Marking Scheme Strictly Confidential (For Internal and Restricted use only) Senior School Certificate Examination, 2024 MATHEMATICS PAPER CODE - 65/1/2

General	Instructions: -
General	msu ucuons

1	You are aware that evaluation is the most important process in the actual and correct
	assessment of the candidates. A small mistake in evaluation may lead to serious problems
	which may affect the future of the candidates, education system and teaching profession.
	To avoid mistakes, it is requested that before starting evaluation, you must read and
	understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the

- "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
- Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them.
- The Marking scheme carries only suggested value points for the answers
 These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
- The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- Evaluators will mark($\sqrt{\ }$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right ($\sqrt{\ }$)while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
- If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
- In Q1-Q20, if a candidate attempts the question more than once (without canceling the previous attempt), marks shall be awarded for the first attempt only and the other answer scored out `with a note "Extra Question".
- In Q21-Q38, if a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- No marks to be deducted for the cumulative effect of an error. It should be penalized only once.

12	A full scale of marks(example 0 to 80/70/60/50/40/30 marks as given in
	Question Paper) has to be used. Please do not hesitate to award full marks if the answer
	deserves it.
13	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per
	day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced
	syllabus and number of questions in question paper.
14	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past:-
	 Leaving answer or part thereof unassessed in an answer book.
	 Giving more marks for an answer than assigned to it.
	 Wrong totaling of marks awarded on an answer.
	• Wrong transfer of marks from the inside pages of the answer book to the title page.
	 Wrong question wise totaling on the title page.
	 Wrong totaling of marks of the two columns on the title page.
	Wrong grand total.
	 Marks in words and figures not tallying/not same.
	 Wrong transfer of marks from the answer book to online award list.
	• Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for
	incorrect answer.)
	Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
15	While evaluating the answer books if the answer is found to be totally incorrect, it should
	be marked as cross (X) and awarded zero (0)Marks.
16	Any un assessed portion, non-carrying over of marks to the title page, or totaling error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all
	concerned, it is again reiterated that the instructions be followed meticulously and
	judiciously.
17	The Examiners should acquaint themselves with the guidelines given in the "Guidelines
	for spot Evaluation" before starting the actual evaluation.
18	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
	the title page, correctly totaled and written in figures and words.
19	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head
	Examiners are once again reminded that they must ensure that evaluation is carried out
	strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME

MATHEMATICS (Subject Code-041) (PAPER CODE: 65/1/2)

Q.No.	EXPECTED ANSWER / VALUE POINTS	Marks
	SECTION-A (Orrection near 1 to 18 one Multiple chains Orrections comming 1 month each)	
	(Question nos. 1 to 18 are Multiple choice Questions carrying 1 mark each)	
1.	Let θ be the angle between two unit vectors \hat{a} and \hat{b} such that $\sin \theta = \frac{3}{5}$	
	Then, \hat{a} \hat{b} is equal to:	
	3	
	$(A) \pm \frac{3}{5} \tag{B} \pm \frac{3}{4}$	
	$(C) \pm \frac{4}{7} $	
	5	
	4	
Ans	$(\mathbf{C}) \pm \frac{4}{5}$	1
	The integrating factor of the differential equation $x \frac{dy}{dx} - y = x^4 - 3x$	
2.	is:	
	(A) x (B) -x	
Ans	(C) x^{-1} (D) $\log(x^{-1})$ (C) x^{-1}	1
71115	If the direction cosines of a line are $\sqrt{3}$ k, $\sqrt{3}$ k, $\sqrt{3}$ k, then the value of k	
3.	is:	
	$(A) \pm 1 $ (B) $\pm \sqrt{3}$	
	(D) ± VO	
	$(C) \pm 3 \tag{D} \pm \frac{1}{3}$	
Ans	$(\mathbf{D}) \pm \frac{1}{3}$	1
4.	A linear programming problem deals with the optimization of a/an:	
	(A) logarithmic function (B) linear function	
	(C) quadratic function (D) exponential function	
Ans	(B) linear function	1
7 1115	If $P(A \mid B) = P(A' \mid B)$, then which of the following statements is true?	-
5.		
	(C) $P(A \cap B) = \frac{1}{2} P(B)$ (D) $P(A \cap B) = 2 P(B)$	
Ans	(C) $P(A \cap B) = \frac{1}{2} P(B)$	1
	2^{-1}	is ≜ i

65/1/2

6.	If a_{ij} and A_{ij} represent the $(ij)^{th}$ element and its cofactor of $\begin{bmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{bmatrix}$ respectively, then the value of $a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23}$ is:	
	(A) 0 (B) -28	
	(C) 114 (D) -114	
Ans	(A) 0	1
7.	The derivative of sin (x^2) w.r.t. x , at $x = \sqrt{\pi}$ is :	
	$(A) 1 \qquad (B) -1$	
	(C) $-2\sqrt{\pi}$ (D) $2\sqrt{\pi}$	
	$(\mathbf{D}) = 2 \sqrt{n}$	
Ans	$(\mathbf{C}) - 2\sqrt{\pi}$	1
8.	The order and degree of the differential equation $\left[1+\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^3=\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$	
	respectively are:	
	(A) 1, 2 (C) 2, 1 (B) 2, 3 (D) 2, 6	
Ans	(C) 2, 1	1
9.	The vector with terminal point A $(2, -3, 5)$ and initial point B $(3, -4, 7)$ is:	
	(A) $\stackrel{\wedge}{i} - \stackrel{\wedge}{j} + 2\stackrel{\wedge}{k}$ (B) $\stackrel{\wedge}{i} + \stackrel{\wedge}{j} + 2\stackrel{\wedge}{k}$	
	(A) $\hat{i} - \hat{j} + 2\hat{k}$ (B) $\hat{i} + \hat{j} + 2\hat{k}$ (C) $-\hat{i} - \hat{j} - 2\hat{k}$ (D) $-\hat{i} + \hat{j} - 2\hat{k}$	
Ans	$(D) -\hat{i} + \hat{j} - 2\hat{k}$ $(D) -\hat{i} + \hat{j} - 2\hat{k}$	
		1
10.	The distance of point P(a, b, c) from y-axis is:	
	$(A) b \qquad (B) b^2$	
	(C) $\sqrt{a^2 + c^2}$ (D) $a^2 + c^2$	
	(\mathbf{D}) α α	
Ans	(C) $\sqrt{a^2 + c^2}$	1

