Series EF1GH/4

परीक्षार्थी प्रश्न-पत्र कोड को उनर-पुम्तिका के मग्ब.प्र पा अवर्य लिखें ।
Candidates must write the QP. Code on:
the tifle page of the answer-book

गणित

MATHEMATICS

नोट / NOTE:
कृपया जाँच कर लें कि इस प्रश्न पत्र में मुद्रित पृष्ठ 23 हैं।
Please check that this question paper contains 23 printed pages.
(ii) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख पृष्ठ पर लिखें ।
Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(iii) कृपया जाँच कर ले कि इस प्रश्न पत्र में 38 प्रश्न हैं।

Pleose check that this question paper contains 38 questions.
(iv) क्रपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में मशन का क्रमांक अवशयं: Please write down the serial number of the question in the answer-book before: attempting it.
:(v) इस प्रश्न-पत्र को पदने के लिए 15 मिनट का समय दिया गया है । प्रश्नपत्र का वितरण: पूर्वह्न में 10.15 बजे किया जाएगा / 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को: पदेंगे और इस अवधि के दौरान वे उत्तर पुस्तिका पर कोई उत्तर नहीं लिखेंगे । 15 minute time has been allotted to read this question paper. The question paper will be distributed at $10.15 \mathrm{a} . \mathrm{m}$. From $10.15 \mathrm{a} . \mathrm{m}$. to $10.30 \mathrm{a} . \mathrm{m}$., the students will read the question paper only and will not write any answer on the answer-book during this period. Page 1

5

Gencrel Instructions:

(11) Thisquestion paper is durded mio five Sections-A, B, C, I amil E
 questrons number 19 and 20 are Assertion-Reason based qumation: of 1 murti mach.
(w) In Section B, Questions no. 21 to 25 are very short answer (VSA) IVI" questions, carrying 2 marks each.
(v) In Section C, Questions no. 26 to 31 are short answer (SA) type "flisturns. carrying 3 marks each.
(vi) In Section D, Questions no. 32 to 35 are long answer (LA) type' "Iuestimes: carrying 5 marks each.
(vii) In Section \boldsymbol{E}, Questions no. 36 to 38 are case study based questions carryimp: 4 marks each.
(viii) There is no overall choice. However, an internal choice has bech providred ill 2 questions in Section B, 3 questions in Section C, 2 questions in Sirtion I) and 2 questions in Section E.
(ix) Use of calculators is not allowed.

SECTION A

This section comprises multiple choice questions (MCQs) of 1 mark each.

1. If $x\left[\begin{array}{l}1 \\ 2\end{array}\right]+y\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\frac{4}{9}\right]$, then: Eary
(b) $x=2, y=1$
(a) $\mathrm{x}=1, \mathrm{y}=2$
(d) $\mathrm{x}=3, \mathrm{y}=2$
(c) $x=1, y=-1$
2. The product $\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ is equal to: Ebs
(a) $\left[\begin{array}{cc}a^{2}+b^{2} & 0 \\ 0 & a^{2}+b^{2}\end{array}\right]$
(b) $\left[\begin{array}{ll}(a+b)^{2} & 0 \\ (a+b)^{2} & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}a^{2}+b^{2} & 0 \\ a^{2}+b^{2} & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$
P.T.O.

