MARKING SCHEME MATHEMATICS (Subject Code-041) (PAPER CODE: 30/C/1)

Q. No.	EXPECTED OUTCOMES/VALUE POINTS	Marks
	SECTION A	
	Questions no. 1 to 18 are multiple choice questions (MCQs) and questions	
	number 19 and 20 are Assertion-Reason based questions of 1 mark each	
1.		
	The values of k for which the equation $4x^2 + kx + 9 = 0$ has real and equal roots are:	
	(a) ± 11 (b) ± 12	
	(c) ± 6	
Sol.	(b) ± 12	1
2.	The distance of the point (4, 7) from the x-axis is:	
	(a) 7 units (b) 5 units	
	(c) 4 units (d) 10 units	
Sol.	(a) 7 units	1
3.	In a family of two children, the probability of having at least one girl is:	
	(a) $\frac{1}{2}$ (b) $\frac{2}{5}$	
	(e) $\frac{3}{4}$ (d) $\frac{1}{4}$	
Sol.	(c) $\frac{3}{4}$	1
4.	The condition for which the pair of equations $ax + 2y = 7$ and $3x + by = 16$ represent parallel lines is:	
	(a) $ab = \frac{7}{16}$ (b) $ab = 6$	
	(e) $ab = 3$ (d) $ab = 2$	
Sol.	(b) ab = 6	1

The zeroes of the polynomial $3x^2 + 11x - 4$ are:	
1 . 1	
$\frac{-}{2}$, $\frac{-}{4}$	- 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4
3, -4	
$(c)\frac{1}{3}, -4$	1
1	
$\cot^2 \theta - \frac{1}{\sin^2 \theta}$ is equal to:	
(a) 1 (b) 2	
(c) -2 (d) -1	
(d) – 1	1
The coordinates of the point A, where AB is the	he diameter of the circle
whose centre is $(3, -2)$ and B $(7, 4)$ is:	
(a) (-1, -8) (b) (-1,	8)
(c) (1, 8) (d) (1, -	8)
(a) (-1, -8)	1
If x, 2x + 9, 4x + 3 are three consecutive ter	ms of an A.P., then the
value of x is:	
(a) 3 (b) 10	
(c) 13 (d) 15	
(d) 15	1
The height of a tower is 20 m. The length of its sl	hadow made on the level
ground when the Sun's altitude is 60°, is:	
(a) $\frac{20}{m}$ m (b) $\frac{20}{m}$ n	
√3	
(c) $20\sqrt{3}$ m (d) 20 m	
(a) $\frac{20}{\sqrt{3}}$ m	
	(a) $\frac{1}{2}$, -4 (b) $\frac{1}{4}$, (c) $\frac{1}{3}$, -4 (d) $\frac{1}{3}$, (d) $\frac{1}{3}$, (e) $\frac{1}{3}$, -4 (d) $\frac{1}{3}$, (e) $\frac{1}{3}$, -4 (d) $\frac{1}{3}$, (e) $\frac{1}{3}$, -4 (e) $\frac{1}{\sin^2 \theta}$ is equal to: (a) 1 (b) 2 (c) -2 (d) -1 The coordinates of the point A, where AB is the whose centre is $(3, -2)$ and B $(7, 4)$ is: (a) $(-1, -8)$ (b) $(-1, -8)$ (c) $(1, 8)$ (d) $(1, -9)$ (e) $(1, 8)$ (f) $(1, -9)$ (f) $(1, -9)$ (g) $(1, -9)$ (g) $(1, -9)$ (e) $(1, -9)$ (f) $(1, -9)$ (f) $(1, -9)$ (g) $(1, -9)$ (g) $(1, -9)$ (e) $(1, -9)$ (f) $(1, -9)$ (f) $(1, -9)$ (f) $(1, -9)$ (g) $(1, -9)$ (g) $(1, -9)$ (e) $(1, -9)$ (f)

