Series EF1GH/4

प्रश्न-पत्र कोड Q.P. Code $65 / 4 / 2$

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें ।
Candidates must write the Q.P. Code on the title page of the answer-book.

गणित

MATHEMATICS

*

निर्धारित समय : 3 घण्ट
अधिकतम अंक : 80
Time allowed : 3 hours Maximum Marks : 80

नोट / NOTE:
(i) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 23 हैं ।

Please check that this question paper contains 23 printed pages.
(ii) प्रश्न पत्र में दाहिने हाथ की ओर दिए गए प्रश्न पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख़्रृष्ठ पर लिखें।
Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
(iii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 38 प्रश्न हैं।

Please check that this question paper contains 38 questions.
(iv) क्रपया पश्न का उत्र लिखना शुरू करने से पहले, उतर-पुस्तिका में प्रश्न का क्रमांक अवश्यं: लिखें।
Please write down the serial number of the question in the answer-book before attempting it.
(v) इस पश्न-पत्र को पदने के लिए 15 मिनट का समय दिया गया है । प्रश्र पत्र का वितरणं: पूर्वाह्न में 10.15 बजे किया जाएवा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न पत्र कों: पदेंगे और इस अवधि के दौरान वे उत्तर पुस्सिका पर कोई उत्तर नहीं लिखेंगे ।
15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this perion.

General Instructions :

Read the following instructions very carefully and strictly follow them :
(i) This question paper contains 38 questions. All questions are compulsory.
(ii) This question paper is divided into five Sections - $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{E}.
(iii) In Section A, Questions no. 1 to 18 are multiple choice questions (MCQs) and questions number 19 and 20 are Assertion-Reason based questions of 1 mark each.
(iv) In Section B, Questions no. 21 to 25 are very short answer (VSA) type questions, carrying 2 marks each.
(v) In Section C, Questions no. 26 to 31 are short answer (SA) type questions, carrying 3 marks each.
(vi) In Section D, Questions no. 32 to 35 are long answer (LA) type questions carrying 5 marks each.
(vii) In Section E, Questions no. $\mathbf{3 6}$ to $\mathbf{3 8}$ are case study based questions carrying 4 marks each.
(viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 3 questions in Section C, 2 questions in Section D and 2 questions in Section E.
(ix) Use of calculators is not allowed.

SECTION A

This section comprises multiple choice questions (MCQs) of 1 mark each.

1. If $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}6 \\ 3 \\ 2\end{array}\right]$, then the value of $(2 x+y-z)$ is :
(a) 1
(b) 2
(c) 3
(d) 5
2. If a matrix $\mathrm{A}=\left[\begin{array}{ll}1 & 2\end{array}\right]$, then the matrix AA^{\prime} (where A^{\prime} is the transpose of A) is :
(a) 14
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2\end{array}\right]$
(d) $[14]$