Page 3
65/4/1 (a) 1
(c) 2Λ
(b) A
(d) 3 I
4. If a matrix $A=\begin{array}{llll}1 & 2 & 31\end{array}$, then the matrix AA^{\prime} (where A^{\prime} is the transpose
(a) 14
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$
(d) $[14]$
5. The value of $\left|\begin{array}{ccc}x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1\end{array}\right|$ is \rightarrow Dec prop' sher wise
(a) 0
(b) 1
(c) $\mathrm{x}+\mathrm{y}+\mathrm{z}$
(d) $2(\mathrm{x}+\mathrm{y}+\mathrm{z})$
6. The function $f(x)=|x|$ is
(a) continuous and differentiable everywhere.
(b) continuous and differentiable nowhere.
(c) continuous everywhere, but differentiable everywhere except at $\mathrm{x}=0$.
(d) continuous everywhere, but differentiable nowhere.
7. If $y=\sin ^{2}\left(x^{3}\right)$, then $\frac{d y}{d x}$ is equal to: Culaiati'm
(a) $2 \sin x^{3} \cos x^{3}$
(b) $3 x^{3} \sin x^{3} \cos x^{3}$
(c) $6 x^{2} \sin x^{3} \cos x^{3}$
(d) $2 \mathrm{x}^{2} \sin ^{2}\left(\mathrm{x}^{3}\right)$

65/4/1

Con ors

8. $\int c^{5 \log x} d x$ is equal to :

(a) $\frac{x^{5}}{5}+C$
(b) $x^{6}+c$
(c) $5 x^{4}+C$
(d) $6 x^{5}+6$
9. If $\int_{0}^{n} 3 x^{2} d x=8$, then the value of 'a' is: Coreer'
(a) 2
(b) 4
(c) 8
(d) 10
10. The integrating factor for solving the differential equation $x \frac{d y}{d x}-y=2 x^{2}$ is :
(a) e^{-y}
(b) e^{-x}
(c) x
(d) $\frac{1}{x}$
11. The order and degree (if defined) of the differential equation, $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{3}=x \sin \left(\frac{d y}{d x}\right)$ respectively arc:
(a) 2,2
(d) 2 , degree not defined
(c) 2,3
12. A unit vector along the vector $4 \hat{i}-3 \hat{k}$ is :
(a) $\frac{1}{7}(4 \hat{\mathrm{i}}-3 \hat{\mathrm{k}})$
(b) $\frac{1}{5}(4 \hat{i}-3 \hat{k})$
(c) $\frac{1}{\sqrt{7}}(4 \hat{i}-3 \hat{k})$
(d) $\frac{1}{\sqrt{5}}(4 \hat{i}-3 \hat{k})$
P.T.O.

Page 7
65/4/1
13. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a}, \vec{b} \geq 0$ only
(a) $0<0<\frac{\pi}{2}$
(c) $0<\theta<\pi$
(b) $0 \leq \theta \leq \frac{\pi}{2}$
(d) $0 \leq \theta \leq \pi$

14. Distance of the point (p, q, r) from y-axis is :
(a) q
(b)

(c) $\quad|\mathrm{q}|+|\mathbf{r}|$
(d) $\sqrt{\mathrm{p}^{2}+\mathrm{r}^{2}}$
15. The solution set of the inequation $3 x+5 y<7$ is: from
(a) whole xy-plane except the points lying on the line $3 x+5 y=7$.
(b) whole xy-plane along with the points lying on the line $3 x+5 y=7$.
(c) open half plane containing the origin except the points of line $3 x+5 y=7$.
(d) open half plane not containing the origin.
16. Which of the following points satisfies both the inequations $2 x+y \leq 10$ and $\mathrm{x}+2 \mathrm{y} \geq 8$?

(a) $(-2,4)$
(d) $(4,2)$
(c) $(-5,6)$
(b) $(3,2)$
17. If the direction cosines of a line are $\left(\frac{1}{a}, \frac{1}{a}, \frac{1}{a}\right)$, then: simple foomused
(a) $0<$ a <1
(b) \quad >2
(c) $\quad \mathrm{a}>0$
P.T.O.

65/4/1

Page 9

18. The probability that A speaks the truth is $\frac{4}{5}$ and that of B speaking the truth is $\frac{3}{4}$. The probability that they contradict each other in stating the same fact is :
(a) $\frac{7}{20}$
(b) $\frac{1}{5}$
(c) $\frac{3}{20}$
(d) $\frac{4}{5}$

Questions number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below.
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not
(c) Assertion (A) the correct explanation of the Assertion (A).
(d) Assertion (A) is false and Reason (R) is false.