11.	The number of corner points of the feasible region determined by	
	constraints $x \ge 0$, $y \ge 0$, $x + y \ge 4$ is:	
	(A) 0 (B) 1	
	(C) 2 (D) 3	
Ans	(C) 2	1
12.	If A and B are two non-zero square matrices of same order such that $(A + B)^2 = A^2 + B^2$, then:	
	(A) $AB = O$ (B) $AB = -BA$	
	(C) $BA = O$ (D) $AB = BA$	
Ans	(B) $AB = -BA$	1
13.	A relation R defined on set $A = \{x : x \in Z \text{ and } 0 \le x \le 10\}$ as $R = \{(x, y) : x = y\}$	
	is given to be an equivalence relation. The number of equivalence classes is:	
	(A) 1 (B) 2	
	(C) 10 (D) 11	
Ans	(D) 11	1
14.	If a matrix has 36 elements, the number of possible orders it can have, is:	
	(A) 13 (B) 3	
	(C) 5 (D) 9	
Ans	(D) 9	1
15.	The number of points, where $f(x) = [x]$, $0 < x < 3$ ([·] denotes greatest integer function) is not differentiable is:	
	(A) 1 (B) 2	
	(C) 3 (D) 4	
Ans	(B) 2	1
		/2 -5 1

Let $f(y)$ be a continuous function on [a, b] and differentiable on (a, b)	
Then, this function f(x) is strictly increasing in (a, b) if	
(A) $f'(x) < 0, \forall x \in (a, b)$	
(B) $f'(x) > 0, \forall x \in (a, b)$	
(C) $f'(x) = 0, \forall x \in (a, b)$	
(D) $f(x) > 0, \forall x \in (a, b)$	
(B) f '(x) > 0, ∀ x ∈ (a, b)	1
If $\begin{bmatrix} x+y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is:	
(A) 7 (B) 6	
(C) 8 (D) 18	
(D) 18	1
If $\int_0^a \frac{1}{4+x^2} dx = \frac{\pi}{6}$, then the value of 'a' is:	
(A) $\frac{\sqrt{3}}{2}$ (B) $2\sqrt{3}$	
(C) $\sqrt{3}$ (D) $\frac{1}{\sqrt{3}}$	
(B) $2\sqrt{3}$	1
(Question Nos. 19 & 20 are Assertion-Reason based questions of 1 mark each)	
Assertion (A): A line in space cannot be drawn perpendicular to x, y and z axes simultaneously.	
Reason (R): For any line making angles, α , β , γ with the positive	
directions of x, y and z axes respectively,	
$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.$	
	(A) $f'(x) < 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ (C) $f'(x) = 0, \forall x \in (a, b)$ (D) $f(x) > 0, \forall x \in (a, b)$ (B) $f'(x) > 0, \forall x \in (a, b)$ If $\begin{bmatrix} x + y & 2 \\ 5 & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$, then the value of $\left(\frac{24}{x} + \frac{24}{y}\right)$ is: (A) 7 (B) 6 (C) 8 (D) 18 (D) 18 (D) 18 (D) 18 (D) 18 (E) $2\sqrt{3}$ (C) $\sqrt{3}$ (B) $2\sqrt{3}$ (C) $\sqrt{3}$ (D) $\frac{1}{\sqrt{3}}$ (Question Nos. 19 & 20 are Assertion-Reason based questions of 1 mark each) Assertion (A): A line in space cannot be drawn perpendicular to x, y and z axes simultaneously. Reason (R): For any line making angles, α , β , γ with the positive directions of x, y and z axes respectively,

20.	Assertion (A): For matrix $A = \begin{bmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 1 \end{bmatrix}$, where $\theta \in [0, 2\pi]$, $ A \in [2, 4]$.	
	Reason (R): $\cos \theta \in [-1, 1], \forall \theta \in [0, 2\pi].$	
Ans	(A) Both Assertion (A) and Reason (R) are true and the Reason (R) is the correct explanation of Assertion (A).	1
	SECTION-B	
(Q	uestion nos. 21 to 25 are very short Answer type questions carrying 2 marks ea	ch)
	Ta' 1	
21(a).	Find:	
	$\int x \sqrt{1+2x} dx$	
Ans	$1 + 2x = t^2$	1_
	2 dx = 2t dt	2
	$\frac{1}{2}\int (t^4-t^2)dt = \frac{1}{2}\left[\frac{t^5}{5}-\frac{t^3}{3}\right]+C$	
	$=\frac{(1+2x)^{\frac{5}{2}}}{4x^{2}}-\frac{(1+2x)^{\frac{3}{2}}}{6}+C$	
	$-\frac{10}{6}$	1
		1
		2
	OR	
21(b).	Evaluate:	
21(D).	$\int_0^{\frac{\pi}{4}^2} \frac{\sin\sqrt{x}}{\sqrt{x}} dx$	
Ans	$\int_0^{\frac{\pi^2}{4}} \frac{\sin\sqrt{x}}{\sqrt{x}} dx \qquad \text{Put } \sqrt{x} = t \implies dx = 2t dt$ $2 \int_0^{\frac{\pi}{2}} \sin t dt = 2 \left[-\cos t \right]_0^{\frac{\pi}{2}}$	1 2
	$2 \int_0^{\overline{2}} \sin t dt = 2 \left[-\cos t \right]_0^2$ $= 2$	1 1 2
<u> </u>		<u>. </u>