65/4/2
3. If $x\left[\begin{array}{l}1 \\ 2\end{array}\right]+y\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\frac{4}{9}\right]$, then :
(a) $\mathrm{x}=1, \mathrm{y}=2$
(c) $\mathrm{x}=1, \mathrm{y}=-1$
(b) $\mathrm{x}=2, \mathrm{y}=1$
(d) $\mathrm{x}=3, \mathrm{y}=2$
4. If A is a square matrix and $\mathrm{A}^{2}=\mathrm{A}$, then $(\mathrm{I}+\mathrm{A})^{2}-3 \mathrm{~A}$ is equal to :
(a) I
(b) A
(c) $\quad 2 \mathrm{~A}$
(d) 3 I
5. The value of the determinant $\left|\begin{array}{ccc}2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1\end{array}\right|$ is :
(a) 47
(b) -79
(c) 49
(d) -51
6. The function $f(x)=|x|$ is
(a) continuous and differentiable everywhere.
(b) continuous and differentiable nowhere.
(c) continuous everywhere, but differentiable everywhere except at $\mathrm{x}=0$.
(d) continuous everywhere, but differentiable nowhere.
7. If $y=\log \left(\sin e^{x}\right)$, then $\frac{d y}{d x}$ is :
(a) $\quad \cot \mathrm{e}^{\mathrm{x}}$
(b) $\quad \operatorname{cosec} \mathrm{e}^{\mathrm{x}}$
(c) $e^{x} \cot e^{x}$
(d) $e^{x} \operatorname{cosec} e^{x}$.
8. $\int \mathrm{e}^{5 \log \mathrm{x}} \mathrm{dx}$ is equal to :
(a) $\frac{\mathrm{x}^{5}}{5}+\mathrm{C}$
(b) $\frac{x^{6}}{6}+C$
(c) $5 x^{4}+C$
(d) $6 \mathrm{x}^{5}+\mathrm{C}$
9. $\int_{0}^{4}\left(e^{2 x}+x\right) d x$ is equal to :
(a) $\frac{15+\mathrm{e}^{8}}{2}$
(b) $\frac{16-\mathrm{e}^{8}}{2}$
(c) $\frac{\mathrm{e}^{8}-15}{2}$
(d) $\frac{-\mathrm{e}^{8}-15}{2}$
10. A unit vector along the vector $4 \hat{i}-3 \hat{k}$ is :
(a) $\frac{1}{7}(4 \hat{\mathrm{i}}-3 \hat{\mathrm{k}})$
(b) $\frac{1}{5}(4 \hat{i}-3 \hat{k})$
(c) $\frac{1}{\sqrt{7}}(4 \hat{i}-3 \hat{k})$
(d) $\frac{1}{\sqrt{5}}(4 \hat{i}-3 \hat{k})$
11. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when :
(a) $0<\theta<\frac{\pi}{2}$
(b) $0 \leq \theta \leq \frac{\pi}{2}$
(c) $0<\theta<\pi$
(d) $0 \leq \theta \leq \pi$
12. The integrating factor for solving the differential equation $x \frac{d y}{d x}-y=2 x^{2}$ is :
(a) e^{-y}
(b) e^{-x}
(c) x
(d) $\frac{1}{x}$
13. The number of solutions of the differential equation $\frac{d y}{d x}=\frac{y+1}{x-1}$, when $y(1)=2$, is :
(a) zero
(c) two
(b) one
(d) infinite
14. Distance of the point (p, q, r) from y-axis is :
(a) q
(b) $|q|$
(c) $\quad|\mathrm{q}|+|\mathrm{r}|$
(d) $\sqrt{\mathrm{p}^{2}+\mathrm{r}^{2}}$
15. If the direction cosines of a line are $\left(\frac{1}{a}, \frac{1}{a}, \frac{1}{a}\right)$, then :
(a) $0<$ a <1
(b) $\mathrm{a}>2$
(c) \quad a >0
(d) $\mathrm{a}= \pm \sqrt{3}$
16. For two events A and B, if $P(A)=0 \cdot 4, P(B)=0.8$ and $P(B / A)=0 \cdot 6$, then $P(A \cup B)$ is :
(a) $0: 24$
(b) $0 \cdot 3$
(c) 0.48
(d) 0.96
17. Which of the following points satisfies both the inequations $2 x+y \leq 10$ and $x+2 y \geq 8$?
(a) $(-2,4)$
(b) $(3,2)$
(c) $(-5,6)$
(d) $(4,2)$
18. The solution set of the inequation $3 x+5 y<7$ is :
(a) whole xy-plane except the points lying on the line $3 x+5 y=7$.
(b) whole xy-plane along with the points lying on the line $3 x+5 y=7$.
(c) open half plane containing the origin except the points of line $3 x+5 y=7$.
(d) open half plane not containing the origin.

Questions number 19 and 20 are Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below.
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A).
(c) Assertion (A) is true and Reason (R) is false.
(d) Assertion (A) is false and Reason (R) is true.
19. Assertion (A) : All trigonometric functions have their inverses over their respective domains.

Reason (R) : The inverse of $\tan ^{-1} \mathrm{x}$ exists for some $\mathrm{x} \in \mathbb{R}$.
20. Assertion (A): The lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are perpendicular, when $\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}}=0$.
Reason (R) : The angle θ between the lines $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\vec{r}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}}$ is given by $\cos \theta=\frac{\overrightarrow{\mathrm{b}_{1}} \cdot \overrightarrow{\mathrm{~b}_{2}}}{\left|\overrightarrow{\mathrm{~b}_{1}}\right|\left|\overrightarrow{\mathrm{b}_{2}}\right|}$

SECTION B

This section comprises very short answer (VSA) type questions of 2 marks each.
21. Find the interval in which the function $f(x)=2 x^{3}-3 x$ is strictly increasing.
22. (a) Find the vector equation of the line passing through the point $(2,1,3)$ and perpendicular to both the lines

$$
\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3} ; \quad \frac{x}{-3}=\frac{y}{2}=\frac{z}{5}
$$

OR

(b) The equations of a line are $5 x-3=15 y+7=3-10 z$. Write the direction cosines of the line and find the coordinates of a point through which it passes.
23. (a) Find the domain of $y=\sin ^{-1}\left(x^{2}-4\right)$.

OR

(b) Evaluate :

$$
\cos ^{-1}\left[\cos \left(-\frac{7 \pi}{3}\right)\right]
$$

24. If $\left(x^{2}+y^{2}\right)^{2}=x y$, then find $\frac{d y}{d x}$.
25. If $\overrightarrow{\mathrm{a}}=4 \hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{\mathrm{b}}=2 \hat{i}-2 \hat{j}+\hat{k}$, then find a unit vector along the vector $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$.