10.	In the given figure, D		measurements are	given in
	B A E	3 \C		
	(a) 2 cm	(b)	$2.25~\mathrm{cm}$	
	(e) 2·5 cm	(d)	$2.75~\mathrm{cm}$	
Sol. 11.	(b) 2.25 cm			1
	A vertical pole 10 m long the same time, a tower c The height of the tower is	asts a shadow o	and the american fi	
	(a) 20 m	(b)	22 m	
	(c) 25 m	(d)	24 m	
Sol.	(c) 25 m			1
12.	Using empirical relations 7.2 and the median 7.1, is		f a distribution whos	e mean is
	(a) 6·2	(b)	6.3	
	(c) 6·5	(d)	6.9	
Sol.	(d) 6.9			1
13.	OACB is a quadrant of a constant is the arc. Then the perim			here ACB
	(a) 15 cm	(b)	$50 \mathrm{\ cm}$	
	(c) 25 cm	(d)	44 cm	
Sol.	(c) 25 cm			1

collegedunia India's largest Student Review Platform

14.	In the figure, PA and PB are to such that ∠ APB = 50°. Then, th		ents to the circle with centre O	
	P 50° O			
	(a) 25°	(b)	50°	
	(c) 75°	(d)	100°	
Sol.	(a) 25°			1
15.	centre of a circle is 25 cm, and the	ne radius		
	(a) 22 cm (c) 25 cm	(b)	24 cm 28 cm	
Sol.	(b) 24 cm			1
16.	If a bicycle wheel makes 5000 diameter of the wheel is:	revolutio	ns in moving 11 km, then the	
	(a) 65 cm	(b)	35 cm	
	(e) 70 cm	(d)	50 cm	
Sol.	(c) 70 cm			1
17.	Lali tosses two different coins s gets at most one head is:	imultane	ously. The probability that she	
	(a) 1	(b)	$\frac{3}{4}$	
	(c) $\frac{1}{2}$	(d)	$\frac{1}{7}$	
Sol.	(b) $\frac{3}{4}$			1

collegedunias
India's largest Student Review Platform

18.	A number is chosen from the numbers 1, 2, 3 and denoted as x, and a number is chosen from the numbers 1, 4, 9 and denoted as y. Then $P(xy < 9)$ is:	
	(a) $\frac{1}{9}$ (b) $\frac{3}{9}$	
	(c) $\frac{5}{9}$ (d) $\frac{7}{9}$	
Sol.	$(c)\frac{5}{9}$	1
	 Questions number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labelled as Assertion (A) and the other is labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A). (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A). (c) Assertion (A) is true, but Reason (R) is false. (d) Assertion (A) is false, but Reason (R) is true. 	
10		
19.	Assertion (A): Two players, Sania and Ashnam play a tennis match. The probability of Sania winning the match is 0.79 and that of Ashnam winning the match is 0.21.	
	Reason(R): The sum of probabilities of two complementary events is 1.	
Sol.	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).	1
20.	Assertion (A): A fair die is thrown once. The probability of getting a prime number is $\frac{1}{2}$. Reason (R): A natural number is a prime number if it has only two factors.	
Sol.	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).	1

	SECTION B	
	This section comprises very short answer (VSA) type questions of 2 marks	
	each.	
21. (a)	If $\sqrt{2}$ is given as an irrational number, then prove that $(5-2\sqrt{2})$	
	is an irrational number.	
Sol.	Let us assume that $5 - 2\sqrt{2}$ be a rational number.	
	$\therefore 5 - 2\sqrt{2} = \frac{p}{q}$, where p and q are integers and $q \neq 0$.	1
	$\implies \sqrt{2} = \frac{5q - p}{2q}$	1/2
	RHS is a rational number. So, LHS is also a rational number which contradict	
	the given fact that $\sqrt{2}$ is an irrational number.	
	So, our assumption is wrong.	
	Hence, $5 - 2\sqrt{2}$ is an irrational number.	1/2
	OR	
21. (b)	Check whether 6 ⁿ can end with the digit 0 for any natural number n.	
Sol.	If the number 6 ⁿ ends with the digit 0, then it should be divisible by 2 and 5.	
	But prime factorisation of 6^n is $(2 \times 3)^n$.	1
	∴ Prime factorisation of 6 ⁿ does not contain prime number 5.	85450
	Hence, 6 ⁿ can't end with the digit 0.	1
22.	In the figure, E is a point on side CB produced of an isosceles triangle ABC with AB = AC. If AD \perp BC and EF \perp AC, prove that \triangle ABD \sim \triangle ECF.	