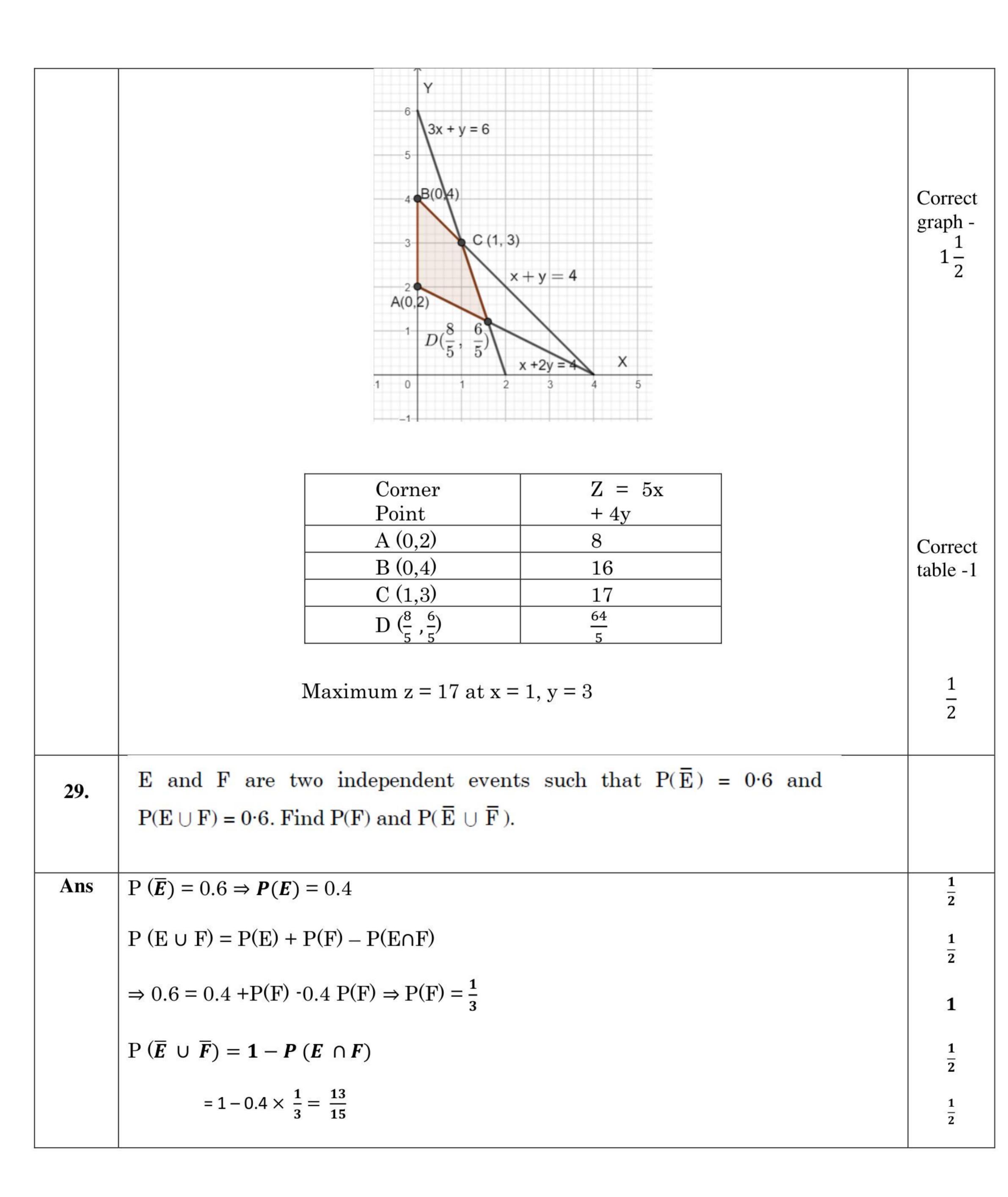
22.	If \overrightarrow{a} and \overrightarrow{b} are two non-zero vectors such that $(\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{a}$ and	
	$(2\overrightarrow{a} + \overrightarrow{b}) \perp \overrightarrow{b}$, then prove that $ \overrightarrow{b} = \sqrt{2} \overrightarrow{a} $.	
Ans	$(\vec{a} + \vec{b}).\vec{a} = 0 \Rightarrow \vec{a} ^2 + \vec{b}.\vec{a} = 0 \cdots (1)$	1 2
	$(2\vec{a} + \vec{b}) \cdot \vec{b} = 0 \Rightarrow 2\vec{a} \cdot \vec{b} + \vec{b} ^2 = 0 - (2)$	1 2
	$2(- \vec{a} ^2) + \vec{b} ^2 = 0 \{ \text{Using (1) and (2)} \}$	1 2
	$\left \overrightarrow{\boldsymbol{b}} \right ^2 = 2 \overrightarrow{\boldsymbol{a}} ^2 \Rightarrow \left \overrightarrow{\boldsymbol{b}} \right = \sqrt{2} \overrightarrow{\boldsymbol{a}} $	1 2
23.	In the given figure, ABCD is a parallelogram. If $\overrightarrow{AB} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and	
	$\overrightarrow{DB} = 3\hat{i} - 6\hat{j} + 2\hat{k}$, then find \overrightarrow{AD} and hence find the area of	
	parallelogram ABCD.	
	$\begin{array}{c} A \\ \hline \\ D \end{array}$	
Ans	$\overrightarrow{AD} + \overrightarrow{DB} = \overrightarrow{AB}$	
	$\overrightarrow{AD} = (2 \hat{\imath} - 4 \hat{\jmath} + 5 \hat{k}) - (3 \hat{\imath} - 6 \hat{\jmath} + 2 \hat{k})$	524.7
	$= -\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$	$\frac{1}{2}$
	$\overrightarrow{AD} \times \overrightarrow{AB} = \begin{vmatrix} \widehat{\imath} & \widehat{\jmath} & \widehat{k} \\ -1 & 2 & 3 \\ 2 & -4 & 5 \end{vmatrix} = 22 \widehat{\imath} + 11 \widehat{\jmath}$	1
	Area = $ \overrightarrow{AD} \times \overrightarrow{AB} = 22 \hat{i} + 11 \hat{j} $ = $\sqrt{605} \text{ or } 11 \sqrt{5}$	1 2