SECTION C

This section comprises short answer (SA) type questions of 3 marks each.
26. Find :

$$
\int \frac{x^{2}}{x^{2}+6 x+12} d x
$$

27. Two fair dice are thrown simultaneously. If X denotes the number of sixes, find the mean of X .
28. (a) Find the particular solution of the differential equation

$$
\begin{gathered}
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}}, \mathrm{y}(1)=0 \\
\text { OR }
\end{gathered}
$$

(b) Find the general solution of the differential equation

$$
e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0
$$

20. (a) Evaluate:

$$
\int_{\pi / 4}^{\pi / 2} e^{2 x}\binom{1-\sin 2 x}{1-\cos 2 x} d x
$$

OR

(b) Evaluate:

$$
\int_{-2}^{2} \frac{x^{2}}{1+5^{x}} d x
$$

30. (a) Find :

$$
\int \frac{e^{*}}{\sqrt{5-4 e^{*}-e^{2 \%}}} d x
$$

OR

(b) Evaluate:

$$
\int_{0}^{\pi / 2} \sqrt{\sin x} \cos ^{5} x d x
$$

31. Solve the following linear programming problem graphically :

Maximise $z=-3 x-5 y$
subject to the constraints

$$
\begin{array}{r}
-2 x+y \leq 4 \\
x+y \geq 3 \\
x-2 y \leq 2 \\
x \geq 0, y \geq 0
\end{array}
$$

This section comprises type questions of 5 marks each.
32. Using integration, find the area of the region bounded by the circle $x^{2}+y^{2}=16$, line $y=x$ and y-axis, but lying in the $1^{\text {st }}$ quadrant.

OR

(b) Find the angle between the lines

$$
2 x=3 y=-z \text { and } 6 x=-y=-4 z
$$

34. (a) If N denotes the set of all natural numbers and R is the relation on $\mathrm{N} \times \mathrm{N}$ defined by $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d})$, if $\mathrm{ad}(\mathrm{b}+\mathrm{c})=\mathrm{bc}(\mathrm{a}+\mathrm{d})$. Show that R is an equivalence relation.

OR

(b) Let $\mathrm{f}: \mathbb{R}-\left\{-\frac{4}{3}\right\} \rightarrow \mathbb{R}$ be a function defined as $\mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}}{3 \mathrm{x}+4}$. Show that f is a one-one function. Also, check whether f is an onto function or not.
35. Find the inverse of the matrix $\mathrm{A}=\left[\begin{array}{rrr}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3, & -2 & 4\end{array}\right]$. Using the inverse, A^{-1}, solve the system of linear equations
$x-y+2 z=1 ; 2 y-3 z=1 ; 3 x-2 y+4 z=3$.

This section comprises
SECTION E
36. A building contractor undertakes a job to construct 4 flats on a plot along with parking area. Due to strike the probability of many construction are not present and still the work gets completed on time is 0.35 . The probability that work will be completed on time when all workers are
E_{2} : represent the event when all workers were present; and E : represent completing the construction work on time.
Based on the above information, answer the following questions:
(i) What is the probability that all the workers are present for the job? 1
(ii) What is the probability that construction will be completed on time? 1
(iii) (a) What is the probability that many workers are not present given that the construction work is completed on time ?

OR

(iii) (b) What is the probability that all workers were present given that the construction job was completed on time?

Case Study - 2

37. Let $f(x)$ be a real valued function. Then its

- Left Hand Derivative (L.H.D.) : $L f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}$
- Right Hand Derivative (R.H.D.) : $R f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$

Also, a function $f(x)$ is said to be differentiable at $x=a$ if its L.H.D. and R.H.D. at $\mathrm{x}=\mathrm{a}$ exist and both are equal.

For the function $f(x)=\left\{\begin{array}{l}|x-3|, x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4}, x<1\end{array}\right.$
answer the following questions :
(i) What is R.H.D. of $f(x)$ at $x=1$?
(ii) What is L.H.D. of $f(x)$ at $x=1$?
(iii) (a) Check if the function $f(x)$ is differentiable at $\mathrm{x}=1$.

OR

(iii) (b) Find $f^{\prime}(2)$ and $f^{\prime}(-1)$.

Case Study - 3

38. Sooraj's father wants to construct a rectangular garden using a brick wall on one side of the garden and wire fencing for the other three sides as shown in the figure. He has 200 metres of fencing wire.

Based on the above information, answer the following questions :
(i) Let ' x ' metres denote the length of the side of the garden perpendicular to the brick wall and ' y ' metres denote the length of the side parallel to the brick wall. Determine the relation representing the total length of fencing wire and also write $A(x)$, the area of the garden.
(ii) Determine the maximum value of $\mathrm{A}(\mathrm{x})$.

