

- - कृपया जाँच कर लें कि इस प्रश्न-पत्र में 35 प्रश्न हैं।
 - कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
 - इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
 - Please check that this question paper contains 23 printed pages.
 - Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
 - Please check that this question paper contains 35 questions.
 - · Please write down the serial number of the question in the answer-book before attempting it.
 - 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. \(\tau\) \(\

P.T.O.

56/4/3

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पिढ़ए और उनका सख़्ती से पालन कीजिए:

- इस प्रश्न-पत्र में 35 प्रश्न हैं । सभी प्रश्न अनिवार्य हैं । (i)
- यह प्रश्न-पत्र पाँच खण्डों में विभाजित है क, ख, ग, घ एवं ङ । (ii)
- खण्ड क में प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं। (iii)
- खण्ड ख में प्रश्न संख्या 19 से 25 तक अति लघु-उत्तरीय प्रकार के दो-दो अंकों के प्रश्न हैं। (iv)
- खण्ड ग में प्रश्न संख्या 26 से 30 तक लघु-उत्तरीय प्रकार के तीन-तीन अंकों के प्रश्न हैं। (v)
- खण्ड घ में प्रश्न संख्या 31 तथा 32 केस-आधारित चार-चार अंकों के प्रश्न हैं। (vi)
- खण्ड ङ में प्रश्न संख्या 33 से 35 दीर्घ-उत्तरीय प्रकार के पाँच-पाँच अंकों के प्रश्न हैं। (vii)
- प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड ग के 2 प्रश् (viii) में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ङ के 2 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया ग
- कैल्कुलेटर का उपयोग वर्जित है। (ix)

खण्ड क

प्रश्न संख्या 1 से 18 तक बहुविकल्पीय प्रकार के एक-एक अंक के प्रश्न हैं।

 $18\times1=1$

- यौगिक $CaCl_2$. $6H_2O$ जल में पूर्णतया वियोजित हो जाता है । वान्ट हॉफ कारक 'i' है : 1.
 - (a)

(b)

(c)

(d)

A → उत्पाद प्रकार की किसी शून्य कोटि की अभिक्रिया के लिए, वेग समीकरण को व्यक्त 2. किया जा सकता है:

 $k = \frac{[A]_0 - [A]}{t}$

(b) $k = \frac{[A] - [A]_0}{t}$

(c) $k = \frac{[A]_0 - [A]}{2t}$

(d) $k = \frac{[A]_0 - [A]}{2} \cdot t$

- निम्नलिखित Cu²⁺ हैलाइडों में से कौन-सा ज्ञात नहीं है ? 3.
 - CuBr₂ (a)

CuI2 (b)

(c) CuClo

CuF2 (d)

56/4/3

General Instructions:

Read the following instructions carefully and strictly follow them:

- This question paper contains 35 questions. All questions are compulsory. (ii)
- This question paper is divided into five Sections A, B, C, D and E. (iii)
- In Section A Questions no. 1 to 18 are multiple choice (MCQ) type questions, (iv)
- In Section B Questions no. 19 to 25 very short answer (VSA) type questions,
- In Section C Questions no. 26 to 30 are short answer (SA) type questions, (v) (vi)
- In Section D Questions no. 31 and 32 are case-based questions carrying (vii)
- In Section E Questions no. 33 to 35 are long answer (LA) type questions
- There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and (ix)
- Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 18 are Multiple Choice (MCQ) type Questions, carrying $18 \times 1 = 18$

- A compound $CaCl_2$. $6H_2O$ undergoes complete dissociation in water. The 1. Van't Hoff factor 'i' is:
 - (a)

(c) 3

- (d) 4
- For a zero order reaction of the type $A \rightarrow \text{products}$, the rate equation 2.
 - $k = \frac{[A]_0 [A]}{t}$

(b) $k = \frac{[A] - [A]_0}{t}$

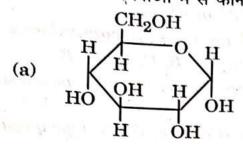
 $k = \frac{[A]_0 - [A]}{2t}$

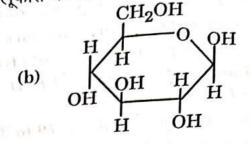
- (d) $k = \frac{[A]_0 [A]}{2} \cdot t$
- 3. Which of the following Cu²⁺ halide is *not* known?
 - (a) CuBr₂

(b) CuI_{9}

CuCl₂ (c)

(d) CuF₂


56/4/3



P.T.O.

