CBSE Class 12 Mathematics Answer Key 2024 (Set 1 - 65/3/1) Marking Scheme

Strictly Confidential

(For Internal and Restricted use only)

Senior School Certificate Examination 2024

	Senior School Certificate Examination, 2024		
	MATHEMATICS PAPER CODE 65/3/1		
Gene	General Instructions:		
1	You are aware that evaluation is the most important process in the actual and correct		
	assessment of the candidates. A small mistake in evaluation may lead to serious problems		
	which may affect the future of the candidates, education system and teaching profession. To		
	avoid mistakes, it is requested that before starting evaluation, you must read and understand		
	the spot evaluation guidelines carefully.		
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the		
	examinations conducted, Evaluation done and several other aspects. Its' leakage to		
	public in any manner could lead to derailment of the examination system and affect the		
	life and future of millions of candidates. Sharing this policy/document to anyone,		
	publishing in any magazine and printing in News Paper/Website etc may invite action		
- 200	under various rules of the Board and IPC."		
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not		
	be done according to one's own interpretation or any other consideration. Marking Scheme		
	should be strictly adhered to and religiously followed. However, while evaluating, answers		
	which are based on latest information or knowledge and/or are innovative, they may be		
	assessed for their correctness otherwise and due marks be awarded to them.		
4	The Marking scheme carries only suggested value points for the answers.		
	These are Guidelines only and do not constitute the complete answer. The students can have		
	their own expression and if the expression is correct, the due marks should be awarded		
_	accordingly.		
3	The Head-Examiner must go through the first five answer books evaluated by each evaluator		
	on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any varieties, the same should be zero after delibration		
	in the Marking Scheme. If there is any variation, the same should be zero after delibration and discussion. The remaining answer books meant for evaluation shall be given only after		
	ensuring that there is no significant variation in the marking of individual evaluators.		
6	Evaluators will mark ($\sqrt{}$) wherever answer is correct. For wrong answer CROSS 'X" be		
0			
	marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that		
	answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.		
7			
'	If a question has parts, please award marks on the right-hand side for each part. Marks		
	awarded for different parts of the question should then be totaled up and written in the left-		
8	hand margin and encircled. This may be followed strictly. If a question does not have any parts, marks must be awarded in the left hand margin and		
0	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.		
9	In Q1-Q20, if a candidate attempts the question more than once (without canceling		
	the previous attempt), marks shall be awarded for the first attempt only and the other		
	answer scored out with a note "Extra Question".		

hould be penalized only 0/30 marks as given in full marks if the answer rking hours i.e., 8 hours
0/30 marks as given in full marks if the answer rking hours i.e., 8 hours
full marks if the answer rking hours i.e., 8 hours
full marks if the answer rking hours i.e., 8 hours
rking hours i.e., 8 hours
and 25 answer books per
in view of the reduced
ors committed by the
ook to the title page.
T.S.
l list.
nat the right tick mark is
Same is with the X for
but no marks awarded.
ly incorrect, it should be
page, or totaling error
ersonnel engaged in the
orestige of all concerned,
nd judiciously.
n in the "Guidelines for
marks carried over to
k on request on payment
Head Examiners/Head
valuation is carried out
Scheme.

Q. NO.	EXPECTED ANSWER / VALUE POINT	MARKS	
Question	SECTION A s no. 1 to 18 are multiple choice questions (MCQs) of 1 mark each.		
Q1	If $A = [a_{ii}]$ is an identity matrix, then which of the following is true?		
	(A) $a_{ij} = \begin{cases} 0, & \text{if } i = j \\ 1, & \text{if } i \neq j \end{cases}$ (B) $a_{ij} = 1, \forall i, j$	ue:	
	(C) $a_{ij} = 0, \forall i, j$ (D) $a_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$		
Ans	(D) $a_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$	1	
Q2	Let R_+ denote the set of all non-negative real numbers. Then the $f:R_+\to R_+$ defined as $f(x)$ = x^2 + 1 is :	unction	
	(A) one-one but not onto (B) onto but not one-one		
	(C) both one-one and onto (D) neither one-one nor on	to	
Ans	(A) one-one but not onto	1	
Q3	Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a square matrix such that adj $A = A$	Then,	
	(a + b + c + d) is equal to:		
	(A) 2a (B) 2b		
	(C) 2c (D) 0		
Ans	(A) 2a	1	
Q4	A function $f(x) = 1 - x + x $ is:		
	(A) discontinuous at $x = 1$ only (B) discontinuous at $x = 1$	0 only	
	(C) discontinuous at $x = 0, 1$ (D) continuous everywh	ere	
Ans	(D) continuous everywhere	1	
Ans Q5		1	
	(D) continuous everywhere If the sides of a square are decreasing at the rate of 1.5 cm/s, the	1	
	(D) continuous everywhere If the sides of a square are decreasing at the rate of 1.5 cm/s, the decrease of its perimeter is:	1	