		ľ
Sol.	In \triangle ABC, AB = AC (Given)	200
	$\therefore \angle ACB = \angle ABC$ (1)	1
	In Δ ABD and Δ ECF	53 (0
	$\angle ADB = \angle EFC \text{ (each } 90^{\circ}\text{)}$	1/2
	$\angle ABD = \angle ACD \text{ (from 1)}$	
	∴ ∆ ABD ~ ∆ ECF (AA rule)	1/2
23. (a)	Show that the points $(-3, -3)$, $(3, 3)$ and $(-3\sqrt{3}, 3\sqrt{3})$ are the	
	vertices of an equilateral triangle.	
Sol.	Let A (-3, -3), B (3, 3) and C (-3 $\sqrt{3}$, 3 $\sqrt{3}$) be the given points.	
	Using distance formula	
	$AB = \sqrt{(3+3)^2 + (3+3)^2} = 6\sqrt{2}$ units	1/2
	The state of the s	
	BC = $\sqrt{(-3\sqrt{3} - 3)^2 + (3\sqrt{3} - 3)^2} = 6\sqrt{2}$ units	1/2
	$CA = \sqrt{(-3 + 3\sqrt{3})^2 + (-3 - 3\sqrt{3})^2} = 6\sqrt{2} \text{ units}$	1/2
	As $AB = BC = CA$, so the given points are the vertices of an equilateral	
	triangle.	1/2
	OR	
23(b).	Prove that A(4, 3), B(6, 4), C(5, 6), D(3, 5) are the vertices of a square ABCD.	
Sol.	$AB = \sqrt{(6-4)^2 + (4-3)^2} = \sqrt{5}$ units	7
	AB = $\sqrt{(6-4)^2 + (4-3)^2} = \sqrt{5}$ units BC = $\sqrt{(5-6)^2 + (6-4)^2} = \sqrt{5}$ units	
	$CD = \sqrt{(3-5)^2 + (5-6)^2} = \sqrt{5} \text{ units}$ $CD = \sqrt{(3-5)^2 + (5-6)^2} = \sqrt{5} \text{ units}$	- 1
	$CD = \sqrt{(3-5)^2 + (5-6)^2} = \sqrt{5} \text{ units}$	
	$DA = \sqrt{(4-3)^2 + (3-5)^2} = \sqrt{5} \text{ units}$	J
	$AC = \sqrt{(5-4)^2 + (6-3)^2} = \sqrt{10}$ units]
		1/2
	$BD = \sqrt{(3-6)^2 + (5-4)^2} = \sqrt{10}$ units	72
	$BD = \sqrt{(3-6)^2 + (5-4)^2} = \sqrt{10}$ units As $AB = BC = CD = DA$ and $AC = BD$, so ABCD is a square.	1/2
	BD = $\sqrt{(3-6)^2 + (5-4)^2} = \sqrt{10}$ units As AB = BC = CD = DA and AC = BD, so ABCD is a square.]
]