4. निम्नलिखित संरचनाओं में से कौन-सी α-D-ग्लूकोस को निरूपित करती है ?

(c)
$$H \rightarrow O CH_2OH$$

 $H \rightarrow OH OH$

$$(d) \begin{array}{c|c} H & O & OH \\ H & OH \\ OH & H \end{array} \\ CH_2OH$$

5. यौगिक [Cr(H₂O)₆]Cl₃, [Cr(H₂O)₅Cl]Cl₂. H₂O और [Cr(H₂O)₄Cl₂]Cl. 2H₂O दर्शाते हैं :

(a) बंधनी समावयवता

(b) ज्यामितीय समावयवता

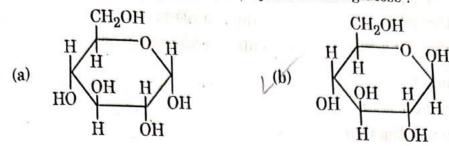
(c) आयनन समावयवता

(d) हाइड्रेट समावयवता

6. निम्नलिखित में से कौन-सा ऐल्कीन अम्ल उत्प्रेरित जलयोजन द्वारा तृतीयक ऐल्कोहॉल देता है?

(a) 2-ब्यूटीन

(b) 2-मेथिलप्रोपीन


- (c) प्रोपीन
- प्रोपीन (noise soussis stalgers (d) ा 1-ब्यूटीन)

eggt and to going

7. जब नाइट्रोबेन्ज़ीन को टिन और सांद्र HCl के साथ गरम किया जाता है, तो बनने वाला उत्पाद है:

(b)
$$\sqrt{}$$
 $NH_3^+C\overline{\Gamma}$

Which of the following structures represents α -D-glucose ? 4.

The compounds $[Cr(H_2O)_6]Cl_3$, $[Cr(H_2O)_5Cl]Cl_2$. H_2O and 5. [Cr(H₂O)₄Cl₂]Cl . 2H₂O exhibit:

- Linkage isomerism (a)
- Geometrical isomerism (b)
- Ionization isomerism
- (d) Hydrate isomerism

Which of the following alkenes on acid catalysed hydration gives a 6. tertiary alcohol?

(a) 2-Butene

2-Methylpropene (b)

(c) Propene

(d) 1-Butene

When nitrobenzene is heated with tin and concentrated HCl, the product 7. formed is:

(a)
$$\sim$$
 NH₂

(b)
$$NH_3^+C\overline{\Gamma}$$

(c)
$$N = N$$

8.	1-फ़ेनिल-2-क्लोरं	प्रोपेन की ऐल्कोहॉली प्रोपीन				
	(a) 1-फ़ेनिला	प्रोपीन र प्राहाला	KOH के साध	य अभिक्रिया मुख्यत:	देती है:	
	(c) 1-फ़ेनिला	प्रोपेन-३-ऑल	(0)	ठ-फ़ानलप्रापान		
9.	लोहे का संक्षारण		(d)	1-फ़ेनिलप्रोपेन-2-अ	गॅल	
	(a) विघटन प्र					
		सायनिक प्रक्रम		100		
	(c) विद्यत-गा	पायानक प्रक्रम				
	(d) अपचयन	नायनिक प्रक्रम	.0			
	7 132			**		
10.	अणुओं की संख्य	ा जो किसी प्राथमिक	3191 5-11 +		नाने हैं एक उ	ш
	होती है:	त्राचानक	आमाक्रया म	। परस्पर आमाक्रया	करत ह, एक न	114
	(a) अभिक्रिय	। की सक्रियण ऊर्जा की	•	1713		
	(b) अभिक्रिय	नी कोटि की		20		
		। की स्टॉइकियोमीट्री र्क	OLDAY.	a Martin Program		
ď		। की आण्विकता की े	1.4	inder U.B. C		2
-	A VIEW NAME	og så red i skopped i 1991	inf)	. The rest	40.	
11.		हि।इड्रेटों में से कौन-सा	जल-अपघट	न होने पर ग्लूकोस	और गैलेक्टोस	देता
	है ?	ing bestone to	101 d. 24 SOIL	S S Survey !		
	(a) सूक्रोस		85 (8)	1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ioni i i i i i	
	(c) माल्टोस	ecorolottaly-5	(d)	सेलूलोस	40 7 F. L	
12.	निम्नलिखित में से	किस विटामिन की कम	गि से 'रिकेट्स	म' होता है ?	wego 1	
	(a) विटामिन	A hadanasanaan	(b)	विटामिन D		
	(c) विटामिन :	B	(d)	विटामिन C	and the same	
10	िपारिसीयन में मे	कौन-सा 'ऐसीटैल' है	9			
13.			•	1.0		
	(a) CH_3CH_2					
	H ₃ C	$<_{ m O-CH_2}^{ m O-CH_2}$				10
	(b) H ₀ C >C	O-CH ₂				
	1130	4				
	1	OCH ₃		A Sparse		
	(c) CH ₃ – CH	OCH ₃			-4	
			1 1 1 1 1		A 150	
	(I) OIT OT	OH			Acres 15	
	(d) $CH_3 - CH$	NOCH.				