		i
Q6	$\int_{0}^{a} f(x) dx = 0, if:$	
	$-\mathbf{a} \qquad \qquad \mathbf{(D)} \qquad \mathbf{f}(\mathbf{w}) \qquad \qquad \mathbf{f}(\mathbf{w})$	
	(A) $f(-x) = f(x)$ (B) $f(-x) = -f(x)$	
A	(C) $f(a - x) = f(x)$ (D) $f(a - x) = -f(x)$	1
Ans	(B) $f(-x) = -f(x)$	
Q7	$x \log x \frac{dy}{dx} + y = 2 \log x \text{ is an example of a :}$	
	(A) variable separable differential equation.	
	(B) homogeneous differential equation.	
	(C) first order linear differential equation.	
	(D) differential equation whose degree is not defined.	
Ana		1
Ans	(C) first order linear differential equation.	no sa
Q8	If $\vec{a} = 2\vec{i} - \vec{j} + \vec{k}$ and $\vec{b} = \vec{i} + \vec{j} - \vec{k}$, then \vec{a} and \vec{b} are:	
	(A) collinear vectors which are not parallel	
	(B) parallel vectors	
	(C) perpendicular vectors	
	(D) unit vectors	
Ans	(C) perpendicular vectors	1.
Q9	If α , β and γ are the angles which a line makes with positive direct	ions of
	x, y and z axes respectively, then which of the following is <i>not</i> true	
	(A) $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$	
	(B) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$	
	(C) $\cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1$	
	(D) $\cos \alpha + \cos \beta + \cos \gamma = 1$	
Ans	(D) $\cos \alpha + \cos \beta + \cos \gamma = 1$	1
Q10	The restrictions imposed on decision variables involved in an o	biective
	function of a linear programming problem are called:	
	(A) feasible solutions (B) constraints	
	(C) optimal solutions (D) infeasible solutions	
Ans	(B) constraints	1
Q11	Let E and F be two events such that $P(E) = 0.1$, $P(F) = 0.3$, $P(E \cup F)$	7) - 0.4
~11	then $P(F E)$ is:) = 0.4,
	(A) (C) (C) (C) (D) (C)	
	$(A) 0.6 \qquad (B) 0.4 \qquad (C) 0.5 \qquad (D) 0$	

^{*}These answers are meant to be used by evaluators.

Ans	(D) 0	1
Q12	If A and B are two skew symmetric matrices, then (AB + BA) i	s ·
	(A) a skew symmetric matrix (B) a symmetric matri	
	(C) a null matrix (D) an identity matrix	
Anc		1
Ans	(B) a symmetric matrix	esta e
Q13	1 3 1	
	If $k = \pm 6$, then the value of k is:	
	0 0 1	
	(A) $(B) -2$ (C) ± 2 (D)	∓ 2
Ans	$(\mathbf{D}) \mp 2$	1
Q14	The derivative of 2 ^x w.r.t. 3 ^x is :	
	•	
	(A) $\left(\frac{3}{2}\right)^{\lambda} \frac{\log 2}{\log 2}$ (B) $\left(\frac{2}{2}\right)^{\lambda} \frac{\log 3}{\log 2}$	
	$(2) \log 3$ $(3) \log 2$	
	(C) $\left(\frac{2}{2}\right)^{x} \frac{\log 2}{\log 3}$	
	(C) $\left(\frac{2}{3}\right) \frac{\log 2}{\log 3}$ (D) $\left(\frac{3}{2}\right) \frac{\log 3}{\log 2}$	
Ans	$(0)^{X}$	
1 1115	(C) $\left(\frac{2}{2}\right)^{\lambda} \frac{\log 2}{\log 2}$	1
Q15	(3) log 3	
Q13	If $ \overrightarrow{a} = 2$ and $-3 \le k \le 2$, then $ \overrightarrow{ka} \in :$	
	(A) [-6, 4] (B) [0, 4]	
	(C) [4, 6] (D) [0, 6]	
Ans	(D) [0, 6]	1
Q16		
	If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of both	n x-axis
	and z-axis, then the angle which it makes with the positive dire	ction of
	y-axis is:	
	(A) 0 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π	
Ans	π	
	$\frac{C}{2}$	1

Q17 Of the following, which group of constraints represents the feasible region given below? $x + 2y \le 76$, $2x + y \ge 104$, $x, y \ge 0$ (A) $x + 2y \le 76$, $2x + y \le 104$, $x, y \ge 0$ $x + 2y \ge 76$, $2x + y \le 104$, $x, y \ge 0$ (C) (D) $x + 2y \ge 76$, $2x + y \ge 104$, $x, y \ge 0$ Ans (C) $x + 2y \ge 76$, $2x + y \le 104$, $x, y \ge 0$ Q18 If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$, then A^{-1} is : (B) (A) $\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{3} \\ 0 & 0 \end{bmatrix}$ Ans (A)

Questions number 19 and 20 are Assertion and Reason based questions. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is **not** the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.

Q19	Assertion(A): Every scalar matrix is a diagonal matrix.	
	Reason~(R): In a diagonal matrix, all the diagonal elements a	re 0.
Ans	(C) Assertion (A) is true, but Reason (R) is false.	1
Q20	Assertion (A): Projection of \overrightarrow{a} on \overrightarrow{b} is same as projection of \overrightarrow{b} of	n a .
	Reason (R): Angle between \overrightarrow{a} and \overrightarrow{b} is same as angle \overrightarrow{b} and \overrightarrow{a} numerically.	oetween
Ans	(D) Assertion (A) is false, but Reason (R) is true.	1

SECTION B

Questions no. 21 to 25 are very short answer (VSA) type questions, carrying 2 marks each.