24(a).	If $y = \sqrt{\cos x + y}$, prove that $\frac{dy}{dx} = \frac{\sin x}{1 - 2y}$.	
Ans	$y^2 = \cos x + y$	1 2
	$(2y - 1)\frac{dy}{dx} = -\sin x$	1
	$\Rightarrow \frac{dy}{dx} = \frac{\sin x}{1 - 2y}$	1 2
3	OR	
24(b).	Show that the function $f(x) = x ^3$ is differentiable at all points of its domain.	
Sol.	(b) $f(x) = \begin{cases} x^3, & x \ge 0 \\ -x^3, & x \le 0 \end{cases}$	1 2
	At $x = 0$ LHD = $\lim_{h \to 0} \frac{f(0-h)-f(0)}{-h} = \lim_{h \to 0} \left(\frac{h^3}{-h}\right) = \lim_{h \to 0} (-h^2) = 0$	1 2
	RHD = $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \left(\frac{h^3}{h}\right) = \lim_{h \to 0} (h^2) = 0$	1 2
	: LHD = RHD at $x = 0$; when $x \ne 0$, $f(x)$ is a polynomial and hence differentiable.	
	\therefore f(x) is differentiable at all points.	1 2
25.	Find the absolute maximum and minimum values of the function $f(x) = 12x^{4/3} - 6x^{1/3}, x \in [0, 1].$	
Sol.	$f'(x) = 16 x^{\frac{1}{3}} - \frac{2}{\frac{2}{3}}$	1 7
	For critical points, $f'(x) = 0$	
	$\Rightarrow 16 \text{ x} = 2 \Rightarrow x = \frac{1}{8}$	1 2

	$\begin{array}{c cccc} x & f(x) \\ \hline 0 & 0 \\ \hline \frac{1}{8} & \frac{-9}{4} \text{ (Absolute minimum)} \\ \hline 1 & 6 \text{ (Absolute maximum)} \end{array}$	$\frac{1}{2} + \frac{1}{2}$
	SECTION-C	
26(a).	(Question nos. 26 to 31 are short Answer type questions carrying 3 marks each) Find:	
20(4).	$\int \frac{x^2}{(x^2+4)(x^2+9)} dx$	
Ans	Let $I = \int \frac{x^2}{(x^2+4)(x^2+9)} dx$	
	$\operatorname{Put} x^2 = t$	1 2
	$\frac{t}{(t+4)(t+9)} = \frac{A}{t+4} + \frac{B}{t+9} \Rightarrow A = \frac{-4}{5}, B = \frac{9}{5}$	
	$I = \frac{-4}{5} \int \frac{1}{2^2 + x^2} dx + \frac{9}{5} \int \frac{1}{3^2 + x^2} dx$	$1\frac{1}{2}$
	$= \frac{-2}{5} \tan^{-1} \left(\frac{x}{2}\right) + \frac{3}{5} \tan^{-1} \left(\frac{x}{3}\right) + C$	1
**************************************	OR	
26(b).	Evaluate:	
	$\int_{1}^{3} (x-1 + x-2 + x-3) dx$	
Sol.	$\int_{1}^{3} (x-1 + x-2 + x-3) dx$	
	$= \int_1^3 (x-1)dx + \int_1^2 -(x-2)dx + \int_2^3 (x-2)dx - \int_1^3 (x-3)dx$	$1\frac{1}{2}$
	$= \int_1^3 2 \ dx + \int_1^2 (2-x) \ dx + \int_2^3 (x-2) dx$	
	$= [2x]_1^3 + \left[\frac{(2-x)^2}{-2}\right]_1^2 + \left[\frac{(x-2)^2}{2}\right]_2^3$	

65/1/2

	$=4+\frac{1}{2}+\frac{1}{2}=5$	$1\frac{1}{2}$
27.	Find the general solution of the differential equation $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$.	
Ans	Put $y = vx$ so that $\frac{dy}{dx} = v + x \frac{dv}{dx}$	1
	$V + X \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{2xvx}$	
	$\int \frac{1}{x} dx = \int \frac{2v}{1 - v^2} dv$	1 2
	$\Rightarrow \log x = -\log 1 - v^2 + \log C$	1
	$\log \mathbf{x}(1-v^2) = \log C$	
	$\Rightarrow x \left(1 - \frac{y^2}{x^2}\right) = C \text{ or } x^2 - y^2 = Cx$	1 2
		<u></u>
28.	Solve the following linear programming problem graphically:	
	Maximise $z = 5x + 4y$ subject to the constraints	
	$x + 2y \ge 4$	
	$3x + y \le 6$	
	$x + y \le 4$	
	$x, y \ge 0$	
Ans	Max z = 5x + 4 y	