React	tion of 1-phenyl-2-chloropropa	ne with	alcoholic KOH gives mainly:		
(a)	1-phenylpropene	(b)	3-phenylpropene		
(c)	1-phenylpropan-3-ol	(d)	1-phenylypropan-2-ol		
Corro	osion of iron is :				
(a)	a decomposition process				
(b)	a photochemical process				
(c)	an electrochemical process				
(d)	a reduction process	9	THE R. P. LEWIS CO., LANSING MICH.		
The reacti	number of molecules that re ion is a measure of the :	act wit	th each other in an elementary		
		ction			
4 4 2		180	Linds by Mr. 185		
		n			
On h	ydrolysis, which of the follo		carbohydrates gives glucose and		
		(b)	Lactose		
	Maltose	(d)	Cellulose		
	1. C:	owing	vitamins causes 'Rickets' ?		
		(b)	Vitamin D		
THE P					
		2 hin	A. P Act . He		
Which of the following is an 'Acetal'?					
(a)	CH ₃ CH ₂ - OCH ₃				
Š.	A / Windshift in H	HIS OF	118-7-34-1 1994		
(b)	COP TO I	HEAL	4. WE 19 19 19 19 19 19 19 19 19 19 19 19 19		
	H_3C $O-CH_2$	का निराम	Here is a second of the second		
	OCH ₂	M 1 /	* 6-2. 3-1 "		
(c)	CHo-CH				
	- OCH3		pod vila in		
	OTT				
(d)	CH ₃ -CH	10 0 (14) 10	0.00		
	(a) (c) (c) (a) (b) (c) (d) The react (a) (b) (c) (d) The (a) (c) (d) Whice (a) (b)	(a) 1-phenylpropene (b) 1-phenylpropan-3-ol Corrosion of iron is: (a) a decomposition process (b) a photochemical process (c) an electrochemical process (d) a reduction process (d) a reduction process The number of molecules that refreaction is a measure of the: (a) activation energy of the reaction (b) order of the reaction (c) stoichiometry of the reaction (d) molecularity of the reaction On hydrolysis, which of the follogalactose? (a) Sucrose (b) Maltose The deficiency of which of the foll (a) Vitamin A (b) Vitamin B Which of the following is an 'Acet (a) CH ₃ CH ₂ - OCH ₃ (b) H ₃ C (c) CH ₂ (c) CH ₂ (d) OCH ₃	(a) 1-phenylpropene (b) (c) 1-phenylpropan-3-ol (d) Corrosion of iron is: (a) a decomposition process (b) a photochemical process (c) an electrochemical process (d) a reduction process The number of molecules that react with reaction is a measure of the: (a) activation energy of the reaction (b) order of the reaction (c) stoichiometry of the reaction (d) molecularity of the reaction On hydrolysis, which of the following of galactose? (a) Sucrose (b) (b) Maltose The deficiency of which of the following of the deficiency of which of the following of the control of the following is an 'Acetal'? (a) Vitamin B (d) Which of the following is an 'Acetal'? (a) CH ₃ CH ₂ - OCH ₃ (b) H ₃ C		

56/4/3

14. चतुष्फलकीय क्रिस्टल क्षेत्र में क्रिस्टल क्षेत्र विपाटन ऊर्जा (Δ_t) बराबर होती है :

(a) $\frac{4}{9}\Delta_0$

(b) $\frac{9}{4}\Delta_0$

(c) $\frac{4}{3}\Delta_0$

(d) $2\Delta_0$

प्रश्न संख्या 15 से 18 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए।

(a) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।

- (b) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (c) अभिकथन (A) सही है, परन्तु कारण (R) गलत है ।
- (d) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।