Q21	Evaluate:	
	$\sec^2\left(\tan^{-1}\frac{1}{2}\right) + \csc^2\left(\cot^{-1}\frac{1}{3}\right)$	
Ans	$\sec^2\left(\tan^{-1}\frac{1}{2}\right) + \cos ec^2\left(\cot^{-1}\frac{1}{3}\right)$	
	$= \left[1 + \tan^2\left(\tan^{-1}\frac{1}{2}\right)\right] + \left[1 + \cot^2\left(\cot^{-1}\frac{1}{3}\right)\right]$	1
	$= \left[1 + \left(\frac{1}{2}\right)^2\right] + \left[1 + \left(\frac{1}{3}\right)^2\right]$	1/2
	$=\frac{85}{36}$	1/2
Q22(a)	If $x = e^{x/y}$, prove that $\frac{dy}{dx} = \frac{\log x - 1}{(\log x)^2}$	

		1
Ans	$x = e^{\frac{x}{y}} \Rightarrow \log x = \frac{x}{y} \Rightarrow y = \frac{x}{\log x}$	1
	$\Rightarrow \frac{dy}{dx} = \frac{(\log x)(1) - x\left(\frac{1}{x}\right)}{(\log x)^2} = \frac{\log x - 1}{(\log x)^2}$	1
	OR	
Q22(b)	Check the differentiability of $f(x) = \begin{cases} x^2 + 1, & 0 \le x < 1 \\ 3 - x, & 1 \le x \le 2 \end{cases}$ a	t x = 1.
Ans	LHD at $x = 1$	
	$= \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h} = \lim_{h \to 0} \frac{\left[(1-h)^2 + 1 \right] - 2}{-h} = 2$ RHD at $x = 1$	1
	$= \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\left[3 - (1+h)\right] - 2}{h} = -1$ as LHD \neq RHD, so $f(x)$ is not differentiable at $x = 1$	1/2 1/2
Q23(a)		
	Evaluate: $\int_{0}^{\pi/2} \sin 2x \cos 3x dx$	
Ans	$I = \int_{0}^{\frac{\pi}{2}} \sin 2x \cos 3x dx$ $\frac{\pi}{2}$	
	$= \frac{1}{2} \int_0^2 (\sin 5x - \sin x) dx$	1
	$= \frac{1}{2} \left[-\frac{1}{5} \cos 5x + \cos x \right]_0^{\frac{\pi}{2}}$	1/2
	$=-\frac{2}{5}$	1/2
	OR	
Q23(b)	Given $\frac{d}{dx} F(x) = \frac{1}{\sqrt{2x-x^2}}$ and $F(1) = 0$, find $F(x)$.	

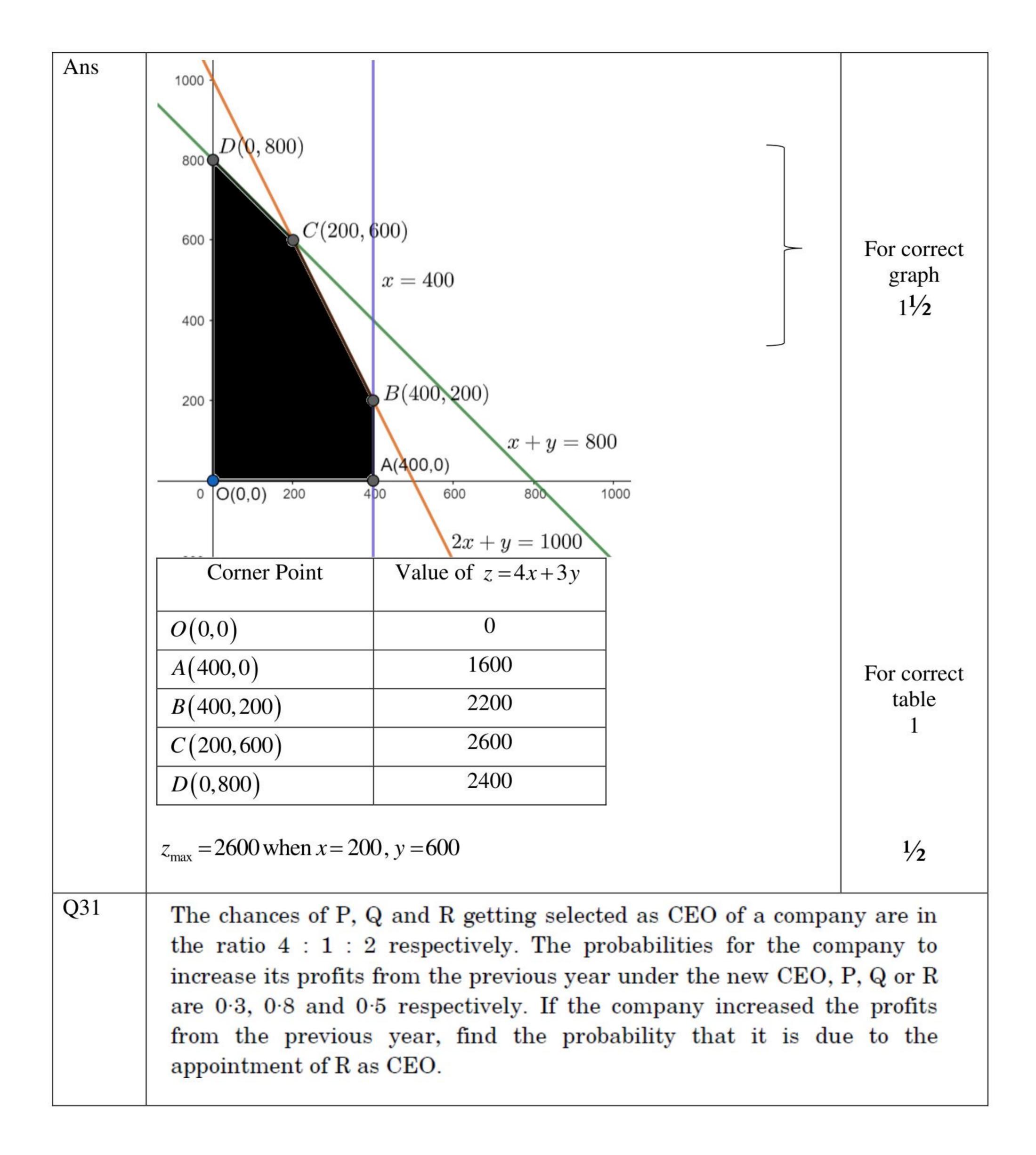
^{*}These answers are meant to be used by evaluators.