24.	A circle is touching the side BC of a Δ ABC at the point P and touching AB and AC produced at points Q and R respectively. Prove that $AQ = \frac{1}{2}$ (Perimeter of Δ ABC).	
Sol.	Perimeter of \triangle ABC = AB + BC + CA	
	= AB + BP + CP + CA	1/2
	$= AB + BQ + CR + CA \qquad [BP = BQ ; CP = CR]$	1/2
	= AQ + AR	1.7.
	$= AQ + AQ \qquad [AQ = AR]$	1/2
	= 2 AQ	1/2
	$\therefore AQ = \frac{1}{2} \text{ (Perimeter of } \Delta \text{ ABC)}$	72
25.	Find the ratio in which the point (- 1, k) divides the line segment joining	
	the points (-3, 10) and (6, -8). Hence, find the value of k.	
	the points (o, 10) and (o, -o). Hence, find the value of K.	
Sol.	Let C (-1, k) be divides the line segment joining the points A (-3, 10)	
	and B $(6, -8)$ in the ratio m: 1.	
	Using section formula	
	$-1 = \frac{-3+6m}{m+1}$	
	\Rightarrow m = $\frac{2}{2}$	
	Hence, required ratio is 2 : 7	1
	$k = \frac{10 \times 7 - 8 \times 2}{10 \times 7 - 8 \times 2} = 6$	1
	2+7	1

	SECTION C This section comprises of Short Answer (SA) type questions of 3 marks each.	
26.	The age of the father is twice the sum of the ages of his two children. After 20 years, his age will be equal to the sum of the ages of his children. Find the present age of the father.	
Sol.	Let the present age of the father be 'x' years and the sum of present ages of his two children be 'y' years A.T.Q. $x = 2y$ 1 $x + 20 = y + 40$ 2 Solving 1 and 2, we get $x = 40$ Hence, the present age of the father is 40 years.	1 1 1
27.	Two water taps together can fill a tank in $3\frac{1}{3}$ hours. The tap of larger diameter takes 5 hours less than the smaller one to fill the tank separately. Find the time in which each tap can fill the tank separately.	
Sol.	Let the time taken by the tap of smaller diameter to fill the tank separately be 'x' hours and the time taken by the tap of larger diameter to fill the tank separately be $(x - 5)$ hours. A.T.Q. $ \frac{1}{x} + \frac{1}{x-5} = \frac{3}{10} $ $ \Rightarrow 3x^2 - 35x + 50 = 0 $ $ \Rightarrow (x - 10)(3x - 5) = 0 $ $ \Rightarrow x = 10 \text{ or } x = \frac{5}{3} $ But $x = \frac{5}{3}$ is not possible, so $x = 10$	
	∴ time taken by the tap of smaller diameter to fill the tank separately is 10 hours and time taken by the tap of larger diameter to fill the tank separately is $10 - 5 = 5$ hours	1/2
28.	State and prove Basic Proportionality theorem.	
Sol.	Correct statement of Basic Proportionality Correct figure, given, to prove and construction Correct proof	1/ ₂ 1 1 1 ¹ / ₂

collegedunia India's largest Student Review Platform

29 (a).	Find the sum of all integers between 50 and 500, which are	
	divisible by 7.	
Sol.	56, 63,, 497	1
501.	Here $a = 56$ and $d = 7$	*
	Let $a_n = 497$	
	$\Rightarrow 56 + (n-1) \times 7 = 497$	1/2
	\Rightarrow n = 64	1/2
	$S_{64} = \frac{64}{2} \times (56 + 497) = 17696$	1
	OR	
29 (b).	How many numbers lie between 10 and 300, which when divided	
	by 4 leave a remainder 3? Also, find their sum.	
Sol.	11, 15,, 299	1
	Here $a = 11$ and $d = 4$	
	Let $a_n = 299$	
	$\Rightarrow 11 + (n-1) \times 4 = 299$	1/2
	\Rightarrow n = 73	1/2
	$S_{73} = \frac{73}{2} \times (11 + 299) = 11315$	1
30.	Draw the graph of the following equations : $x + y = 5$, $x - y = 5$, and	
	(i) find the solution of the equations from the graph.	
	(ii) shade the triangular region formed by the lines and the y-axis.	
Sol.	Correct graph of line for equation $x + y = 5$.	1
	Correct graph of line for equation $x - y = 5$.	1
	(i) (5, 0)	1/2
	(ii) Correct shade the required triangular region.	1/2
31 (a).	Find the area of the minor and the major sectors of a circle with	
	radius 6 cm, if the angle subtended by the minor arc at the centre	
	is 60°. (Use $\pi = 3.14$)	
Sol.	Area of minor sector = $\frac{3.14 \times (6)^2 \times 60^\circ}{360^\circ}$	1
	= 18.84	1/2
l s	- 10.04	***************************************