		T:
30(a).	A relation R on set $A = \{1, 2, 3, 4, 5\}$ is defined as	
	$R = \{(x, y) : x^2 - y^2 < 8\}$. Check whether the relation R is	
	reflexive, symmetric and transitive.	
Ans	(a) Reflexive:	1
	$ x x^2 - x^2 < 8 \forall x \in A \Rightarrow (x, x) \in R : R \text{ is reflexive}.$	2
	(b) Symmetric:	
	Let $(x,y) \in R$ for some $x,y \in A$	
	$ x^2 - y^2 < 8 \Rightarrow y^2 - x^2 < 8 \Rightarrow (y, x) \in R$	
	Hence R is symmetric.	1
	(c) Transitive:	
	$(1,2)\;,(2,3)\in R\;\mathrm{as}\; \left \mathbf{1^2-2^2}\right <8\;,\left \mathbf{2^2-3^2}\right <8\;\mathrm{respectively}$	
	But $\left 1^2-3^2\right \not < 8 \Rightarrow (1,3) \notin R$	
	• • • • • • • • • • • • • • • • • • •	
	Hence $m{R}$ is not transitive.	$1\frac{1}{2}$
		1 1/2
30(b).	OR	1 1/2
30(b).		1 - 1 - 2
30(b).	OR A function f is defined from $R \to R$ as $f(x) = ax + b$, such that	1 - 2
30(b).	OR A function f is defined from $R \to R$ as $f(x) = ax + b$, such that $f(1) = 1$ and $f(2) = 3$. Find function $f(x)$. Hence, check whether	1 - 2
	OR A function f is defined from $R \to R$ as $f(x) = ax + b$, such that $f(1) = 1$ and $f(2) = 3$. Find function $f(x)$. Hence, check whether function $f(x)$ is one-one and onto or not.	1 1 1 1 1
	OR A function f is defined from $R \to R$ as $f(x) = ax + b$, such that $f(1) = 1$ and $f(2) = 3$. Find function $f(x)$. Hence, check whether function $f(x)$ is one-one and onto or not. $f(x) = ax + b$	1 1 2
	OR A function f is defined from $R \to R$ as $f(x) = ax + b$, such that $f(1) = 1$ and $f(2) = 3$. Find function $f(x)$. Hence, check whether function $f(x)$ is one-one and onto or not. $f(x) = ax + b$ Solving $a + b = 1$ and $2a + b = 3$ to get $a = 2$, $b = -1$	1 1 2
	OR A function f is defined from $R \to R$ as $f(x) = ax + b$, such that $f(1) = 1$ and $f(2) = 3$. Find function $f(x)$. Hence, check whether function $f(x)$ is one-one and onto or not. $f(x) = ax + b$ Solving $a + b = 1$ and $2a + b = 3$ to get $a = 2$, $b = -1$ $f(x) = 2x - 1$	1
	OR A function f is defined from $R \to R$ as $f(x) = ax + b$, such that $f(1) = 1$ and $f(2) = 3$. Find function $f(x)$. Hence, check whether function $f(x)$ is one-one and onto or not. $f(x) = ax + b$ Solving $a + b = 1$ and $2a + b = 3$ to get $a = 2$, $b = -1$ $f(x) = 2x - 1$ Let $f(x_1) = f(x_2)$ for some $x_1, x_2 \in R$	1 1 1 1
	OR A function f is defined from $R \to R$ as $f(x) = ax + b$, such that $f(1) = 1$ and $f(2) = 3$. Find function $f(x)$. Hence, check whether function $f(x)$ is one-one and onto or not. $f(x) = ax + b$ Solving $a + b = 1$ and $2a + b = 3$ to get $a = 2$, $b = -1$ $f(x) = 2x - 1$ Let $f(x_1) = f(x_2)$ for some $x_1, x_2 \in R$ $2x_1 - 1 = 2x_2 - 1 \Rightarrow x_1 = x_2$	1

$\Rightarrow x = \frac{y+1}{2} \in R \text{ (domain)}$	
Also, $f(x) = f(\frac{y+1}{2}) = y$	
∴ f is onto.	1
31(a). If $\sqrt{1-x^2} + \sqrt{1-y^2} = a (x-y)$, prove that $\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$.	
Ans $\sqrt{1-x^2} + \sqrt{1-y^2} = a(x-y)$	1
Put $x = \sin \theta$, $y = \sin \phi$	2
$\Rightarrow \cos \boldsymbol{\theta} + \cos \boldsymbol{\phi} = a \left(\sin \boldsymbol{\theta} - \sin \boldsymbol{\phi} \right)$	
$\Rightarrow 2\cos\left(\frac{\theta+\phi}{2}\right)\cos\left(\frac{\theta-\phi}{2}\right) = 2 \operatorname{a} \sin\left(\frac{\theta-\phi}{2}\right)\cos\left(\frac{\theta+\phi}{2}\right)$	1 2
$\Rightarrow \cot\left(\frac{\theta-\phi}{2}\right) = a$	
$\Rightarrow \boldsymbol{\theta} - \boldsymbol{\phi} = 2 \cot^{-1} \boldsymbol{a}$	
$\Rightarrow \sin^{-1} x - \sin^{-1} y = 2 \cot^{-1} a$	1 2
$\Rightarrow \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-y^2}} \frac{dy}{dx} = 0$	1
$\Rightarrow \frac{dy}{dx} = \sqrt{\frac{1 - y^2}{1 - x^2}}$	1 2
OR	
If $y = (\tan x)^x$, then find $\frac{dy}{dx}$.	
Sol. $y = (\tan x)^x$	
$\log y = x \log (\tan x)$	$\frac{1}{2}$
$\frac{1}{y}\frac{dy}{dx} = x\left(\frac{sec^2x}{\tan x}\right) + \log(\tan x)$	2
$\frac{dy}{dx} = (\tan x)^x \left[\left(\frac{x \sec^2 x}{\tan x} \right) + \log(\tan x) \right]$	1 2
SECTION-D	
(Question nos. 32 to 35 are Long Answer type questions carrying 5 marks each)	

32(a).	Evaluate:	
	$\int_{0}^{\pi/2} e^{x} \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$	
	$0 \qquad (1 + \cos x)$	
Sol(a).	$\int_0^{\frac{\pi}{2}} e^x \left(\frac{1 + \sin x}{1 + \cos x} \right) dx$	
	$= \int_0^{\frac{\pi}{2}} e^x \left(\frac{1 + 2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}} \right) dx$	$1\frac{1}{2}$
	$= \int_0^{\frac{\pi}{2}} e^x \left(\tan \frac{x}{2} + \frac{1}{2} \sec^2 \frac{x}{2} \right) dx$	1
	On applying $\int e^x [f(x) + f'(x)]dx = e^x f(x) + C$	1
	$= \left[e^x \tan \frac{x}{2}\right]_0^{\frac{\pi}{2}}$	$1\frac{1}{2}$
	$=e^{\frac{\pi}{2}}$	1
	\sim \sim \sim	
32(b).	Find:	
	-12	
	$\int_{\pi/6}^{\pi/6} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$	
_	$\pi/6$	
Ans	(b) $\int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$	
	(b) $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx$	
	Put $sinx - cosx = t$ so that $(cosx + sinx) dx = dt$	1
	$= \int_{-\left(\frac{\sqrt{3}-1}{2}\right)}^{\frac{\sqrt{3}-1}{2}} \frac{dt}{\sqrt{1-t^2}}$	1
	2 /	1-2
	$= \left[\sin^{-1} t\right]_{-\left(\frac{\sqrt{3}-1}{2}\right)}^{\frac{\sqrt{3}-1}{2}}$	$1\frac{1}{2}$
	$=2\sin^{-1}\left(\frac{\sqrt{3}-1}{2}\right)$	1

