MARKING SCHEME Secondary School Examination, 2024 SCIENCE (Subject Code–086) [Paper Code: 31/5/2]

Maximum Marks: 80

Q.	EXPECTED ANSWER / VALUE POINTS		Total	
No			Mar	
•			ks	
	SECTION A			
1	$(C)/2AgCl \rightarrow 2Ag + Cl_2$	1	1	
2	(D) / Translocation	1	1	
3	(A) / Nose	1	1	
4	(C)/ It has a very small area for glucose and oxygen to pass from mother to the	1	1	
	embryo			
5	$(D) / Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$	1	1	
6	(A) /Calcium Phosphate	1	1	
7	(C)/Regular beating of heart	1	1	
8	(C)/7	1	1	
9	$(B) / Al, Al_2O_3$	1	1	
10	(D)/ Cropland ecosystem	1	1	
11	(A) / both pointing into the plane of the paper.	1	1	
12	(C) / A solenoid	1	1	
13	(A) / (i) and (ii)	1	1	
14	(C) / The brightness of the image will reduce	1	1	
15	(B) / Refraction, Dispersion and internal reflection	1	1	
16	(A) / Red	1	1	
17	(B) / Both Assertion (A) and Reason (R) are the true , but Reason (R) is not a	1	1	
	correct explanation of Assertion (A).			
18	(A) / Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct	1	1	
	explanation of Assertion (A).			
19	(D) / Assertion (A) is false, but Reason (R) is true.	1	1	
20	(B) / Both Assertion (A) and Reason (R) are the true , but Reason (R) is not a	1	1	
	correct explanation of Assertion (A).			
	SECTION B			
21	(a)			
	 Formation of lactic acid in muscles causes cramps. 	1		
	•Aerobic respiration takes place in the presence of oxygen whereas the			
	respiration taking place above is due to lack of oxygen. / End products of	1		
	aerobic respiration are $CO_2 + H_2O + Energy$ whereas in the above case,			
	Lactic acid + Energy is formed.			
	Lacte and + Lhoigj is formed.			
	OR			

	(b) Tissue fluid / Entrecelluler fluid	1	
	• Hissue Huid / Extracellular Huid	1	
	i Carries digested and absorbed fats from the intestine		
	ii Drains excess fluid from extracellular space back into the blood	1/2 1/2	
	iii Fight against infections (any 2)	,2,,2	2
22	(a) Carboxylic group		
22	• Ethanoic acid		
	(b) Aldehyde	½ x 4	
	• Methanal	-	2
23	(a) • Copper Oxide	1/2	
	• Black	1/2	
	$2C_{\mu} + O_{2}$ Heat $2C_{\mu}O_{2}$	1	
	$2cu + 02 \longrightarrow 2cu0$		
	\mathbf{OK} (b) $\operatorname{PaCla}(ag) \vdash \operatorname{NacSO}(ag) \rightarrow \operatorname{PaSO}(ag) \vdash \operatorname{2NaCl}(ag)$		
	(b) $BaC12(aq) + Na2SO4(aq) \rightarrow BaSO4(s) + 2NaC1(aq)$	1	
	Ba^{2+}, SO_4^{2-}		
		1/2, 1/2	2
24	• Depends produce comp calls in appointing or going which have only helf the		2
24	• Parents produce germ cens in specialised organs which have only han the	1	
	When these germ cells from two parents combine during sexual reproduction to	1/2	
	obtain a progeny/ zygote, it restores the original number of chromosomes as in	/2	
	the parents.		
	• Meiosis	1⁄2	
			2
25	• Power of a lens is the reciprocal of focal length in metre./ It is		
	the degree of convergence or divergence of light rays achieved by a	1	
	lens.		
	1 100		
	• $P = \frac{1}{f} = \frac{100}{50} = 2 D$	1	
	,		2
26	0	1	2
20	• $Q = 1 \times t \implies t = \frac{c}{I}$	1	
	• $\therefore t = \frac{750}{15} = \frac{750 \times 1000}{15} = 50000 \text{ s}$	1	
	1000	-	2
	SECTION C		
27	(a)		
	(i) • Hypermetropia	1⁄2	
	• Ciliary muscles/ eye lens	1⁄2	
	(ii) • Focal length of the eye lens is too long.	1/2	
	• Eyeball becomes too small.	1⁄2	