15. अभिकथन (A): जब जल में NaCl मिलाया जाता है, तो हिमांक में अवनमन प्रेक्षित किया जाता है।

कारण (R): विलयन का वाष्प दाब बढ़ जाता है जिसके कारण हिमांक में अवनमन होता

16. अभिकथन (A): ऐनिलीन का मोनोब्रोमीनन ऐमीनो समूह को ऐसीटिलन द्वारा परिरक्षित करके आसानी से किया जा सकता है।

कारण (R): ऐसीटिलन, ऐमीनो समूह के सक्रियण प्रभाव को कम कर देता है।

17. अभिकथन (A) : प्रबल विद्युत्-अपघट्यों की सीमांत मोलर चालकता $(\Lambda_{
m m}^\circ)$ को $\Lambda_{
m m}$ के विपरीत ${
m C}^{1/2}$ वक्र के बहिर्वेशन से प्राप्त किया जा सकता है ।

कारण (R) : दुर्बल विद्युत्-अपघट्यों के लिए $\Lambda_{
m m}^{\circ}$ कोलराऊश नियम का उपयोग करके प्राप्त की जाती है ।

18. अभिकथन (A): E°_{Cu²+/Cu} धनात्मक (+ 0·34 V) है।

कारण (R): कॉपर का $\Delta_{
m a} {
m H}^{\circ}$ उच्च तथा $\Delta_{
m hyd} {
m H}^{\circ}$ निम्न होता है ।

- 14. The crystal field splitting energy in tetrahedral crystal field (Δ_t) is equal to :
 - (a) $\frac{4}{9}\Delta_0$

(b) $\frac{9}{4}\Delta_0$

(c) $\frac{4}{3}\Delta_0$

(d) $2\Delta_0$

For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true, but Reason (R) is **not** the correct explanation of the Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
- 15. Assertion (A): When NaCl is added to water, a depression in freezing point is observed.

Reason (R): The vapour pressure of solution is increased which causes depression in freezing point.

16. Assertion (A): Monobromination of aniline can be conveniently done by protecting the amino group by acetylation.

Reason (R): Acetylation decreases the activating effect of the amino group.

17. Assertion (A): Limiting molar conductivity (Λ_m°) is obtained by the extrapolation of the Λ_m versus $C^{1/2}$ curve of strong electrolyte.

 $Reason(R): \Lambda_{m}^{\circ}$ for weak electrolytes is obtained by using Kohlrausch's law.

18. Assertion (A): $E_{Cu}^{\circ}^{2+}/Cu$ is positive (+0.34 V).

Reason (R): Copper has high $\Delta_a H^{\circ}$ and low $\Delta_{hyd} H^{\circ}$.

P.T.O.

56/4/3

खण्ड ख

- निम्नलिखित के आई.यू.पी.ए.सी. नाम लिखिए : 19.
 - (क) $[Co(en)_2(H_2O)(CN)]^{2+}$

 $2 \times 1 = 2$

(ख) $[\mathrm{Ni(NH_3)}_6]\mathrm{Cl}_2$

उस सेल का नाम बताइए जो : 20.

 $4 \times \frac{1}{2} = 2$

- (क) अपोलो अंतरिक्ष कार्यक्रम में उपयोग किया गया था
- (ख) वाहनों एवं इन्वर्टरों में उपयोग किया जाता है।
- (刊) श्रवण यंत्रों तथा घड़ियों के लिए उपयुक्त होता है।
- स्थिर विभव नहीं देता है और ट्रांज़िस्टरों में उपयोग में लाया जाता है। (घ)
- एथेनॉल और ऐसीटोन के मिश्रण द्वारा राउल्ट नियम से किस प्रकार का विचलन 21. (क) दर्शाया जाता है ? कारण दीजिए ।

2

2

अथवा

स्थिरक्वाथी को परिभाषित कीजिए । राउल्ट नियम से ऋणात्मक विचलन द्वारा किस (ख) प्रकार का स्थिरक्वाथी निर्मित होता है ? एक उदाहरण दीजिए ।

 $2 \times 1 = 2$

निम्नलिखित अभिक्रियाओं के उत्पाद लिखिए: 22.