Ans	$F(x) = \int \frac{1}{\sqrt{2x - x^2}} dx$	
	$=\int \frac{1}{\sqrt{1-(x-1)^2}} dx$	1/2
	$=\sin^{-1}(x-1)+c$	1/2
	when $x = 1$, $y = 0$ gives $c = 0$	1/2
	$\therefore F(x) = \sin^{-1}(x-1)$	1/2
Q24	Find the position vector of point C which divides the line segment points A and B having position vectors $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{i}$ respectively in the ratio 4: 1 externally. Further, find $ AB $: $ BC $	j + k
Ans	→	1.
7 1115	Position vector of $C = \vec{r} = \frac{4b - \vec{a}}{3}$	
	i.e. $\vec{r} = \frac{1}{3} \left(-5\hat{i} + 2\hat{j} + 5\hat{k} \right)$	1
	Now, $\overrightarrow{AB} = -2\hat{i} - \hat{j} + 2\hat{k} \Rightarrow \left \overrightarrow{AB} \right = 3$	
	$\begin{vmatrix} \vec{BC} = -\frac{1}{3} \left(2\hat{i} + \hat{j} - 2\hat{k} \right) \Rightarrow \begin{vmatrix} \vec{DC} \\ \vec{BC} \end{vmatrix} = 1$	1
	$\left \overrightarrow{AB} \right : \left \overrightarrow{BC} \right = 3:1$	
Q25	Let \overrightarrow{a} and \overrightarrow{b} be two non-zero vectors.	
	Prove that $ \overrightarrow{a} \times \overrightarrow{b} \le \overrightarrow{a} \overrightarrow{b} $.	
	State the condition under which equality holds, i.e., $ \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} $	$ \overrightarrow{b} $.
Ans	$\begin{vmatrix} \overrightarrow{a} \times \overrightarrow{b} \end{vmatrix} = \begin{vmatrix} \overrightarrow{a} \end{vmatrix} \begin{vmatrix} \overrightarrow{b} \end{vmatrix} \sin \theta $	1/2
	As, $0 \le \sin \theta \le 1$	1/2
	$\Rightarrow \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \sin\theta \le \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} $	1/2
	$\Rightarrow \stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b} \le \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} $	
	For equality, $\sin \theta = 1 \Rightarrow \theta = \frac{\pi}{2} \Rightarrow \vec{a}$ is perpendicular to \vec{b} .	1/2
Ougstion	SECTION C s no. 26 to 31 are short answer (SA) type questions, carrying 3 marks each	

Questions no. 26 to 31 are short answer (SA) type questions, carrying 3 marks each.

Q26(a)	If $x \cos (p + y) + \cos p \sin (p + y) = 0$, prove that	
	$\cos p \frac{dy}{dx} = -\cos^2(p + y)$, where p is a constant.	
Ans	$x\cos(p+y)+\cos p\sin(p+y)=0$	
	$\Rightarrow x = \frac{-\cos p \sin(p+y)}{\cos(p+y)} \Rightarrow x = -\cos p \cdot \tan(p+y)$	1
	$\Rightarrow \frac{dx}{dy} = -\cos p \cdot \sec^2(p+y)$	1
	$\Rightarrow \frac{dy}{dx} = \frac{-1}{\cos p \cdot \sec^2(p+y)}$	1/2
	$\Rightarrow \cos p \frac{dy}{dx} = -\cos^2(p+y)$	1/2
	OR	
Q26(b)	Find the value of a and b so that function f defined as:	
	$\left \frac{x-2}{ x-2 }+a, \text{if} x<2\right $	
	$f(x) = \begin{cases} a + b, & \text{if } x = 2 \end{cases}$	
	$\left \frac{x-2}{ x-2 }+b, \text{if} x>2\right $	
	is a continuous function.	
Ans	$f(x) = \begin{cases} \frac{x-2}{-(x-2)} + a & ; x < 2 \\ a+b & ; x = 2 \Rightarrow f(x) = \begin{cases} -1+a & ; x < 2 \\ a+b & ; x = 2 \\ \frac{x-2}{(x-2)} + b & ; x > 2 \end{cases}$	
	$\lim_{x \to 2^{-}} f(x) = -1 + a, \lim_{x \to 2^{+}} f(x) = 1 + b \text{ and } f(2) = a + b$	1
	as f is continous at $x = 2$: $-1+a=1+b=a+b$	1
	$\Rightarrow a = 1, b = -1$	1/2+1/2
Q27(a)	Find the intervals in which the function $f(x) = \frac{\log x}{x}$ is increasing or strictly decreasing.	strictly
Ans	$f(x) = \frac{\log x}{x} \Rightarrow f'(x) = \frac{1 - \log x}{x^2}; x > 0$	1
	for strictly increasing/decreasing, put $f'(x) = 0 \Rightarrow x = e$	1
	for strictly increasing, $x \in (0, e)$ and for strictly decreasing $x \in (e, \infty)$	1/2+1/2