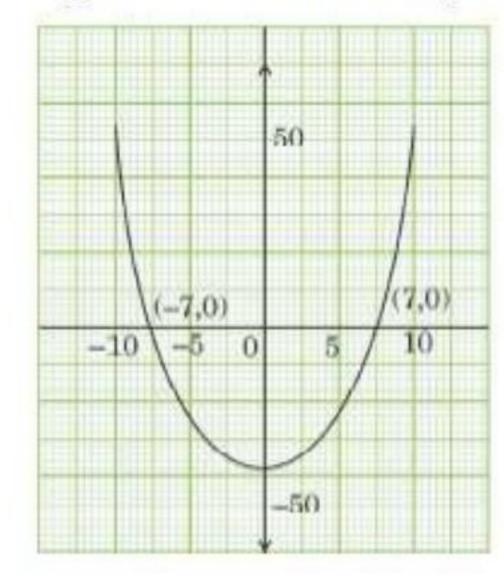
collegedunia India's largest Student Review Platform

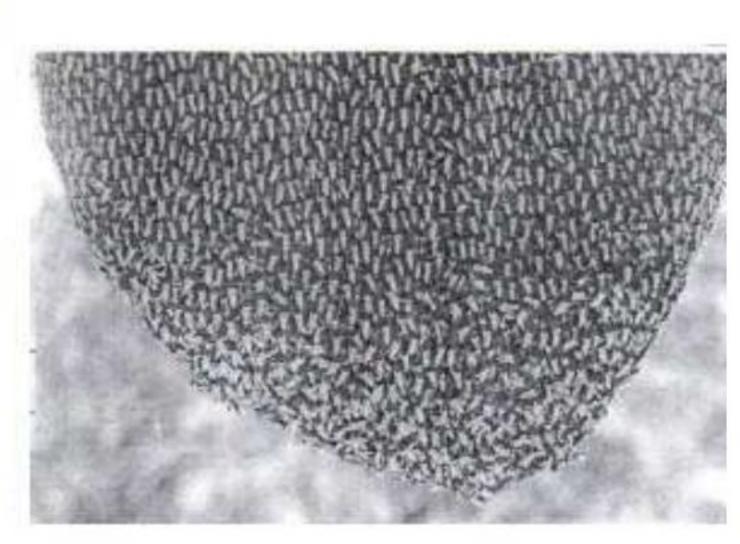
1,	Area of major sector = Area of circle – Area of minor sector	523
	$= 3.14 \times (6)^2 - 18.84$	1
	= 94.2	1/2
	Hence, area of major sector is 94.2 cm ² OR	
31 (b).		
01 (0).	If a chord of a circle of radius 10 cm subtends an angle of 60° at the	
	centre of the circle, find the area of the corresponding minor	
	segment of the circle. (Use $\pi = 3.14$ and $\sqrt{3} = 1.73$)	
Sol.	Area of minor segment = $\frac{3.14 \times (10)^2 \times 60^\circ}{360^\circ} - \frac{1}{2} \times (10)^2 \times \frac{\sqrt{3}}{2}$	2
	360° 2 (25) 2 314 173	1/
	$=$ ${6}$ ${4}$	1/2
	$=9\frac{1}{12} \text{ or } 9.08$	1/2
	Hence, area of minor segment is 9.08 cm ² .	
	SECTION D	
	This section comprises of Long Answer (LA) type questions of 5 marks	
	each.	
32 (a).	A tent is in the shape of a right circular cylinder up to a height of	
	3 m and then a right circular cone, with a maximum height of	
	13.5 m above the ground. Calculate the cost of painting the inner	
	side of the tent at the rate of \mp 2 per square metre, if the radius of	
	the base is 14 m .	
Sol.	Height of conical part = $13.5 - 3 = 10.5$ m	1/2
	Slant height = $\sqrt{(14)^2 + (10.5)^2} = 17.5 \text{ m}$	1
	SA of tent = CSA of conical part + CSA of cylindrical part	
	$=\left(\frac{22}{7}\times14\times17.5\right)+\left(2\times\frac{22}{7}\times14\times3\right)$	2
	$= 1034 \text{ m}^2$	1/2
	Cost of painting @ ₹ 2 per $m^2 = 1034 \times 2 = ₹ 2068$	1
	OR	
32 (b).	A solid wooden toy is in the shape of a right circular cone mounted	
	on a hemisphere of same radius. If the radius of the hemisphere is	
	$4.2~\mathrm{cm}$ and the total height of the toy is $10.2~\mathrm{cm}$, find the volume of	
	4 2 cm and the total neight of the toy is 10 2 cm, find the volume of	