(i)
$$\frac{\text{Hig NaOH}}{\Delta}$$
(ii)
$$O + H_2 \text{NNH} - \text{CO} - \text{NH}_2 \xrightarrow{H^+}$$

अथवा

निम्नलिखित रूपांतरणों को अधिकतम दो चरणों में सम्पन्न कीजिए : (ख)

 $2 \times 1 = 2$

- टालूईन से बेंज़ोइक अम्ल (i)
- बेंज़ैल्डिहाइड से 1-फ़ेनिलएथेनॉल (ii)

SECTION B

19. Write IUPAC names of the following:

 $2\times1=2$

- (a) $[\text{Co(en)}_2(\text{H}_2\text{O})(\text{CN})]^{2+}$
- (b) $[Ni(NH_3)_6]Cl_2$
- 20. Name the cell which:

 $4 \times \frac{1}{2} = 2$

- (a) was used in Apollo Space programme. Fuel
- (b) is used in automobiles and inverters.
- (c) is suitable for hearing aids and watches.
- (d) does not give a steady potential and is used in transistors.
- 21. (a) What type of deviation from Raoult's law is shown by a mixture of ethanol and acetone? Give reason.

OR

- (b) Define Azeotrope. What type of azeotrope is formed by negative deviation from Raoult's law? Give an example.
- 22. (a) Write the products of the following reactions:

2×1=2

2

(i)
$$CHO \xrightarrow{Conc. NaOH} \Delta$$

(ii)
$$O + H_2NNH - CO - NH_2 \xrightarrow{H^+}$$

OR

- (b) Do the following conversions in not more than two steps: $2 \times 1 = 2$
 - (i) Toluene to Benzoic acid
 - (ii) Benzaldehyde to 1-Phenylethanol

P.T.O.

56/4/3

23. $m N_2O_5$ के प्रथम कोटि विघटन का वेग स्थिरांक निम्नलिखित समीकरण द्वारा दिया जाता है :

$$\log k = 23.6 - \frac{2 \times 10^4 \,\mathrm{K}}{\mathrm{T}}$$

इस अभिक्रिया के लिए $\mathbf{E}_{\mathbf{a}}$ परिकलित कीजिए।

 $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$

24. C₆H₁₃Cl अणुस्त्र का ऐल्किल हैलाइड (A) ऐल्कोहॉली KOH के साथ अभिक्रिया करके ${
m C}_6{
m H}_{12}$ अणुसूत्र वाले दो समावयवी ऐल्कीन (B) और (C) देता है । दोनों ऐल्कीन हाइड्रोजनीकरण किए जाने पर 2,3-डाइमेथिलब्यूटेन देते हैं । A, B और C की संरचनाएँ लिखिए।

एथेनॉल के अम्ल निर्जलन से एथीन बनने की क्रियाविधि लिखिए। 25.

with a work and world in the state of the st

निम्नलिखित के कारण दीजिए: 26.

3×1=3

2

2

2

- SN1 अभिक्रिया के प्रति बेन्ज़िल क्लोराइड अत्यधिक अभिक्रियाशील है। (क)
- (±)-ब्यूटेन-2-ऑल ध्रुवण अधूर्णक है, यद्यपि इसमें किरेल कार्बन परमाणु होता है। (碅)
- क्लोरोफॉर्म को बन्द गहरी रंगीन बोतलों में रखा जाता है। (ग)
- स्थिर आयतन पर C_2H_5Cl के प्रथम कोटि तापीय विघटन के दौरान निम्नलिखित आँकड़े 27. प्राप्त हुए :

 $C_2H_5Cl(g) \longrightarrow C_2H_4(g) + HCl(g)$

प्रयोग	समय (s-1)	कुल दाब (atm)
1	0	0·4
2	100	
24 (12/14)	id Some On The	0.6 ·

वेग स्थिरांक परिकलित कीजिए।

Libraries to Penzole neith [दिया गया है : $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$]

56/4/3

The rate constant for the first order decomposition of N_2O_5 is given by the following equation:

$$\log k = 23.6 - \frac{2 \times 10^4 \,\mathrm{K}}{\mathrm{T}}$$

Calculate E_a for this reaction.

$$[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$$

25. Write the mechanism of acid dehydration of ethanol to yield ethene.

SECTION C

26. Account for the following:

- (a) Benzyl chloride is highly reactive towards S_N 1 reaction.
- (a) Benzyl chloride is 12-3-3 (b) (±)-Butan-2-ol is optically inactive, though it contains a chiral carbon atom.
- (c) Chloroform is stored in closed dark coloured bottles.
- 27. The following data were obtained during the first order thermal decomposition of $\rm C_2H_5Cl$ at a constant volume :

$$C_2H_5Cl(g) \longrightarrow C_2H_4(g) + HCl(g)$$

Experiment	Time (s ⁻¹)	Total pressure (atm)
1 1	0	0.4
2	100	0.6

Calculate the rate constant.

(Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

.9

2

 2

 $3\times1=3$

56/4/3

28. यदि बेन्ज़ोइक अम्ल ($M=122~g~mol^{-1}$) बेन्ज़ीन में घोलने पर संगुणित होकर द्वितय बनाता हो और $27^{\circ}\mathrm{C}$ पर $6\cdot1~g$ बेन्ज़ोइक अम्ल का $100~m\mathrm{L}$ बेन्ज़ीन में परासरण दाब $6\cdot5~atm$ हो, तो बेन्ज़ोइक अम्ल का संगुणन कितने प्रतिशत होगा ? (दिया गया है : $R=0\cdot0821~\mathrm{L}~atm~K^{-1}~mol^{-1}$)

29. (क) (i) एक उदाहरण सहित हाइड्रोबोरॉनन-ऑक्सीकरण अभिक्रिया लिखिए ।

(ii) निम्नलिखित अभिक्रिया के उत्पाद लिखिए:

$$OCH_3$$
 + HBr \longrightarrow

(iii) फ़ीनॉल की तुलना में p-नाइट्रोफ़ीनॉल अधिक अम्लीय क्यों है ?

 $3 \times 1 = 3$

3

अथवा

- (ख) (i) क्या होता है जब फ़ीनॉल निम्नलिखित के साथ अभिक्रिया करता है:
 - (1) सांद्र HNO₃, और
 - (2) जलीय NaOH की उपस्थिति में CHCl₃ से और उसके पश्चात् अम्लीकरण द्वारा ? केवल समीकरण लिखिए।
 - (ii) CH_3ONa की $(CH_3)_3C Br$ के साथ अभिक्रिया 2-मेथिलप्रोपीन देती है न कि $(CH_3)_3C OCH_3$, क्यों ? 2+1=3
- 30. निम्नलिखित में से किन्हीं तीन के उत्तर दीजिए:

3×1=3

- (क) संयोजकता आबंध सिद्धांत के आधार पर $[Fe(CN)_6]^{3-}$ में संकरण के प्रकार की व्याख्या कीजिए। (दिया गया है : Fe का परमाणु क्रमांक = 26)
- (ख) [PtCl₂(en)₂]²⁺ आयन के ज्यामितीय समावयव आरेखित कीजिए ।
- (ग) [NiCl4]²⁻ अनुचुम्बकीय है जबिक [Ni(CO)4] प्रतिचुम्बकीय है यद्यपि दोनों चतुष्फलकीय हैं। क्यों ?
- (घ) उस समावयवता का नाम लिखिए जब कोई उभदंती लिगन्ड केन्द्रीय धातु आयन से

56/4/3

28. If benzoic acid (M = 122 g mol⁻¹) is associated into a dimer when dissolved in benzene and the osmotic pressure of a solution of 6·1 g of benzoic acid in 100 mL benzene is 6·5 atm at 27°C, then what is the percentage association of benzoic acid?

3

(Given: $R = 0.0821 L atm K^{-1} mol^{-1}$)

- 29. (a) (i) Write hydroboration-oxidation reaction with an example.
 - (ii) Write the products of the following reaction:

(iii) Why is p-nitrophenol more acidic than phenol?

3×1=3

OF

- (b) (i) What happens when phenol reacts with
 - (1) Conc. HNO₃, and
 - (2) CHCl₃ in presence of aqueous NaOH followed by acidification?

 Write equations only.
 - (ii) Why does the reaction of CH_3ONa with $(CH_3)_3C Br$ give 2-methylpropene and not $(CH_3)_3C OCH_3$? 2+1=3

30. Answer any three of the following questions:

 $3\times1=3$

- (a) Explain the type of hybridization in $[Fe(CN)_6]^{3-}$ on the basis of valence bond theory. (Given: Atomic number of Fe = 26)
- (b) Draw the geometrical isomers of [PtCl₂(en)₂]²⁺ ion.
- (c) [NiCl₄]²⁻ is paramagnetic while [Ni(CO)₄] is diamagnetic though both are tetrahedral. Why?
- (d) Name the type of isomerism when ambidentate ligands are attached to central metal ion. Give one example of ambidentate ligand.