Q27(b)	Find the absolute maximum and absolute minimum valu	es of the
	function f given by $f(x) = \frac{x}{2} + \frac{2}{x}$, on the interval [1, 2].	
Ans	$f(x) = \frac{x}{2} + \frac{2}{x} ; x \in [1, 2]$ $\Rightarrow f^{I}(x) = \frac{1}{2} - \frac{2}{x^{2}}$	
	$\Rightarrow f^{I}(x) = \frac{1}{2} - \frac{2}{x^2}$	1
	for absolute maximum / minimum, put $f'(x) = 0$	
	$\Rightarrow x^2 = 4 \Rightarrow x = 2$	1/2
	Now, $f(1) = \frac{5}{2}$ and $f(2) = 2$	1/2+1/2
	∴ absolute maximum value = $\frac{5}{2}$ and absolute minimum value = 2	1/2
Q28	Find:	
	$\int \frac{x^2 + 1}{(x^2 + 2)(x^2 + 4)} dx$	
Ans	$I = \int \frac{x^2 + 1}{\left(x^2 + 2\right)\left(x^2 + 4\right)} dx$	
	Let $x^2 = y$, then $\frac{x^2 + 1}{(x^2 + 2)(x^2 + 4)} = \frac{y + 1}{(y + 2)(y + 4)}$	1
	Let $\frac{y+1}{(y+2)(y+4)} = \frac{A}{y+2} + \frac{B}{y+4}$	
	this gives $A = -\frac{1}{2}, B = \frac{3}{2}$	
	$\therefore I = -\frac{1}{2} \int \frac{1}{x^2 + 2} dx + \frac{3}{2} \int \frac{1}{x^2 + 4} dx$	1
	$\Rightarrow I = -\frac{1}{2\sqrt{2}} \tan^{-1} \left(\frac{x}{\sqrt{2}}\right) + \frac{3}{4} \tan^{-1} \left(\frac{x}{2}\right) + c$	1
Q29(a)	Find:	
	$\int \frac{2+\sin 2x}{1+\cos 2x} e^x dx$	



Α		ſ
Ans	$I = \int \frac{2 + \sin 2x}{1 + \cos 2x} e^x dx$	
	$-\int_{0}^{\infty} 2 + 2\sin x \cos x$	
	$= \int \frac{2 + 2\sin x \cos x}{2\cos^2 x} e^x dx$	1
	$= \int \left(\sec^2 x + \tan x\right) e^x dx$	1
	$=e^{x}.\tan x+c$	1
	OR	
Q29(b)	Evaluate: $\int_{0}^{\pi/4} \frac{1}{\sin x + \cos x} dx$	
Ans	$I = \int_{0}^{\frac{\pi}{4}} \frac{1}{\sin x + \cos x} dx$	
	$= \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos \frac{\pi}{4} \sin x + \sin \frac{\pi}{4} \cos x} dx$	11. 1
	$= \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} \frac{1}{\sin\left(x + \frac{\pi}{4}\right)} dx = = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{4}} \cos ec\left(x + \frac{\pi}{4}\right) dx$	
	$= \frac{1}{\sqrt{2}} \left[\log \left \cos ec \left(x + \frac{\pi}{4} \right) - \cot \left(x + \frac{\pi}{4} \right) \right \right]_0^{\frac{\pi}{4}}$	1
	$= \frac{1}{\sqrt{2}} \log \left(\sqrt{2} + 1\right) \operatorname{or} - \frac{1}{\sqrt{2}} \log \left(\sqrt{2} - 1\right)$	1
Q30	Solve the following linear programming problem graphically	7:
	Maximise z = 4x + 3y,	
	subject to the constraints	
	$x + y \le 800$	
	$2x + y \le 1000$	
	$x \le 400$	
	$x, y \ge 0$.	

^{*}These answers are meant to be used by evaluators.

Ans	T. E. D		
Alls	Let $E_1: P$ is appointed as CEO ,		
	$E_2: Q$ is appointed as CEO ,		1/2
	$E_3: R$ is appointed as CEO		
	A: company increase profits from previous year		
	here, $P(E_1) = \frac{4}{7}$, $P(E_3) = \frac{1}{7}$, $P(E_1) = \frac{2}{7}$		1
	$P(A E_1) = 0.3, P(A E_2) = 0.8, P(A E_3) = 0.5$		
	$P(E_3 A) = \frac{P(E_3)P(A E_3)}{P(E_1)P(A E_1) + P(E_2)P(A E_2) + P(E_3)P(A E_3)}$		
	$P(E_1)P(A E_1)+P(E_2)P(A E_2)+P(E_3)P(A E_3)$		
	$\frac{2}{7} \times 0.5$		
	$= \frac{\frac{7}{4 \times 0.3 + \frac{1}{7} \times 0.8 + \frac{2}{7} \times 0.5}}{\frac{1}{7} \times 0.3 + \frac{1}{7} \times 0.8 + \frac{2}{7} \times 0.5}$		1
	$=\frac{1}{2}$		1/2
	3		72
Q32	Questions no. 32 to 35 are long answer (LA) type questions carrying 5 marks each. A relation R on set $A = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ be defined a $R = \{(x, y) : x + y \text{ is an integer divisible by 2}\}$. Show that R is a		
	equivalence relation. Also, write the equivalence class [2].		
Ans	For reflexive: clearly $x + x$ i.e. $2x$ is integer divisible by 2.		
	$\Rightarrow (x, x) \in R \Rightarrow R \text{ is reflexive.}$		1
	For symmetric: $(x, y) \in R \Rightarrow x + y$ is integer divisible by 2.		
	$\Rightarrow y + x \text{ is integer divisible by } 2 \Rightarrow (y, x) \in R$		1
	For transitive: $(x, y) \in R \Rightarrow x + y$ is integer divisible by 2.		
	and $(y, z) \in R \Rightarrow y + z$ is integer divisible by 2.		•
			2
	so, $(x+z)+2y$ is integer divisible by 2.		2
	so, $(x+z)+2y$ is integer divisible by 2. $\Rightarrow x+z$ is integer divisible by $2\Rightarrow (x,z) \in R$		2
			1
Q33(a)	$\Rightarrow x + z \text{ is integer divisible by } 2 \Rightarrow (x, z) \in R$ Equivalence class $[2] = \{-4, -2, 0, 2, 4\}$ It is given that function $f(x) = x^4 - 62x^2 + ax + 9$		
Q33(a)	$\Rightarrow x + z$ is integer divisible by $2 \Rightarrow (x, z) \in R$ Equivalence class $[2] = \{-4, -2, 0, 2, 4\}$ It is given that function $f(x) = x^4 - 62x^2 + ax + 9$ maximum value at $x = 1$. Find the value of 'a', here	nce obt	ain all
Q33(a)	$\Rightarrow x + z \text{ is integer divisible by } 2 \Rightarrow (x, z) \in R$ Equivalence class $[2] = \{-4, -2, 0, 2, 4\}$ It is given that function $f(x) = x^4 - 62x^2 + ax + 9$	nce obt	ain all