	(iii) Converging lenses/ convex lens			
	They provide the additional focussing power required for forming the			
	image on the retina./ Decrease the focal length of the eye lens			
	OR			
	(b)			
	The splitting of white light into its constituent col	lours is called	1	
	dispersion.			
	Cause: Different colours of white light bend through	ugh different angles with	1	
	respect to incident ray.			
	Ray of white		1	
				3
28	• •			
20				
	Activity Magnesium Sulp	hur		
	Activity – Magnesium Sulp	nui		
	Burn magnesium ribbon Burn	sulphur		
	Collect the ashes Colle	ect the fumes	1	
	Dissolve in water Add	water		
			1	
	Add blue Add red Add	blue Add red	1	
	Litmus Litmus Litm	us Litmus		
	solution solution solut	ion solution		
	+ + +	, ↓		
	Remains Turns blue Turn	s red Remains red		
	blue			
			1	
	Inference : Metalic oxides are Oxid	les of non – metals are		
	basic in nature acidi	c in nature		
				3
29	• Fe(s) + CuSO ₄ (aq) \rightarrow FeSO ₄ (aq) + Cu(s)		1	2
	• Displacement reaction – A reaction in which a more reactive metal displaces a		1/2 +1/2	
	less reactive metal from its salt solution			
	• Zinc, Aluminium, Calcium, Magnesium (Anv two)			
				3

30	(a) Violet flowers			
	Violet colour dominates over white colour of flowers.		1⁄2	
	(b) 25%.		1/2	
	It could not express itself in the presence of dominant gene/white colour		1/2	
	is a recessive gene.			
	(c) V V : V v		1	
21	$\frac{1:2}{2}$		1/ 2	3
31	(1) •Growth hormone		¹ ⁄2 X 3	
	•It stimulates growth in all organ	\$		
	(ii) •Thyroxin		¹∕₂ x 3	
	•Secreted by thyroid gland.			
	•It regulates carbohydrate, protei	n and fat metabolism for body growth.		-
22			1	3
32	• Earthing is used as a safety measure, metallic body which is connected to the	especially for those appliances that have a	1	
	metanic body which is connected to th			
	• It provides a low-resistance conducti	ng path for the current.	1	
	• I hus, it ensures that any leakage of cu	and the user may not get a severe electric	1	
	shock	and the user may not get a severe electric		3
	SHOCK.			5
33				
	Food chain	Food web		
	It is a series of organisms feeding	It is a network of interconnected		
	on one another at various levels	food chains/series of branching	1+1	
		feeding connections amongst		
		different organisms		
	Population of grass/ first troph	nic level will increase.	1⁄2	
	• Population of tiger/ third troph	hic level will decrease.	1⁄2	2
	SECTION C			3
34	(a) • Chlor-akali process – When electr	right is passed through aqueous solution		
	of sodium chloride (brine), it decomposes to form sodium hydroxide, chlorine		1	
	and hydrogen.			
	• $2\text{NaCl}(aq) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{NaOH} + \text{Cl}_2 + \text{H}_2$		1	
	• Anoda Chloring gas / Cla		1/2	
	Anode – Chlorine gas / Cl2 Cathode, Hudrogen gas / Ll-		1⁄2	
	Cle 1 Used in the area of	n of blooching norredor	• /	
	• $C_{12} - 1$. Used in the preparatio	on of bleaching powder.	1/2	
	2. To make drinking water free from germs or any other.		1⁄2	

	• $H_2 - 1$. Used in the manufacture of ammonia fertilisers.	1⁄2	
	2. Used in fuels and margarine.	1⁄2	
	OR (b)• Concentrated solution of sodium chloride reacts with ammonia and carbon dioxide to obtain sodium hydrogen carbonate and ammonium chloride. NaCl + NH ₃ + CO ₂ + H ₂ O → NaHCO ₃ + NH ₄ Cl • When sodium hydrogen carbonate is heated strongly, sodium carbonate is	1	
	obtained.		
	$2NaHCO_3 \xrightarrow{Heat} Na_2CO_3 + CO_2 + H_2O$	1	
	• Sodium carbonate is dissolved in water to obtain washing soda.		
	$Na_2CO_3 + 10H_2O \rightarrow Na_2CO_3 \cdot 10H_2O$	1	
	Uses :	1	
	 In glass, soap and paper industries Manufacture of borox 		
	• As cleaning agent for domestic purposes		
	•For removing permanent hardness of water.	½ x 4	5
35			
	(a)		
	(i) • Current becomes one-third of its initial value.	1/2	
	• Ohm's Law	1⁄2	
	The potential difference across the ends of a conductor is directly proportional to the current flowing through it, provided its temperature remains the same.	1	
	(ii) $\begin{array}{c} 5\Omega & 10\Omega & 15\Omega \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1	
	6V K Total Voltage = V = 4 × 1.5 V = 6 V Total resistance, R(s) = R ₁ + R ₂ + R ₃ = 5 Ω + 10 Ω + 15 Ω = 30 Ω (I) Current, I = $\frac{V}{R} = \frac{6 V}{30 Ω} = 0.2 A$ (II) V = IR = 0.2 A × 10 Ω = 2 V	1	
	(II) $V = IR = 0.2 A \times 10 \Omega = 2 V$	1	

