{-x}{216} - \frac{1}{9}e^{9x}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (2) $\frac{-x}{2-3} - \frac{1}{9} + \frac{10}{9}e^{3x}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (2) $\frac{-x}{2-3} - \frac{1}{9} + \frac{10}{9}e^{3x}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (2) $\frac{-x}{2-3} - \frac{1}{9} + \frac{10}{9}e^{3x}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (4) $\frac{+x}{2} - \frac{1}{9} + \frac{10}{9}e^{3x}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (4) $\frac{+x}{2} - \frac{1}{9} + \frac{10}{9}e^{3x}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (4) $\frac{+x}{2} - \frac{1}{9} + \frac{10}{9}e^{3x}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (4) $\frac{+x}{2} - \frac{1}{9} + \frac{10}{9}e^{3x}$
(3) $\frac{-x}{3} - \frac{10}{9}e^{-3x}$ (4) $\frac{-x}{2} - \frac{1}{9}e^{-3x}$
 $\frac{-3}{\sqrt{2}} - \frac{1}{\sqrt{3}}\left[\frac{x}{\sqrt{18}-x^{2}} + 9\sin^{-1}\left(\frac{x}{\sqrt{3}\sqrt{2}}\right)\right]_{\frac{3}{\sqrt{2}}}^{3/\sqrt{2}}$

- 13 -

$$= \frac{1}{2} \left(\frac{9}{2} \right) + \frac{1}{\sqrt{3}} \left[9 \sin^{-1}(1) - \frac{3}{2\sqrt{2}} \frac{3\sqrt{3}}{\sqrt{2}} - 9 \sin^{-1}\left(\frac{1}{2}\right) \right]$$
$$= \frac{9}{4} + \frac{1}{\sqrt{3}} \left(\frac{9\pi}{2} - \frac{9\sqrt{3}}{4} - \frac{9\pi}{6} \right)$$
$$= \sqrt{3}\pi$$

- 10. $x^2 \sqrt{2}x \sqrt{3} = 0$ and $P_n = \alpha^n + \beta^n$. The value of $P_{12} - \sqrt{2}P_{11} - \sqrt{3}P_{10} + P_{11} - \sqrt{2}P_{10}$ is (1) $\sqrt{3}P_9$ (2) $(2 + \sqrt{5})P_9$
 - (3) $\sqrt{5}P_9$ (4) $(3+\sqrt{5})P_9$

Answer (1)

Sol. $x^2 - \sqrt{2}x - \sqrt{3} = 0$ $\alpha^2 - \sqrt{2}\alpha - \sqrt{3} = 0$ $\alpha^{n+2} - \sqrt{2}\alpha^{n+1} - \sqrt{3}\alpha^n = 0$...(i) Similarly, $\beta^{n+2} - \sqrt{2}\beta^{n+1} - \sqrt{3}\beta^n = 0$...(ii) $(\alpha^{n+2} + \beta^{n+2}) - \sqrt{2}(\alpha^{n+1} + \beta^{n+1}) - \sqrt{3}(\alpha^n + \beta^n)$ $P_{n+2} - \sqrt{2}P_{n+1} - \sqrt{3}P_n = 0$...(iii) Put n = 10 $P_{12} - \sqrt{2}P_{11} - \sqrt{3}P_{10} = 0$ Now in the expression

 $P_{12} - \sqrt{2}P_{11} - \sqrt{3}P_{10} + P_{11} - \sqrt{2}P_{10}$ $= P_{11} - \sqrt{2}P_{10}$ Put *n* = 9 in eq. (iii) $P_{11} - \sqrt{2}P_{10} - \sqrt{3}P_{9} = 0$ $P_{11} - \sqrt{2}P_{10} = \sqrt{3}P_{9}$

JEE (Main)-2024 : Phase-2 (09-04-2024)- Evening

11. If range of function $f(x) = \frac{1}{2 + \sin 3x + \cos 3x}$ [a, b]. If α and β be arithmetic and geometric mean of *a*, *b* then $\left(\frac{\alpha}{\beta}\right)$ is equal to (1) $\frac{1}{\sqrt{2}}$ (2) $\sqrt{2}$ (3) $\frac{1}{2}$ (4) $\sqrt{3}$ Answer (2) **Sol.** $f(x) = \frac{1}{2 + \sin(3x) + \cos 3x}$ $\sin(3x) + \cos(3x) \in [-\sqrt{2}, \sqrt{2}]$ $2 + \sin(3x) + \cos(3x) \in [2 - \sqrt{2}, 2 + \sqrt{2}]$ $\Rightarrow \frac{1}{2+\sin(3x)+\cos(3x)} \in \left[\frac{1}{2+\sqrt{2}}, \frac{1}{2-\sqrt{2}}\right]$ $\Rightarrow a = \frac{1}{2 \pm \sqrt{2}} = \frac{(2 - \sqrt{2})}{2}$ $b = \frac{1}{2\sqrt{2}} = \frac{2+\sqrt{2}}{2}$ $\alpha = \frac{a+b}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot 4 = 1$ $\beta = \sqrt{ab} = \sqrt{\frac{1}{4}(2-\sqrt{2})(2+\sqrt{2})} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$ then, $\frac{\alpha}{\beta} = \sqrt{2}$ 12. If $\int_{0}^{x} \sqrt{1 - (y'(t))^2} dt = \int_{0}^{x} y'(t) dt$ and $0 \le x \le 3, y \ge 0$, y(0) = 0, then find y'' + 1 + y. (1) $\frac{x}{\sqrt{2}} - 1$ (2) $\frac{x}{\sqrt{2}} + 1$ (3) $\frac{x}{2} + 1$ (4) $\frac{x}{2} - 1$ Answer (2)