15

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को सावधानीपूर्वक पिट्टए और दिए गए प्रश्नों के उत्तर दीजिए।

31. जैव-तंत्र अनेक जटिल जैव अणु जैसे कार्बोहाइड्रेट, प्रोटीन, न्यूक्लीक अम्ल, लिपिड, आदि से मिलकर बनते हैं । कार्बोहाइड्रेट, ध्रुवण घूर्णक पॉलिहाइड्रॉक्सी ऐल्डिहाइड अथवा कीटोन अथवा वे अणु होते हैं जिनके जल-अपघटन पर इस प्रकार की इकाइयाँ प्राप्त होती हैं । इन्हें मुख्य रूप से तीन समूहों में वर्गीकृत किया गया है — मोनोसैकेराइड, ओलिगोसैकेराइड और पॉलिसैकेराइड । मोनोसैकेराइड ग्लाइकोसिडिक बंध द्वारा जुड़कर डाइसैकेराइड जैसे सूक्रोस, माल्टोस अथवा पॉलिसैकेराइड जैसे स्टार्च और सेलूलोस बनाते हैं ।

अन्य जैव अणु : प्रोटीन α -ऐमीनो अम्लों के बहुलक हैं जो पेप्टाइड आबंधों द्वारा जुड़े होते हैं । दस ऐमीनो अम्ल आवश्यक ऐमीनो अम्ल कहलाते हैं । प्रोटीनों की संरचना एवं आकृति का अध्ययन चार भिन्न स्तरों पर किया जा सकता है अर्थात् प्राथमिक, द्वितीयक, तृतीयक एवं चतुष्क संरचनाएँ तथा प्रत्येक स्तर पूर्व की तुलना में अधिक जटिल होते हैं ।

निम्नलिखित प्रश्नों के उत्तर दीजिए:

pesociated into a denor viter

- (i) ग्लाइकोसिडिक बंध और पेप्टाइड बंध में क्या अंतर है ?
- (ii) कौन-से ऐमीनो अम्ल, आवश्यक ऐमीनो अम्ल कहलाते हैं ?
- (iii) प्रोटीनों की सामान्य प्रकार की द्वितीयक संरचनाएँ क्या हैं ? किन्हीं दो बलों के नाम लिखिए जो प्रोटीन की द्वितीयक और तृतीयक संरचनाओं को स्थायित्व प्रदान करते हैं।

्णाची भागाताला 👊 अथवा

(iii) एक उदाहरण सिहत प्रोटीन के विकृतीकरण को परिभाषित कीजिए । विकृतीकरण के दौरान प्रोटीनों की किन संरचनाओं की जैविक सिक्रियता नष्ट हो जाती है ?

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

31. Living systems are made up of various complex biomolecules like carbohydrates, proteins, nucleic acids, lipids, etc. Carbohydrates are optically active polyhydroxy aldehydes or ketones or molecules which provide such units on hydrolysis. They are broadly classified into three groups — monosaccharides, oligosaccharides and polysaccharides. Monosaccharides are held together by glycosidic linkages to form disaccharides like sucrose, maltose or polysaccharides like starch and cellulose.

Another biomolecule: proteins are polymers of α -amino acids which are linked by peptide bonds. Ten amino acids are called essential amino acids. Structure and shape of proteins can be studied at four different levels i.e. primary, secondary, tertiary and quaternary, each level being more complex than the previous one.

Answer the following questions:

(i) What is the difference between a glycosidic linkage and peptide linkage?

(ii) Which amino acids are called essential amino acids?

(iii) What are the common types of secondary structures of proteins?
Write any two forces which stabilise the secondary and tertiary structures of protein.

OR

(iii) Define denaturation of protein with an example. During denaturation which structures of protein lose their biological activity?

17

2

1

1

Amines are usually formed from nitro compounds, halides, amides, imides at a mides their imides, etc. They exhibit hydrogen bonding which influences their physical physical proporties. In alkyl amines, a combination of electron releasing, storic and proporties. steric and hydrogen bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. In aromatic amines, electron releasing and withdrawing groups, respectively increase and decrease their basic character. Influence of the number of hydrogen atoms at nitrogen atom on the type of reactions and nature of products is responsible for identification and distinction between primary, secondary and tertiary amines. Presence of amino group in aromatic ring enhances reactivity of the aromatic amines. Aryl diazonium salts provide advantageous methods for producing aryl halides, cyanides, phenols and arenes by reductive removal of the diazo group.