Ans		1/
7 1113	$f(x)=x^4-62x^2+ax+9 \Rightarrow f'(x)=4x^3-124x+a$	1/2
	as at $x = 1$, f attains local maximum value, $f'(1) = 0 \Rightarrow a = 120$	1
	now, $f'(x)=4x^3-124x+120=4(x-1)(x^2+x-30)=4(x-1)(x-5)(x+6)$	1
	Critical points are $x = -6, 1, 5$	1
	$f''(x)=12x^2-124$	
	f''(-6) > 0, f''(1) < 0, f''(5) > 0	1/2
	so f attains local maximum value at $x = 1$ and local minimum value at $x = -6$, 5	1
	OR	
Q33(b)	The perimeter of a rectangular metallic sheet is 300 cm. It is rolled along one of its sides to form a cylinder. Find the dimensions of the rectangular sheet so that volume of cylinder so formed is maximum.	
Ans	Let length of rectangle be x cm and breadth be $(150 - x)$ cm.	
	Let r be the radius of cylinder $\Rightarrow 2\pi r = x \Rightarrow r = \frac{x}{2\pi}$	1
	$V = \pi r^2 h = \pi \left(\frac{x^2}{4\pi^2}\right) (150 - x) = \frac{75x^2}{2\pi} - \frac{x^3}{4\pi}$	1
	$\frac{dV}{dx} = \frac{150x}{2\pi} - \frac{3x^2}{4\pi}$	1
	$\frac{dV}{dx} = 0 \Rightarrow x = 100 \mathrm{cm}$	a 1
	$\left \frac{d^2V}{dx^2} \right _{x=100 \text{ cm}} = -\frac{75}{\pi} < 0 \Rightarrow V \text{ is maximum when } x = 100 \text{ cm}.$	1/2
	Length of rectangle is 100 cm and breadth of rectangle is 50 cm.	1/2
Q34	Using integration, find the area of the region enclosed between the circle $x^2 + y^2 = 16$ and the lines $x = -2$ and $x = 2$.	
Ans	x = -2 $x = -2$ $x = 2$ $x = 3$ $x = 2$ $x = 3$ $x = 2$ $x = 3$	For correct figure 1 mark

	Required area = $4\int_{0}^{2} \sqrt{16-x^2} dx$	1	
	$=4\left[\frac{x}{2}\sqrt{16-x^2}+8\sin^{-1}\left(\frac{x}{4}\right)\right]_0^2$	2	
	$=8\sqrt{3}+\frac{16\pi}{3}$	1	
Q35(a)	Find the equation of the line passing through the point of intersection of the lines $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ and $\frac{x-1}{0} = \frac{y}{-3} = \frac{z-7}{2}$ and perpendicular to these given lines.		
Ans	$l_1: \frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3} = \lambda \ ; \ l_2: \frac{x-1}{0} = \frac{y}{-3} = \frac{z-7}{2} = \mu$		
	any point on l_1 is $(\lambda, 2\lambda + 1, 3\lambda + 2)$ & any point on l_2 is $(1, -3\mu, 2\mu + 7)$ If l_1 and l_2 intersect,	1	
	$\lambda = 1, 2\lambda + 1 = -3\mu$ and $3\lambda + 2 = 2\mu + 7 \Rightarrow \lambda = 1$ and $\mu = -1$	1	
	Point of intersection of l_1 and l_2 is $(1,3,5)$.	1	
	Let d.r.'s of required line be $\langle a,b,c \rangle$. Then,		
	$a + 2b + 3c = 0$ and $-3b + 2c = 0 \Rightarrow \frac{a}{13} = \frac{b}{-2} = \frac{c}{-3}$	1	
	Required equation of line is $\frac{x-1}{13} = \frac{y-3}{-2} = \frac{z-5}{-3}$	1	
OR			
Q35(b)			
	and $B(1, -2, 5)$. If the equation of the line passing through C a		
	is $\frac{x-4}{1} = \frac{y+7}{-2} = \frac{z-8}{2}$, then find the distance between sides AB		
	and CD. Hence, find the area of parallelogram ABCD.		
Ans	A(-1,2,1) $B(1,-2,5)$ C		
	d.r's of CD are < 1, - 2, 2 >		
	∴ d.r's of AB are < 1, - 2, 2 >	1/2	
17			

$$\therefore \text{ Equation of AB is } \frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-1}{2}$$

$$\therefore \text{ Equation of CD is } \frac{x-4}{1} = \frac{y+7}{-2} = \frac{z-8}{2}$$