Sol.	√1 -	$\overline{-(y'(x))^2} = y'(x)$		
	⇒	$1 - (y'(x))^2 = (y'(x))^2$	$)^2$	
	⇒	$2\left(y'(x)\right)^2 = 1$		
	\Rightarrow	$y'(x) = \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$		
		$y(x) = \frac{1}{\sqrt{2}}x, \frac{-1}{\sqrt{2}}x$		
	÷	$y=\frac{1}{\sqrt{2}}x$		
13.	lf y	$e^{3\sin^{-1}x}$, then value	of	
	(1–	x^2) $\frac{d^2y}{dx^2} - \frac{xdy}{dx}$ at $x =$	$\frac{1}{2}$ equals to	
	(1)	$9e^{\frac{\pi}{6}}$	(2) $3e^{\frac{\pi}{6}}$	
	(3)	3e ^{^π/₂}	(4) $e^{\frac{\pi}{6}}$	
Ans	wer	(3)		
Sol.	y =	$e^{3\sin^{-1}x}$		
	dy dx	$= e^{3\sin^{-1}x} \cdot \frac{3}{\sqrt{1-x^2}}$		

 $\sqrt{1-x^2}\frac{dy}{dx}=3y$

Differentiating

 \therefore At $x = \frac{1}{2}$

 $3y = 3e^{\frac{\pi}{2}}$

 $(1-x^2)\frac{d^2y}{dx^2} - \frac{xdy}{dx} = 3y$

Option (3) is correct

 $\sqrt{1-x^2}\frac{d^2y}{dx^2} - \frac{2x}{2\sqrt{1-x^2}}\frac{dy}{dx} = \frac{3dy}{dx}$

 $B = \begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix}$. If $C = BAB^{-1}$ and C satisfy $C^4 + \beta C^2 + \beta C^2$ $\alpha I = 0$ then $(2\beta - \alpha)$ is equal to (1) 12 (2) 8 (3) 10 (4) 14 Answer (3) **Sol.** $AB^{-1} = A^{-1}$ and $C = BAB^{-1} = BA^{-1} \Rightarrow BA^{-1} = A$ $C^4 + \beta C^2 + \alpha I = 0$ $C^2 = BA^{-1} BA^{-1} = A^2$ $\Rightarrow A^2B^{-1} = I \Rightarrow A^2 = B$ $A^2 = B \Rightarrow B$ satisfy characteristic eq. $(1 - \lambda) (1 - \lambda) - 15 = 0 \Rightarrow \lambda^2 - 2\lambda - 14 = 0$ $B^2 - 2B - 14I = 0$ $\Rightarrow A^4 - 2A^2 - 14I = 0$ $\Rightarrow C^4 - 2C^2 - 14I = 0$ $\Rightarrow \beta = -2, \alpha = -14$ \Rightarrow 2 β – α = –4 + 14 = 10 15. If $\frac{1}{\alpha+1} + \frac{1}{\alpha+2} + \frac{1}{\alpha+3} + \dots + \frac{1}{\alpha+1012}$ $\left(\frac{1}{2\times 1} + \frac{1}{4\times 3} + \frac{1}{6\times 5} + \dots + \frac{1}{2024} \times \frac{1}{2023}\right) = \frac{1}{2024},$ then α is equal to (1) 2012 (2) 1012 (3) 1011 (4) 506 Answer (3) **Sol.** $\sum_{r=1}^{1012} \frac{1}{(2r)(2r-1)} = \sum_{r=1}^{1012} \left(\frac{1}{(2r-1)} - \frac{1}{2r} \right)$ $=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{2023}-\frac{1}{2024}\right)$