Answer the following questions:

Arrange the following in the increasing order of their pKb values in (i) aqueous solution:

 $C_2H_5NH_2$, $(C_2H_5)_2NH$, $(C_2H_5)_3N$

Aniline on nitration gives a substantial amount of m-nitroaniline, (ii) though amino group is o/p directing. Why?

An aromatic compound 'A' of molecular formula C7H6O2 on treatment with aqueous ammonia and heating forms compound 'B'. Compound 'B' on heating with Br2 and aqueous KOH gives a compound 'C' of molecular formula C6H7N. Write the structures of A, B and C. OR FOR THE TWO CLASS OF SHIP BE DESTROY (SE)

Complete the following reactions giving main products: (iii)

 $2\times1=2$

1

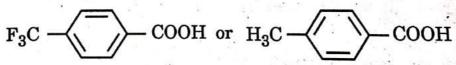
1

2

56/4/3

•	-	
	.5	
•	v,	

BTO BILL


SECTION E

- (i) Account for the following:
- Zn^{2+} salts are colourless while Ni^{2+} salts are coloured. Poir simple electrical Cr^{2+} is a strong reducing (1)
 - (2)
 - Transition metals and their compounds show catalytic (3)activities.
 - Write the ionic equations for the oxidizing action of MnO4 in acidic medium with
 - I ion, and (1)

3+2=5

Fe²⁺ ion. (2)

- Name two oxometal anions of the 3d series of the transition metals in which the metal exhibits the oxidation state equal मंत्रीक स्वक्रीहे to its group number.
 - What is the effect of increasing pH on a solution of K₂Cr₂O₇? (ii)
 - Why is Cu⁺ not stable in aqueous solution? (iii)
 - Name a member of Lanthanoid series which is well-known to (iv) exhibit +4 oxidation state.
 - Name two elements of 3d series which show anomalous (v) $5\times1=5$ electronic configuration.
- Draw structure of the 2,4-dinitrophenylhydrazone of benzaldehyde. 34. (a)
 - Which acid of the following pair is a stronger acid? (b)

- Write the chemical equation involved in Rosenmund's reduction. (c)
- Why are α-hydrogen atoms of aldehydes and ketones acidic in (d) nature?
- Write a chemical test to distinguish between Benzaldehyde and (e)

 $5 \times 1 = 5$

56/4/3

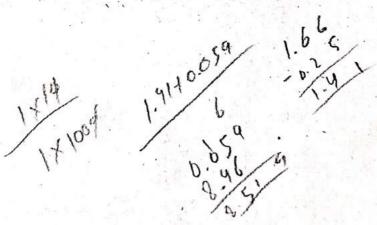
21

P.T.O.

(a) (i)Calculate the emf of the following cell at 298 K:

Al (s) \mid Al³⁺ (0.001 M) \mid Ni²⁺ (0.1 M) \mid Ni (s) [Given: $E_{Al^{3+}/Al}^{\circ} = -1.66 \text{ V}, E_{Ni^{2+}/Ni}^{\circ} = -0.25 \text{ V}, \log 10 = 1$]

(ii) With the help of a graph explain why it is not possible to determine $\Lambda_{\rm m}^{\circ}$ for a weak electrolyte by extrapolating the molar conductivity ($\Lambda_{\rm m}$) versus $C^{1/2}$ curve as for strong 3+2=5 electrolyte.


OR

- The molar conductivities of NH₄ and Cl ion are (b) (i) 73.8 S cm² mol⁻¹ and 76.2 S cm² mol⁻¹ respectively. The conductivity of 0·1 M NH_4Cl is $1\cdot29 \times 10^{-2}$ S cm⁻¹. Calculate its molar conductivity and degree of dissociation.
 - Calculate the half-cell potential at 298 K for the reaction (ii) $Zn^{2+} + 2e^{-} \longrightarrow Zn$

if $[Zn^{2+}]=0.1~M$ and $E_{Zn^{2+}/Zn}^{\circ}=-0.76~V.$

3+2=5

Ecel = Farlx