Let
$$\overrightarrow{a}_1 = -\overrightarrow{i} + 2\overrightarrow{j} + \overrightarrow{k}$$
, $\overrightarrow{a}_2 = 4\overrightarrow{i} - 7\overrightarrow{j} + 8\overrightarrow{k}$ & $\overrightarrow{b} = \overrightarrow{i} - 2\overrightarrow{j} + 2\overrightarrow{k}$

Now,
$$\overrightarrow{a}_2 - \overrightarrow{a}_1 = 5\hat{i} - 9\hat{j} + 7\hat{k}$$

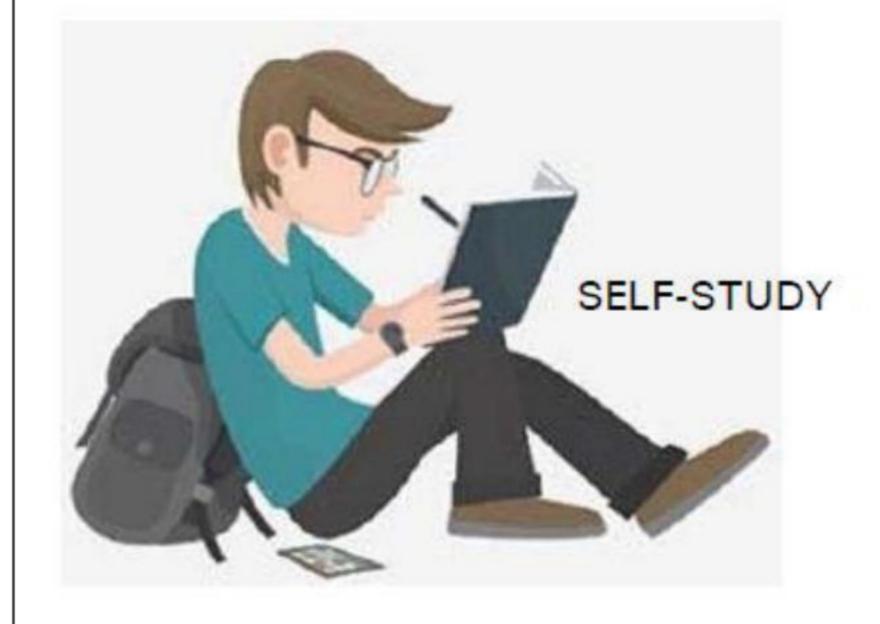
$$\begin{vmatrix} \overrightarrow{a}_2 - \overrightarrow{a}_1 \\ 1 \end{vmatrix} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 5 & -9 & 7 \\ 1 & -2 & 2 \end{vmatrix} = -4\overrightarrow{i} - 3\overrightarrow{j} - \overrightarrow{k}$$

Distance between AB and CD is given by $d = \frac{\left| (\vec{a}_2 - \vec{a}_1) \times \vec{b} \right|}{\left| \vec{b} \right|}$