33.	Using integration, find the area of the ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$, included	
	between the lines $x = -2$ and $x = 2$.	
Ans	3. Y	Correct graph-1
	Area = $4 \int_0^2 y dx$ = $4 \left[\frac{1}{2} \int_0^2 \sqrt{4^2 - x^2} dx \right]$	1
	$= 2 \left[\frac{x}{2} \int_{0}^{x} \sqrt{4^{2} - x^{2}} + 8 \sin^{-1}(\frac{x}{4}) \right]_{0}^{2}$	2
	$=2\left[\sqrt{12}+\frac{8\pi}{6}\right]=4\sqrt{3}+\frac{8\pi}{3}$	1
34.	Equations of sides of a parallelogram ABCD are as follows : $AB: \frac{x+1}{1} = \frac{y-2}{-2} = \frac{z-1}{2}$	
	BC: $\frac{x-1}{3} = \frac{y+2}{-5} = \frac{z-5}{3}$	
	CD: $\frac{x-4}{1} = \frac{y+7}{-2} = \frac{z-8}{2}$	
	DA: $\frac{x-2}{3} = \frac{y+3}{-5} = \frac{z-4}{3}$	
	Find the equation of diagonal BD.	
Ans	Let coordinates of B (from AB) = $(\lambda - 1, 2 - 2\lambda, 2\lambda + 1)$	1 2
	Also coordinates of B (from BC) = $(3\mu + 1, -5\mu - 2, 3\mu + 5)$	1 2

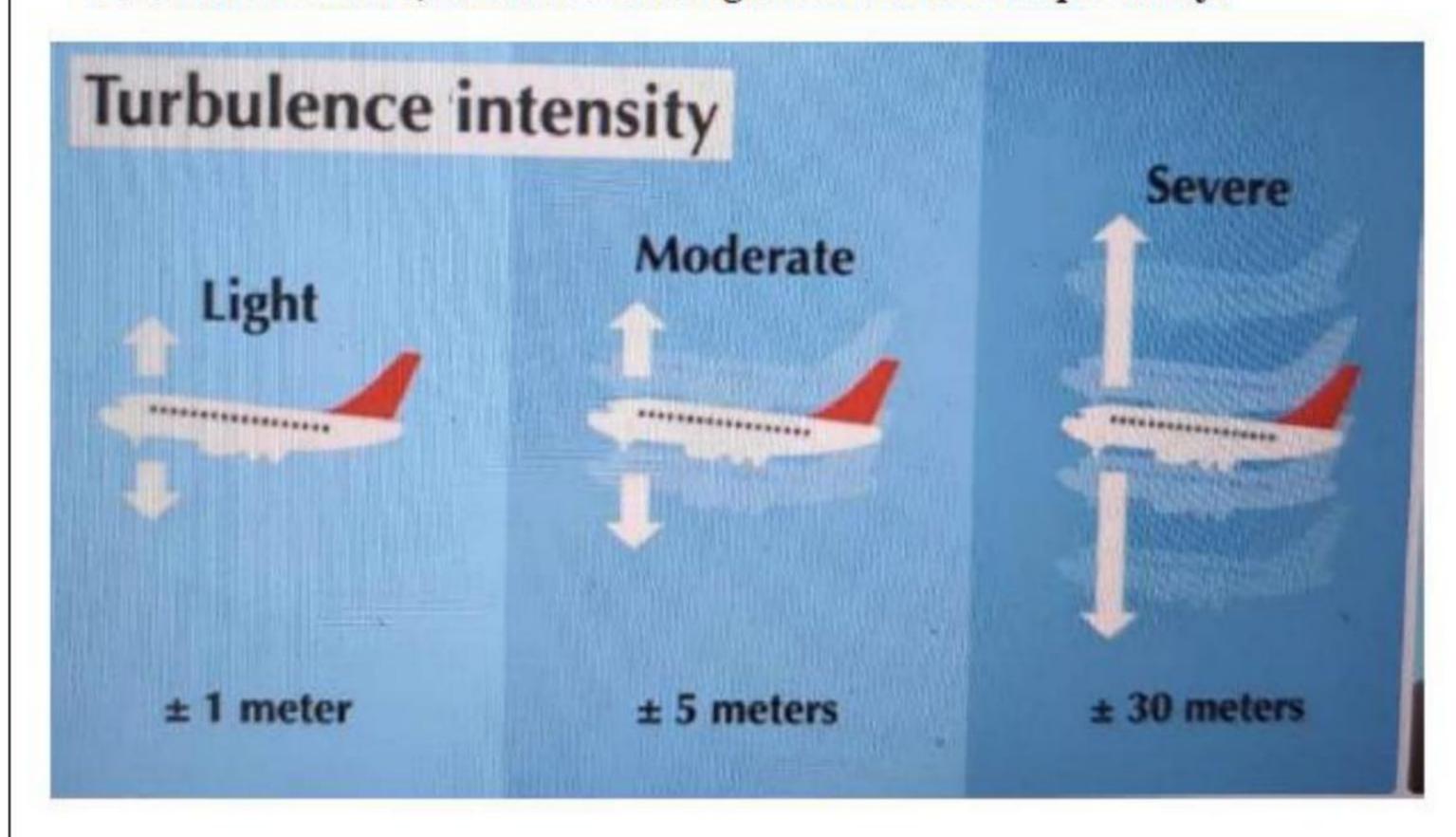
	Solving we get $\lambda=2$, $\mu=0$	1 2
	∴ Point of intersection is $B(1,-2,5)$	1 2
	Similarly, point of intersection from CD and DA is D (2, -3,4)	1 1 -
		2
	Direction ratios of BD are $2-1$, $-3+2$, $4-5$ i.e. 1 , -1 , -1	$\frac{1}{2}$
	Equation of BD is	
	$\frac{x-1}{1} = \frac{y+2}{-1} = \frac{z-5}{-1}$	1
35(a).	If $A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix}$, find A^{-1} and use it to solve the following system of equations :	
	x - 2y = 10, 2x - y - z = 8, -2y + z = 7	
Ans	$ A = 1 \neq 0 \text{ hence } A^{-1} \text{ exists.}$	1
	$Adj A = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix}$	2
	$A^{-1} = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix}$	1 2
	$AX = B \Rightarrow \begin{bmatrix} 1 & -2 & 0 \\ 2 & -1 & -1 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$	
	$X = A^{-1}B \Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 & 2 & 2 \\ -2 & 1 & 1 \\ -4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \\ -3 \end{bmatrix}$	$1\frac{1}{2}$
	$\Rightarrow x = 0, y = -5, z = -3$	
	OR	

