1. In an electromagnetic wave, the ratio of energy densities of electric and magnetic fields is \qquad . Fill in the blank with the correct answer from the options given below.
(1) $1: 1$
(2) $1: \mathrm{c}$
(3) $c: 1$
(4) $1: \mathrm{c}^{2}$
2. Match List-I has four graphs showing variation of pposition to flow of ac versus frequency with circuit characteristic in List-II.

Choose the correct answer from the options given below.
(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
(2) (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
(3) (A) - (I), (B) - (II), (C) - (IV), (D) - (III)
(4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
SPACE FOR ROUGH WORK
3. Of the following, the correct arrangement of electromagnetic spectrum in decreasing order of wavelength is
\qquad .
Fill in the blank with the correct answer from the options given below.
(1) Radio waves, X-rays, Infrared waves, microw\&s, visible waves
(2) Infrared waves, microwaves, Radio waves, X-As s, visible waves
(3) Radio waves, microwaves, Infrared waves, vislble waves, X-rays
(4) X-rays, visible waves, Infrared waves, microwaydes, Radio waves
4. Match Electromagnetic waves listed in column I with

Column-I Electromagnetic waves		
	Column-II Production	
(A)	Microwaves	(I)
LC oscillator		

The correctly matched combination is as in option :
(1) (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
(3) $(\mathrm{A})-$ (II), (B) - (I), (C) - (IV), (D) - (III)
(A) - (II), (B) - (III), (C) - (IV), (D) - (I)
(4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)
5. In the figure given below, APB is a curved surface of radius of curvature 10 cm separating air and a transparent material $(\mu=4 / 3)$. A point object O is placed in air on the principal axis of the surface 20 cm from P. The distance of the image of O from P will

\qquad .

Fill in the blank with the correct answer from the options given below.
(1) 16 cm left of P in air
(2) 16 cm right of P in water
(3) 20 cm right of P in water
(4) 20 cm left of P in air
6. For fixed values of radii of curvature of lens, power of the lens will be \qquad .
Fill in the blank with the correct answer from the options given below.
(1) $P \propto(\mu-1)$
(2) $\mathbf{P} \propto \mu^{2}$
(3) $P \propto 1 / \mu$
(4) $P \propto \mu^{-2}$
7. The graph correctly representing the variation of image distance ' v ' for a convex lens of focal length ' f ' versus object distance ' u ' is \qquad -
Fill in the blank with the correct answer from the options given below.
(1)

(3)

8. Using light from a monochromatic source to studyfdiffraction in a single slit of width 0.1 mm , the linear width of central maxima is measured to be 5 mm a screen held 50 cm away. The wavelength of light
used is
\qquad -.

Fill in the blank with the correct answer from the optic
(1) $2.5 \times 10^{-7} \mathrm{~m}$
(3) $5 \times 10^{-7} \mathrm{~m}$
(2) $4 \times 10^{-7} \mathrm{~m}$
(4) $7.5 \times 10^{-7} \mathrm{~m}$
9. Radiation of frequency $2 v_{0}$ is incident on a metal following is \qquad .
Fill in the blank with the correct answer from the
(1) No photoelectrons will be emitted
(2) All photoelectrons emitted will have kinetic
(3) Maximum kinetic energy of photoelectrons emitted can to $h v_{0}$
(4) Maximum kinetic energy of photoelectrons emitted will be $2 \mathrm{~h} \nu_{0}$

SPACE FOR ROUGH WORK

$$
\begin{aligned}
& E-h \nu \\
& \omega_{0}=h \nu_{0} h\left(\partial_{0}-\nu\right)=h\left(-\nu_{0}\right)
\end{aligned}
$$

10. A point source causing photoelectric emission from a metallic plate is moved away from the plate. The variation of photoelectric current with distance from the source is correctly represented by the graph
\qquad -.
Fill in the blank with the correct answer from the options given below.
(1)

(2)

11. A proton accelerated through a potential difference V has a de Broglie wavelength λ. On doubling the accelerating potential, de Broglie wavelength of the proton \qquad .
Fill in the blank with the correct answer from the options given below.
(1) remains unchanged
(2) becomes double
(3) becomes four times
(4) decreases
12. The kinetic energy of an electron in ground level in hydrogen atom is K units. The values of its potential energy and total energy respectively are \qquad .
Fill in the blank with the correct answer from the options given below.
(1) $-2 \mathrm{~K} ;-\mathrm{K}$
(2) $+2 \mathrm{~K} ;-\mathrm{K}$
(3) $-K,+2 K$
(4) $+\mathrm{K},+2 \mathrm{~K}$
13. Two nuclei have mass numbers A and B respectioy. The density ratio of the nuclei is \qquad Fill in the blank with the correct answer from the font ions given below.
(1) $\mathrm{A}: \mathrm{B}$
(2) $\sqrt{\mathrm{A}}: \sqrt{\mathrm{B}}$
(3) $\mathrm{A}^{2}: \mathrm{B}^{2}$
(4) $1: 1$

14. The shortest wavelengths emitted in hydrogen spectrum corresponding to different spectral series are as under:
(A) Pfund series
(B) Balmer series
(C) Brackett series
(D) Lyman series

The wavelengths arranged correctly in decreasing order are
\qquad
Fill in the blank with the correct answer from the options given below.
(1)
(A), (B), (C), (D)
(3) (B), (A), (D), (C)
0
(2) (A), (C), (B), (D)
(4) (A), (C), (D), (B)
15. Silicon can be doped using one of the followingoblements as dopant :
(A) Arsenic
(B) Indium
(C) Phosphorus
To get n-type semiconductor, the dopants that $\%$ be used are
Fill in the blank with the correct answer from theyoptions given below.
(1) (A) and (C) only
(3) (A), (B),
(C) and (D)
(2) (B) and (C) only
(D) Boron
\qquad .
16. Given below are V versus I graphs for different types of $p-n$ junction diodes marked A, B, C and D.
(A)