collegedunia India's largest Student Review Platform

Sol.	Height of conical part = $10.2 - 4.2 = 6$ cm	1/2
	Volume of toy = Volume of conical part + Volume of hemispherical part	
	$= \left(\frac{1}{3} \times \frac{22}{7} \times (4.2)^2 \times 6\right) + \left(\frac{2}{3} \times \frac{22}{7} \times (4.2)^3\right)$	1
	= 266.112	1
	Hence, Volume of toy is 266.112 cm ³	
	Slant height of conical part = $\sqrt{(4.2)^2 + (6)^2} \approx 7.32$ cm	1
	TSA of the toy = CSA of hemispherical part + CSA of conical part	
	$= \left(2 \times \frac{22}{7} \times (4.2)^2\right) + \left(\frac{22}{7} \times 4.2 \times 7.32\right)$	1
	= 207.504	1/2
	Hence, TSA of toy is 207.504 cm ²	
33.	As observed from the top of a lighthouse, 100 m above sea level, the angle of depression of a ship, sailing directly towards it, changes from 30° to 45°. Determine the distance travelled by the ship during the period of observation. (Use $\sqrt{3} = 1.732$)	
Sol.	Correct figure.	2
	A 300 450 450 C D	
	In \triangle ABC $\frac{100}{BC} = \tan 45^{\circ} = 1$ $\Rightarrow BC = 100 \qquad 1$	1/2
	In \triangle ABD $\frac{100}{BD} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$ $\Rightarrow BD = 100 \sqrt{3}$	1/2

	$\Rightarrow 100 + CD = 1$	$100\sqrt{3}$					1/2
	\Rightarrow CD = $100 \sqrt{3} - 100 = 100 (1.732 - 1) = 73.2$				1		
	Hence, distance travelled by the ship during the period of observation is						
	73.2 m						
34.	A survey regar	ding the heig	hts (in cm) of 5	0 girls of	class X of a	school	
			ring data was ob				
		CALLED TO THE PARTY OF THE PART	and the second s				
			Number of girls				
	120	- 130	2				
	130	- 140	8				
	140	- 150	12				
	150	- 160	20				
	160	-170	8				
	T	otal	50				
	Triand Alan manage		ha abassa data				
	Find the mean	and mode of t	ne above data.				
Sol.	Height (in cm)	No. of girls	x_{i}	$u_{\rm i}$	$f_{\rm i}u_{ m i}$	1	
	120 – 130	2	125	-2	-4		
	130 – 140	8	135	-1	- 8		
	140 – 150	12	145 = a	0	0		
	150 – 160	20	155	1	20		
	160 – 170	8	165	2	16		
	Total	50			Correct		1½
	145 . 24	10			Correct	table	172
	Mean = $145 + \frac{24}{50}$	X 10					1 1/2
	= 149.8	140.0					/ 2
	∴ mean height isModal class is 15						1/2
			Λ				1
	Mode = $150 + \frac{1}{(2)}$	×20-12-8) × 1	U				1/2
	= 154	151					72
	∴ modal height is	s 154 cm					
-						l)	4.5