14. If A is 2 × 2 matrix such that $AB^{-1} = A^{-1}$ where

- 15 -

$= \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2023}\right)$ $- \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2024}\right)$ $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	Numerical contains 10 each ques integer.
$= \left(1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2023}\right) - \frac{1}{2}$	21. Sum o <i>a³r⁹</i>
$\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{1012}\right)$	Answer (3 Sol. a, ar,
$= \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2023}\right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2022}\right)$	$\frac{a}{1-r} =$
$-\frac{1}{2}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{1012}\right)$	a ³ r ³ , a
$= \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2023}\right) - \frac{1}{2}\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{1011}\right)$	$1-r^3$
$-\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{1012}\right)$	Equat
$=\frac{1}{1012}+\frac{1}{1013}+\ldots+\frac{1}{2023}-\frac{1}{2024}$	$\frac{\frac{1}{(1-r)}}{a^3}$
$\Rightarrow \frac{1}{\alpha+1} + \frac{1}{\alpha+2} + \dots + \frac{1}{\alpha+1012} = \frac{1}{2024}$	1- <i>r</i>
$+\left(\frac{1}{1012}+\frac{1}{1013}+\frac{1}{2023}\right)-\frac{1}{2024}$	$\Rightarrow \overline{(1-)}$
$Medi = \frac{1}{1012} + + \frac{1}{2023}$	$EE \mid \frac{(1-r)}{r}$
α + 1012 = 2023 $\Rightarrow \alpha$ = 1011	$1 + r^2$
16. 17.	$\Rightarrow r =$
18. 19.	∴ r =

SECTION - B

Value Type Questions: This section 0 Numerical based questions. The answer to stion should be rounded-off to the nearest

of infinite terms of *a*, *ar*, *ar*²... and *a*³*r*³, *a*³*r*⁶, is 57 and 9747 respectively, then a + 18r is

1)

ar²,...

$$\frac{a}{1-r} = 57 \qquad \dots(1)$$

$$a^{3}r^{3}, a^{3}r^{6}, a^{3}r^{9} \dots$$

$$\frac{a^{3}}{1-r^{3}} = 9747 \qquad \dots(2)$$
Equation $\frac{(1)^{3}}{(2)}$ given,

$$\frac{a^{3}}{\frac{(1-r)^{3}}{a^{3}}} = \frac{57^{3}}{9747}$$

$$\Rightarrow \frac{1-r^{3}}{(1-r)^{3}} = 19$$

$$\frac{(1-r)(1+r^{2}+r)}{(1-r)^{3}} = 19 \qquad (r \neq 1)$$

$$1 + r^{2} + r = 19 + 19r^{2} - 38r$$

$$18r^{2} - 39r + 18 = 0$$

$$\Rightarrow r = \frac{2}{3} \text{ and } \left(\frac{3}{2}\right) \text{ rejected}$$

$$\therefore r = \frac{2}{3} \text{ and } a = 19$$

Now a + 18r = 19 + 12 = 31

JEE (Main)-2024 : Phase-2 (09-04-2024)- Evening akash 22. The number of numbers between 100 to 1000 such **Sol.** $\sin^{-1}x = \frac{2\pi}{5} - \pi = \frac{-3\pi}{5}$ that sum of their digits is 14, is Answer (70.00) $\frac{-3\pi}{5} < \frac{-\pi}{2}$ Sol. Number in this range will be 3-digit number. $N = \overline{abc}$ such that a + b + c = 14... No real solution Also, $a \ge 1$, $a, b, c \in \{0, 1, 2, ..., 9\}$ 24. If $f(x) = 2(2 - p)x - (p^2 - 6p + 8)\cos 4x + 7$, then for what values of p, does f(x) not have a vertical point? Case I Answer (4) All 3-digit same **Sol.** $f(x) = 2(2-p) + 4 \cdot \sin 4x(p-2)(p-4)$ \Rightarrow 3*a* = 14 not possible Case II $= (p-2)((4\sin 4x)(p-4) - 2), p \neq 2$ Exactly 2 digit same: $4\sin 4x(p-4) - 2 \neq 0$ \Rightarrow 2a + c = 14 \Rightarrow sin4x(p-4) $\neq \frac{1}{2}$ $(a, c) \in \{(3, 8), (4, 6), (5, 4), (6, 2), (7, 0)\}$ $\sin 4x \neq \frac{1}{2(p-4)}$ $\Rightarrow \left(\frac{3!}{2!}\right)$ ways $\Rightarrow 5 \times 3 - 1$ = 15 - 1 = 14 $\frac{1}{2(p-4)} > 1$ Case III All digits are distinct $\frac{1}{2(p-4)} -1 > 0 \implies y \in \left(4, \frac{9}{2}\right)$ a + b + c = 14without losing generality a > b > c $\frac{1}{2(p-4)} < -1 \quad \Rightarrow \quad p \in \left(\frac{7}{2}, 4\right)$ (9, 5, 0), (9, 4, 1), (9, 3, 2) $(a, b, c) \in \begin{cases} (8, 6, 0), (8, 5, 1), (8, 4, 2) \\ (7, 6, 1), (7, 5, 2), (7, 4, 3) \end{cases}$ $\therefore p \in \phi$ \therefore p = 4 is the only required value ⇒ 8 × 3! + 2(3! -2!) = 48 + 8 = 56 25. **Foundations** 26. = 0 + 14 + 56 = 70 MICOLC 23. Find the number of solutions of $3\sin^{-1}x + 2\cos^{-1}x$ 27. $=\frac{2\pi}{5}$ 28. 29. Answer (0) 30.