Restrict
Restricted
19. Assertion (A) : All trigonometric functions have their inverses over their respective domains. \rightarrow Concept

Reason (R) : The inverse of $\tan ^{-1} \mathrm{x}$ exists for some $\mathrm{x} \in \mathbb{R}$.
20. Assertion (A): The lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are Direct \hat{Q} perpendicular, when $\overrightarrow{b_{1}}, \overrightarrow{b_{2}}=0$.

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}} \text { and }
$$

Reason (R): The angle θ between the lines

$$
\begin{aligned}
& \text { The angle } \theta \text { betw } \overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}} \text { is given by } \cos 0=\frac{\overrightarrow{\mathrm{b}_{1}} \cdot \overrightarrow{\mathrm{~b}_{2}}}{\left|\overrightarrow{\mathrm{~b}_{1}}\right|\left|\overrightarrow{b_{2}}\right|}
\end{aligned}
$$

SECTION B

This section comprises very short answer (VSA) type questions of 2 marks each.
21. (a) Find the domain of $y=\sin ^{-1}\left(x^{2}-4\right)$., Good one
OR
(Not easy)

$$
\cos ^{-1}\left[\cos \left(-\frac{7 \pi}{3}\right)\right]
$$

22. If $\left(x^{2}+y^{2}\right)^{2}=x y$, then find $\frac{d y}{d x}$. Good one lengthy
23. Find the maximum and minimum values of the function given by $\mathrm{f}(\mathrm{x})=5+\sin 2 \mathrm{x}$. Very Easy
24. If the projection of the vector $\hat{i}+\hat{j}+\hat{k}$ on the vector $p \hat{i}+\hat{j}-2 \hat{k}$ is $\frac{1}{3}$, then find the value (s) of p. Direct formula
25. (a) Find the vector equation of the line passing through the point $(2,1,3)$ and perpendicular to both the lines

$$
\begin{aligned}
& \frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} ; \quad \frac{x}{-3}=\frac{y}{2}=\frac{z}{5} . \\
& \text { OR }
\end{aligned}
$$

(b) The'equations of a line are $5 \mathrm{x}-3=15 \mathrm{y}+7=3-10 \mathrm{z}$. Write the direction cosines of the line and find the coordinates of a point through which it passes.

Page 13
phis section comprises short answer
26. Find:

$$
\int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x \text { Good one lengthy }
$$

27. (a) Evaluate:

$$
\int_{\pi / 4}^{\pi / 2} e^{2 x}\left(\frac{1-\sin 2 x}{1-\cos 2 x}\right) d x \rightarrow \operatorname{very} \operatorname{Grod} Q
$$

(b) Evaluate:

$$
\int_{-2}^{2} \frac{x^{2}}{1+5^{x}} d x
$$

$$
\left.\frac{\sin 2 x}{\cos 2 x}\right) \mathrm{dx}
$$

28. (a) Find:

$$
\int \frac{e^{x}}{\sqrt{5-4 e^{x}-e^{2 x}}} d x
$$

OR
(b) Evaluate:

$$
\begin{aligned}
& \text { late : } \\
& \int_{0}^{\pi / 2} \sqrt{\sin x} \cos ^{5} x d x
\end{aligned}
$$

$$
\rightarrow \cos y \mid \ln g)^{t h y}
$$

29. (a) Find the particular solution of the differential equation

$$
\begin{aligned}
& d \text { the particular solution or y } \\
& \frac{d y}{d x}=\frac{x+y}{x}, y(1)=0 \text { very }
\end{aligned}
$$

OR
(b) Find the general solution of the differential equation

$$
\begin{aligned}
& \text { OR } \\
& \text { the general solution of the differential equation } \\
& e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0
\end{aligned}
$$

Solve the following linear programming problem graphically :
Minimise : $z=-3 x+4 y$
object to the constraints

$$
\begin{array}{r}
x+2 y \leq 8 \\
3 x+2 y \leq 12 \\
x, y \geq 0
\end{array}
$$