35 (a).	(i) Prove that:	
	$\sqrt{\sec^2 \theta + \csc^2 \theta} = \tan \theta + \cot \theta$	
	(ii) Evaluate:	
	cos 45°	
	sec 30° + cosec 30°	
	(i) LHS = $\sqrt{1 + \tan^2 \theta + 1 + \cot^2 \theta}$	1
	$= \sqrt{\tan^2\theta + \cot^2\theta + 2 \times \tan\theta \times \cot\theta}$	
	$=\sqrt{(\tan\theta+\cot\theta)^2}$	1
	$= \tan\theta + \cot\theta = RHS$	1/2
	$\frac{1}{\sqrt{2}}$	
	$(ii) \qquad \frac{\sqrt{2}}{\frac{2}{\sqrt{3}}+2}$	1
	$-\frac{\sqrt{3}}{\sqrt{3}} \checkmark \frac{\sqrt{2}}{2}$	
	$= \frac{1}{2\sqrt{2}(1+\sqrt{3})} \times \frac{1}{\sqrt{2}}$	1/2
	$= \frac{\sqrt{6}}{4(1+\sqrt{3})} \times \frac{(1-\sqrt{3})}{(1-\sqrt{3})}$	1/2
	$3\sqrt{2}-\sqrt{6}$	
	=8	1/2
25 (1)	OR	
35 (b).	If $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$ and $x \sin \theta = y \cos \theta$, prove that $x^2 + y^2 = 1$.	
Sol.	Given, $x \sin^3 \theta + y \cos^3 \theta = \sin \theta \cos \theta$	
501.	$\Rightarrow x \sin \theta (\sin^2 \theta) + y \cos \theta (\cos^2 \theta) = \sin \theta \cos \theta$	1
	$\Rightarrow x \sin \theta (\sin^2 \theta) + x \sin \theta (\cos^2 \theta) = \sin \theta \cos \theta$ $\Rightarrow x \sin \theta (\sin^2 \theta) + x \sin \theta (\cos^2 \theta) = \sin \theta \cos \theta$	
	$\Rightarrow x \sin \theta (\sin^2 \theta + \cos^2 \theta) = \sin \theta \cos \theta$	1
	$\Rightarrow x = \cos \theta$	1
	Given, $x \sin \theta = y \cos \theta$	
	$\Rightarrow \cos \theta \sin \theta = y \cos \theta$	
	\Rightarrow $y = \sin \theta$	1
	LHS = $x^2 + y^2 = (\cos \theta)^2 + (\sin \theta)^2 = 1 = RHS$	1
	SECTION E	
	This section comprises of 3 case-study based questions of 4 marks each.	