	OR		
	(b) (i) When 1 joule of work is done to move a charge of 1 coulomb		
	from one point to the other.	1	
	$d = 0.2 \text{ mm} = 2 \times 10^{-4} \text{ m}; \text{ R} = 14 \Omega$	1/2	
	$\rho = 1.6 \times 10^{-8} \ \Omega \text{ m}; \ \text{A} = \frac{\pi d^2}{4}$	72	
	$R = \frac{\rho l}{A} = \frac{4\rho l}{\pi d^2} \text{ or } l = \frac{\pi d^2 R}{4\rho}$ $l = \frac{22}{4\rho} \left(2 \times 10^{-4} \right)^2 = 14$	1⁄2	
	$l = \frac{1}{7} \times \frac{1}{4 \times 1.6 \times 10^{-8}} \times 14$		
	$=\frac{22 \times 14}{7 \times 1.6} = 27.5 \text{ m}$	1	
	When the diameter is doubled, $d' = 2d$ A' = 4A	1⁄2	
	$\frac{R'}{R} = \frac{A}{A'}$ or $R' = \frac{RA}{A'} = \frac{RA}{4A}$		
	$\mathbf{R'} = \frac{\mathbf{R}}{4} = \frac{14 \Omega}{4} = 3.5 \Omega$	1	
	Change $(14.0 - 3.5) = 10.5 \Omega$	1⁄2	5
36	 (a) Take two healthy potted plants, A and B of nearly the same size. Keep them in darkness for three days. (Destarch the plant) Place a watch glass containing potassium hydroxide by the side of potted plant A but not in potted plant B. Cover both the plants with separate bell jars and seal the bottom of the jars with Vaseline. Keep both the plants in sunlight for two hours. Pluck one leaf each from both the plants and test for the presence of starch with iodine solution. 	¹ ∕2 x 6	
	 <u>Observation</u>: The leaf of the potted plant A with KOH did not turn blue – black. The leaf of the potted plant B turns blue. <u>Conclusion</u>: KOH absorbs CO₂ so photosynthesis did not occur 	1 1	
	in potted plant A. OR		
	(b)		
	(1) In set up (1) lime water turns milky in more time as compared to set up (II) because the air we exhaled contains high percentage of CO_2 as compared to atmospheric air.	1,1	

38			
	(a) Compounds formed by carbon and hydrogen only.	1	
	(b) Tetravalency and Catenation	1	
	(c) (i) (1) H (2) O		
		1/2 +1/2	
		1	
	$CH_{3}COOH + C_{2}H_{5}OH \xrightarrow{Acid} CH_{3}COOC_{2}H_{5} + H_{2}O$	1	
	Ester		
	OR		
	(c)		
	(ii) Compounds with identical molecular formula but different structures	1	
	Two isomers of butane C_4H_{10}		
	нннн н <u>н</u> с <u>с</u> <u>с</u> <u>н</u>		
	$H - C - C - C - C - H \qquad H - C - H$		
		1/2 +1/2	4
20			4
39	(a) Cross pollination		
	Transfer of pollen grains from Transfer of pollen grains from		
	anther to the stigma of the the anther of one flower to the	1	
	same flower.	-	
	(b) Petals, they dry and fall off.		
	(c) (i) Fusion of male and female gametes to form a zygote		
	Ovule – Seed,	1/2	
	Ovary – fruit	1/2	
	OR		
	(c) (ii) Future shoot – Plumule,	1/2	
	Future root – Radicle	1/2	
	Cotyledon – Stores food.	1	4
			T