 2 bulbs is drawn at random one by one with replacement. Find the probability distribution of the number of defective bulbs and hence find the mean number of defective bulbs. \rightarrow Easy/Calarlation

This section comprises long answer (LA) type questions of 5 marks each.
32. Find the inverse of the matrix $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 2 & -3 \\ 1 & -2 & 4\end{array}\right]$. Using the inverse,
A^{-1}, solve the system of linear equations

SECTION D

 $x-y+2 z=1 ; 2 y-3 z=1 ; 3 x-2 y+4 z=3$.33. Using integration, find the area of the region bounded by the parabola problem $y^{2}=4 a x$ and its latus rectum. $\mathrm{N} \times \mathrm{N}$ defined by $(\mathrm{a}, \mathrm{b}) \mathrm{R}$. Fut simple/But ace 5 marker is an equivalence relation.

OR
(b) Let $\mathrm{f}: \mathbb{R}-\left\{-\frac{4}{3}\right\} \rightarrow \mathbb{B}$ be a function defined as $\mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$. Show that f is a one-one function. Also, check whether f is an onto function or not.

P.T.O.

Show that the following lines do not intersex each other:

$$
\begin{array}{ccccccc}
x-1 & y+1 & 2-1 & x+2 & y & 1 & 21 \\
3 & 2 & 5 & 1 & 3 & -2 & \text { very Easy } \\
& \text { OR } & & & & & \\
\text { S.D. to }
\end{array}
$$

(b) Find the angle between the limes

$$
\begin{aligned}
& \text { I the angle between the lines } \\
& 2 x=3 y=-2 \text { and } 6 x=-y=-4 \% \text {. Very Easy for a } 5 \text { marker }
\end{aligned}
$$

This section comprises 3 case study based questions of 4 marks reach.

Case Study - 1

36. Let $f(x)$ be a real valued function. Then its

- Left Hand Derivative (L.H.D.) : $L f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$
- Right Hand Derivative (R.H.D.) : $\operatorname{Rf}^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$

Also, a function $f(x)$ is said to be differentiable at $x=a$ if its L.H.D. and R.H.D. at $x=a$ exist and both are equal.

For the function $f(x)=\left\{\begin{array}{l}|x-3|, x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, x<1\end{array}\right.$
answer the following questions:
(i) What is R.H.D. of $f(x)$ at $x=1$?

(ii) What is L.H.D. of $f(x)$ at $x=1$?

OR

(iii)
(b) Find $\mathrm{f}^{\prime}(2)$ and $\mathrm{f}^{\prime}(-1)$.

Page 19

65/4/1

Case Study - 2

37. A building contractor undertakes a job to construct 4 lats on a plot alone with parking area. Due to strike the probability of many construction workers not being present for the job is 0.65 . The probability that many are not present and still the work pets completed on time is 0.35 . The probability that work will be completed on time when all workers are present is 0.80 .

Let: E_{1} : represent the event when many workers were not present for
the job;
$\mathrm{E}_{2}:$ represent the event when all workers were present; and
E : represent completing the construction work on time.
Based on the above information, answer the following questions:
What is the probability that all the workers are present for the job?
(ii) What is the probability that construction will be completed on time
(iii) (a) What is the probability that many
given that the construction work is completed

OR

(iii)
(b) What is the probability that all workers were present given that the construction job was completed on time?
Cisciruely-is Gimple QS
38. Sooraj's father wants to construct a rectangular garden using: brick wall on one side of the karden and wire fencing for the other fhree sides as shown in the figure He has 20 () metres of fencing wire

Based on the above information, answer the following questions:
(i) Let ' x ' metres denote the length of the side of the garden perpendicular to the brick wall and ' y ' metres denote the length of the side parallel to the brick wall. Determine the relation representing the total length of fencing wire and also write $A(x)$. the area of the garden.
(ii) Determine the maximum value of $\Lambda(x)$.