0=4		1
35(b).	$\begin{bmatrix} -1 & a & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$	
	3 1 1 b y 3	
	find the value of $(a + x) - (b + y)$.	
Sol.	$AA^{-1}=I$	1
	$\begin{bmatrix} 1 & a & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & a & 2 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & a & 2 \\ 1 & 2 & x \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ b & y & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} b & y & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$	
	[-1-8a+2b 1+7a+2v 5-5a $[1 0 0]$	
	$\begin{bmatrix} -1 - 8a + 2b & 1 + 7a + 2y & 5 - 5a \\ -15 + bx & 13 + xy & 3x - 9 \\ -5 + b & 4 + y & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
	$\begin{bmatrix} 1 & -5+b & 4+y & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	1
		$1\frac{1}{2}$
	$-5 + b = 0 \Rightarrow b = 5$, $5 - 5a = 0 \Rightarrow a = 1$	_
	$4 + y = 0 \Rightarrow y = -4$, $3x - 9 = 0 \Rightarrow x = 3$	
		1
	∴ $(a + x) - (b + y) = (1 + 3) - (5 - 4) = 3$	
		1
		1
		$\overline{2}$
	SECTION-E	
(Question nos. 36 to 38 are source based/case based/passage based/integrated units of assessment questions		
	carrying 4 marks each)	

36.

According to recent research, air turbulence has increased in various regions around the world due to climate change. Turbulence makes flights bumpy and often delays the flights.

Assume that, an airplane observes severe turbulence, moderate turbulence or light turbulence with equal probabilities. Further, the chance of an airplane reaching late to the destination are 55%, 37% and 17% due to severe, moderate and light turbulence respectively.



On the basis of the above information, answer the following questions:

- (i) Find the probability that an airplane reached its destination late. 2
- (ii) If the airplane reached its destination late, find the probability that it was due to moderate turbulence.

Ans

(i) Let A denote the event of airplane reaching its destination late

$$E_1$$
 = severe turbulence

$$E_2$$
 = moderate turbulence

$$E_3$$
 = light turbulence

$$P(A) = P(E_1) P(A|E_1) + P(E_2) P(A|E_2) + P(E_3) P(A|E_3)$$

$$=\frac{1}{3}\times\frac{55}{100}+\frac{1}{3}\times\frac{37}{100}+\frac{1}{3}\times\frac{17}{100}$$

$$=\frac{1}{3}\left(\frac{109}{100}\right) = \frac{109}{300}$$

(ii)
$$P(E_2|A) = \frac{P(E_2)P(A|E_2)}{P(A)}$$

$$=\frac{\frac{1}{3} \times \frac{37}{100}}{\frac{109}{300}}$$

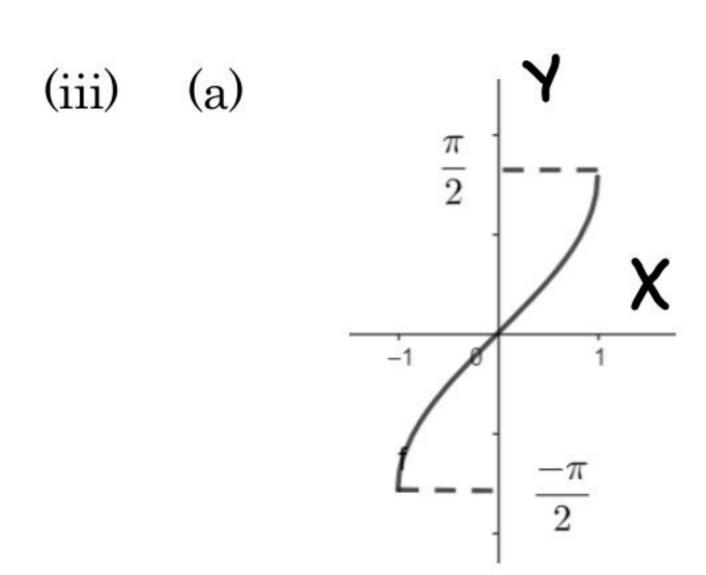
1 2 J

1

 $\frac{1}{2}$

 $1\frac{1}{2}$

	$=\frac{37}{109}$		1 2
	37. If a function $f: X \to Y$ defined as $f(x) = y$ is one-one and onto, then we can define a unique function $g: Y \to X$ such that $g(y) = x$, where $x \in X$ and $y = f(x)$, $y \in Y$. Function g is called the inverse of function f . The domain of sine function is $f(x) = y$ and $f(x) = y$ are inverse of function. The domain of sine function is $f(x) = y$ and function sine $f(x) = y$ are inverse of $f(x) = y$ and $f(x) = y$ are inverse of f		
	Let sine function be defined from set A to $[-1, 1]$ such that inverse of sine function exists, i.e., $\sin^{-1} x$ is defined from $[-1, 1]$ to A.		
	On the basis of the above information, answer the following questions :		
	 (i) If A is the interval other than principal value branch, give an example of one such interval. 	1	
37.	(ii) If $\sin^{-1}(x)$ is defined from $[-1, 1]$ to its principal value branch, find the value of $\sin^{-1}\left(-\frac{1}{2}\right) - \sin^{-1}(1)$.	1	
	(iii) (a) Draw the graph of sin ⁻¹ x from [- 1, 1] to its principal value branch.	2	
	OR		
	(iii) (b) Find the domain and range of $f(x) = 2 \sin^{-1} (1 - x)$.	2	
Ans	(i) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ or any other interval corresponding to the domain [-1,1]		1
	(ii) $\sin^{-1}\left(\frac{-1}{2}\right) - \sin^{-1}(1)$		
	$=\frac{-\pi}{6}-\frac{\pi}{2}$		
	$=\frac{-4\pi}{6} \text{ or } \frac{-2\pi}{2}$		1
	U 3		