36.	In a park, four poles are standing at positions A, B, C and D around the circular fountain such that the cloth joining the poles AB, BC, CD and DA touches the circular fountain at P, Q, R and S respectively as shown in the figure.		
	A P B		
	Based on the above information, answer the following questions:		
	(i) If O is the centre of the circular fountain, then ∠ OSA =		
	(ii) If AB = AD, then write the name of the figure ABCD.		
	(iii) (a) If $DR = 7$ cm and $AD = 11$ cm, then find the length of AP.		
	OR (iii) (b) If O is the control of the simulant fermion with (OCD = CO)		
	(iii) (b) If O is the centre of the circular fountain with \angle QCR = 60°, then find the measure of \angle QOR.		
5-04 (S2A			
Sol.	(i) 90°	1	
	(ii) $AB + DC = BC + DA$ Given $AB - AD$		
	Given, $AB = AD$ $\Rightarrow BC = DC$		
	So, ABCD is a Kite	1	
	(iii) (a) $DS = DR = 7 \text{ cm}$	1/2	
	AD = 11 cm	1/2	
	7 + SA = 11	1/2	
	\Rightarrow SA = 4 cm		
	$\therefore AP = SA = 4 \text{ cm}$	1/2	
	OR	1	
	(b) $\angle QOR = 180^{\circ} - 60^{\circ}$	1	
	= 120°	1	

While playing in a garden, Samaira saw a honeycomb and asked her mother what is that. Her mother replied that it's a honeycomb made by honey bees to store honey. Also, she told her that the shape of the honeycomb formed is a mathematical structure. The mathematical representation of the honeycomb is shown in the graph.

Based on the above information, answer the following questions:

- (i) How many zeroes are there for the polynomial represented by the graph given?
- (ii) Write the zeroes of the polynomial.
- (iii) (a) If the zeroes of a polynomial $x^2 + (a + 1) x + b$ are 2 and -3, then determine the values of a and b.

OR

(iii) (b) If the square of difference of the zeroes of the polynomial $x^2 + px + 45$ is 144, then find the value of p.

C	~ 1	
0	OΙ	

- (i) Two
- (ii) 7 and -7
- (iii) (a)

$-(a + 1) = 2 + (-3) \Longrightarrow a = -$	0
$b = 2 \times (-3) \Longrightarrow b = -6$	

OR

(b) Let α and β be the zeroes of given polynomial Here, $\alpha + \beta = -p$ and $\alpha \beta = 45$

$$(\alpha - \beta)^2 = 144$$

$$\Rightarrow (\alpha + \beta)^2 - 4\alpha\beta = 144$$

$$\implies (-p)^2 - 4 \times 45 = 144$$

$$\Rightarrow$$
 p = \pm 18

1/2
1/2

1/2

1/2

1/2

collegedunia India's largest Student Review Platform

20				
38.	February 14 is celebrated as International Book Giving Day and many			
	countries in the world celebrate this day. Some people in India also			
	started celebrating this day and donated the following number of books of			
	various subjects to a public library :			
	History = 96, Science = 240, Mathematics = 336.			
	These books have to be arranged in minimum number of stacks such that			
	each stack contains books of only one subject and the number of books on			
	each stack is the same.			
	Based on the above information, answer the following questions:			
	(i) How many books are arranged in each stack?			
	(ii) How many stacks are used to arrange all the Mathematics books?			
	(iii) (a) Determine the total number of stacks that will be used for arranging all the books.			
	OR			
	(iii) (b) If the thickness of each book of History, Science and			
	Mathematics is 1.8 cm, 2.2 cm and 2.5 cm respectively, then			
	find the height of each stack of History, Science and			
	Mathematics books.			
Sol.	(i) $HCF (96, 240, 336) = 48$	1		
	(ii) Number of stacks = $\frac{336}{48}$ = 7	1		
	(iii) (a) Total number of stacks = $\frac{96}{48} + \frac{240}{48} + \frac{336}{48}$	1		
	= 14	1		
	OR			
	(b) Height of each stack of History = $48 \times 1.8 = 86.4$ cm	1 mark for		
	Height of each stack of Science = $48 \times 2.2 = 105.6$ cm	1 correct		
	Height of each stack of Mathematics = $48 \times 2.5 = 120$ cm	answer,		
		1½ mark for two		
		correct		
		answer		
		and 2		
		marks for		
		all correct		
		answers.		