$$d = \frac{\sqrt{16 + 9 + 1}}{\sqrt{1 + 4 + 4}} = \frac{\sqrt{26}}{3}$$

$$CD = \sqrt{2^2 + (-4)^2 + (4)^2} = 6$$

$$CD = \sqrt{2^2 + (-4)^2 + (4)^2} = 6$$

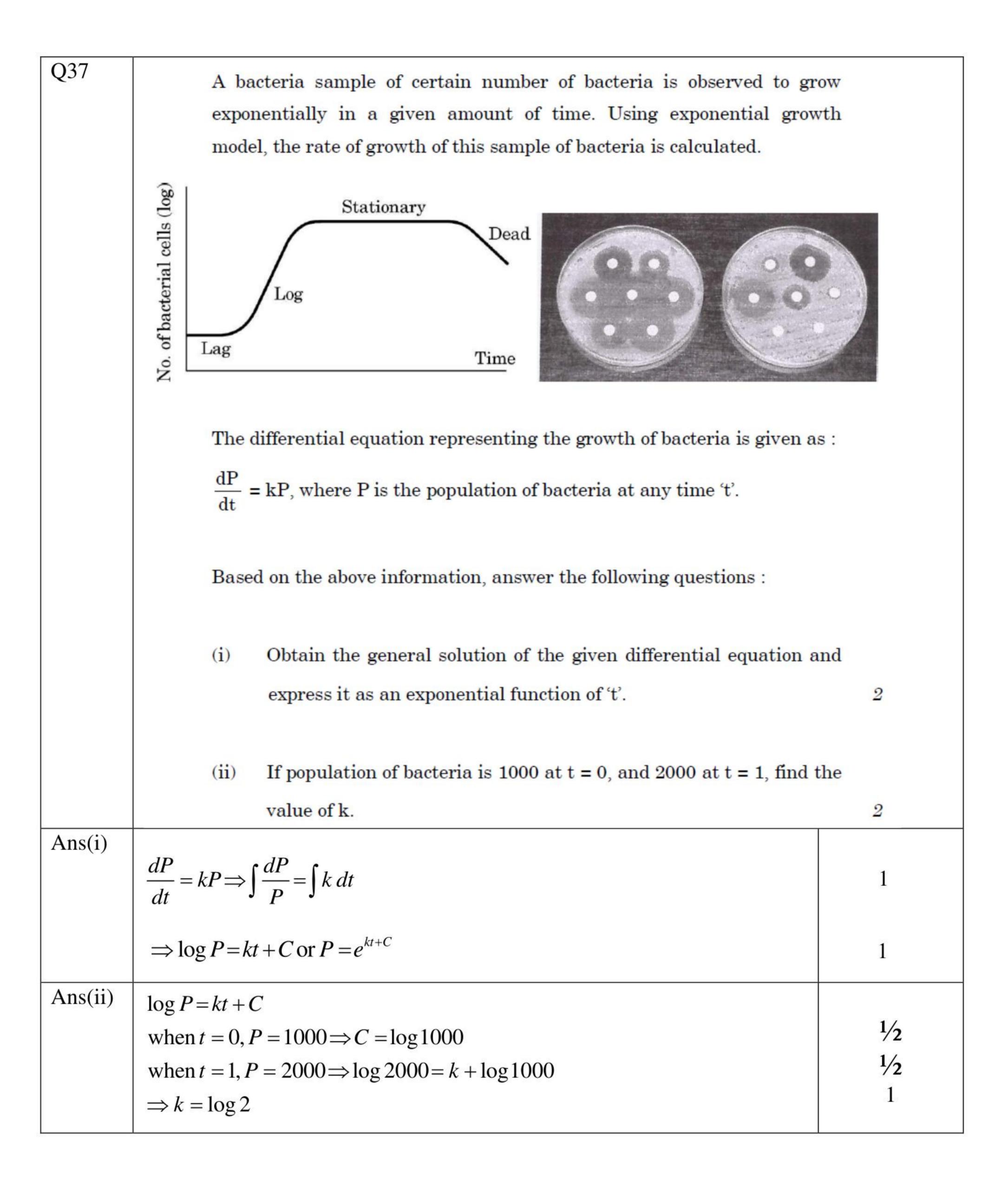

$$Area of parallelogram ABCD = b \times h = 6 \times \frac{\sqrt{26}}{3} = 2\sqrt{26}$$

SECTION E

Questions no. 36 to 38 are case study based questions carrying 4 marks each.

Q36

Self-study helps students to build confidence in learning. It boosts the self-esteem of the learners. Recent surveys suggested that close to 50% learners were self-taught using internet resources and upskilled themselves.



^{*}These answers are meant to be used by evaluators.

A student may spend 1 hour to 6 hours in a day in upskilling self. The probability distribution of the number of hours spent by a student is given below: kx^{2} , for x = 1, 2, 3 $P(X = x) = \begin{cases} kx^{2}, & \text{for } x = 1, 2, 3 \\ 2kx, & \text{for } x = 4, 5, 6 \\ 0, & \text{otherwise} \end{cases}$ where x denotes the number of hours. Based on the above information, answer the following questions: Express the probability distribution given above in the form of a (i) probability distribution table. Find the value of k. (ii) (iii) Find the mean number of hours spent by the student. OR (iii) Find P(1 < X < 6). (b) Ans(i) X 6 9k 8k 10k P(X)12k k 4k Ans(ii) k + 4k + 9k + 8k + 10k + 12k = 1 \Rightarrow k = $\frac{1}{44}$ Ans (iii) (a) Mean = $\sum x_i p_i = k + 8k + 27k + 32k + 50k + 72k$ = 190 kOR Ans (iii)(b)P(1 < X < 6) = 4k + 9k + 8k + 10k=31k

020					
Q38	A scholarship is a sum of money provided to a student to help him or h				
	pay for education. Some students are granted scholarships based on their				
	academic achievements, while others are rewarded based on their financial needs.				
	imanciai necus.				
	Every year a school offers scholarships to girl children and meritoric achievers based on certain criteria. In the session 2022 − 23, the schoffered monthly scholarship of ₹ 3,000 each to some girl students a ₹ 4,000 each to meritorious achievers in academics as well as sports.	ool			
	In all, 50 students were given the scholarships and monthly expenditure				
	incurred by the school on scholarships was ₹ 1,80,000.				
	Based on the above information, answer the following questions:				
	(i) Express the given information algebraically using matrices. 1				
	(ii) Check whether the system of matrix equations so obtained is consistent or not.				
	(iii) (a) Find the number of scholarships of each kind given by t school, using matrices.	the 2			
	\mathbf{OR}				
	(iii) (b) Had the amount of scholarship given to each girl child a meritorious student been interchanged, what would be t monthly expenditure incurred by the school?	N AND COLUMN TO THE COLUMN TO			
Ans(i)	Let No. of girl child scholarships = x				
	No. of meritorious achievers = y				
	x + y = 50				
	3000x + 4000y = 180000 or $3x + 4y = 180$				
	$\begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 50 \\ 180 \end{bmatrix}$	1			
Ans(ii)	$\begin{vmatrix} 1 & 1 \\ 3 & 4 \end{vmatrix} = 1 \neq 0$				

^{*}These answers are meant to be used by evaluators.

	∴ system is consistent.	1
Ans (iii)(a)	Let $A = \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$, $B = \begin{bmatrix} 50 \\ 180 \end{bmatrix}$	
	$AX = B \Rightarrow X = A^{-1}B$	1/2
	$X = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 180 \end{bmatrix} = \begin{bmatrix} 20 \\ 30 \end{bmatrix}$	1
	\Rightarrow x = 20, y = 30	1/2
OR		
Ans	Required expenditure = ₹ [30(3000) + 20(4000)]	1
(iii)(b)	= ₹ 1,70,000	1

^{*}These answers are meant to be used by evaluators.