Correct graph

OR

(b)
$$f(x) = 2 \sin^{-1}(1 - x)$$

$$-1 \le 1 - x \le 1$$

$$\Rightarrow \ -2 \ \leq \ -x \ \leq 0$$

$$\Rightarrow 0 \leq x \leq 2$$

Domain = [0, 2]

$$\frac{-\pi}{2} \leq \sin^{-1}(1-x) \leq \frac{\pi}{2}$$

$$-\pi \leq 2 \sin^{-1}(1-x) \leq \pi$$

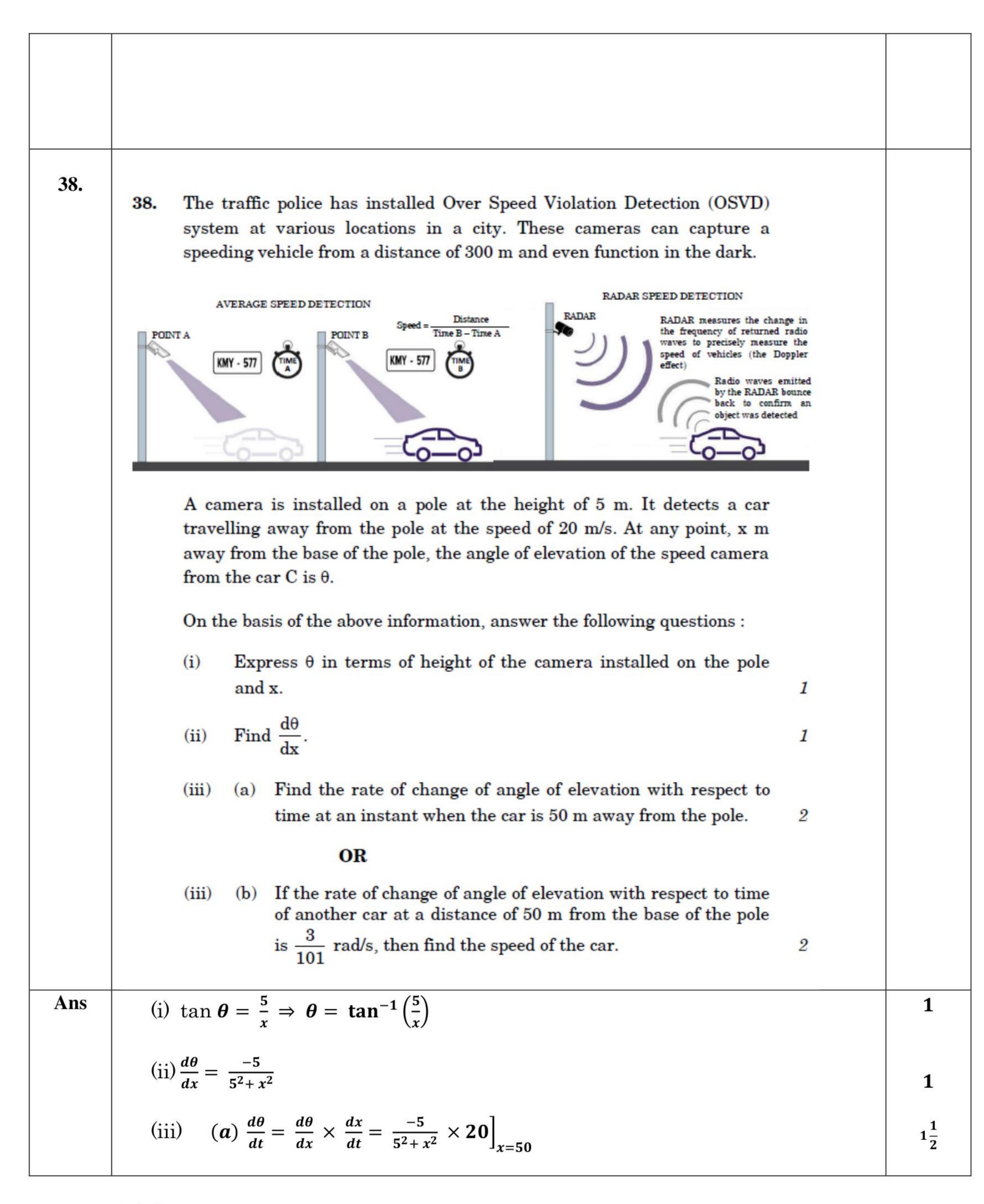
So range =
$$[-\pi, \pi]$$

1

 $\frac{1}{2}$

 $\frac{1}{2}$

1



$= \frac{-100}{2525} \text{ or } \frac{-4}{101} \ rad/s$	1 2
OR	
(b) $\frac{d\theta}{dt} = \frac{d\theta}{dx} \times \frac{dx}{dt} \Rightarrow \frac{3}{101} = \left[\frac{-5}{5^2 + x^2} \right]_{x=50} \times \frac{dx}{dt}$	$1\frac{1}{2}$
$\Rightarrow \frac{3}{101} = \frac{-5}{2525} \times \frac{dx}{dt} \Rightarrow \frac{dx}{dt} = -15 m/s$	1 2
Hence the speed is 15 m/s	