0
0
0
\square
\square
08
4
$<$
(B)

(C)

(D)

The correct sequence of graphs corresponding forward biased pin juction; Zener diode; Photo diode and Solar cell in order is \qquad
Fill in the blank with the correct answer from tho options given below.
(1) (D), (C), (A), (B)
(2) (A), (C), (B), (D)
(3)
(B), (A), (D), (C)
(4) (C), (B), (D), (A)

17. A wire carrying current I, bent as shown in the figure, is placed in a uniform field B that emerges normally out from the plane of the figure. The force on this wire is \qquad -

Fill in the blank with the correct answer from the options given below.
(1) 4 BIR , directed vertically downward
(2) 3 BIR , directed vertically upward
(3) $\mathrm{BI}(2 \mathrm{R}+\pi \mathrm{R})$, vertically downward
(4) $2 \pi \mathrm{BIR}$, from P to Q

18. The refractive index of the material of an equilateral prism is $\sqrt{2}$. The angle of minimum deviation of that prism is \qquad .
Fill in the blank with the correct answer from theqptions given below.
(1) 60°
(2) 75°
(3) 30°
(4) 90°

19. The transfer of integral number of \qquad is one of the evidence of quantization of electric charge. Fill in the blank with the correct answer from the options given below.
(1) photons
(2) nuclei
(3) electrons
(4) neutrons
20. When a slab of insulating material 4 mm thick is introduced between the plates of a parallel plate capacitor of separation 4 mm , it is found that the distance between the plates has to be increased by 3.2 mm to restore the capacity to its original value. The dielectric consent of the material is \qquad -.

Fill in the blank with the correct answer from the option given below.
(1) 2
(2) 5
21. A copper ball of density $8.0 \mathrm{~g} / \mathrm{cc}$ and 1 cm in diameter g . the ball if it remains just suspended in oil in an electric field of intensity $600 \pi \mathrm{~V} / \mathrm{m}$ acting in the upward direction is \qquad .
Fill in the blank
(1) $2 \times 10^{-6} \mathrm{C}$
(2) $2 \times 10^{-5} \mathrm{C}$
(3) $1 \times 10^{-5} \mathrm{C}$
(4) $1 \times 10^{-6} \mathrm{C}$
22. A metal wire is subjected to a constant potential difference. When the temperature of the metal wire increases, the drift velocity of the electron in it \qquad .
Fill in the blank with the correct answer from the options given below.
(1) increases, thermal velocity of the electrons decreases
(2) decreases, thermal velocity of the electrons decreases
(3) increases, thermal velocity of the electrons increases
(4) decreases, thermal velocity of the electrons increases
23. For the given mixed combination of resistors calculated the total resistance between points A and B.

Choose the correct answer from the options given below.
(1) 9Ω
(2) 18Ω
(3) 4Ω
(4) 14Ω

24. A cell of emf 1.1 V and internal resistance 0.5Ω is connected to a wire of resistance 0.5Ω. Another cell of the same emf is now connected in series with the intention of increasing the current but the current in the wire remains the same. The internal resistance of the second cell is \qquad . Fill in the blank with the correct answer from the options given below.
(1) 1Ω
(2) 2.5Ω
(3) 1.5Ω
(4) 2Ω
25. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are four wires of resistances $3,3,3$ and 4Ω respectively. They are connected to form the four arms of a wheatstone bridge circuit. The resigfance with which S must be shunted in order that the bridge may be balanced is \qquad .
Fill in the blank with the correct answer fronghe options given below.
(1) 14Ω
(2) 12Ω
(3) 15Ω
(4) 7Ω
26. Magnetic moment of a thin bar magnet is . If it is bent into a semicircular form, its new magnetic moment will be \qquad .
Fill in the blank with the correct answer from the options given below.
(1) M / π
(2) $M / 2$
(3) M
(4) $2 \mathrm{M} / \pi$
27. Ferromagnetic material used in Transformers must have \qquad -
Fill in the blank with the correct answer from the options given below.
(1) Low permeability and High Hysteresis loss
(2) High permeability and Low Hysteresis 6 s
(3) High permeability and High Hysteresis ${ }^{5 s}$
(4) Low permeability and Low Hysteresis lgs
28. A conducting ring of radius r is placed in a yarying magnetic field perpendicular to the plane of the ring. If the rate at which the magnetic field varie x, the electric field intensity at any point of the ring is
\qquad .
Fill in the blank with the correct answer frome options given below.
(1) rx
(2) $r x / 2$
(3) $2 r x$
(4) $4 r / x$
29. A 50 Hz ac current of crest value 1 A flows through the primary of a transformer. If the mutual inductance between the primary and secondary be 0.5 H , the crest voltage induced in the secondary is
\qquad .
Fill in the blank with the correct answer from the options given below.
(1) 75 V
(2) 150 V
(3) 100 V
(4) 200 V
30. A long solenoid of diameter 0.1 m has 20^{4} turns per meter. At the centre of the solenoid a coil of 100 turns and radius 0.01 m is placed with 10 axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to 0 A from 4 A in 0.05 s . If the resistance of the coil is $10 \pi^{2} \Omega$, then the total charge flowing through the coil during the is \qquad -
Fill in the blank with the correct answer frome options given below.
(1) $16 \mu \mathrm{C}$
(2) $32 \mu \mathrm{C}$
(3) $16 \pi \mu \mathrm{C}$
(4) $32 \pi \mu \mathrm{C}$

31. Lower half of a convex lens is made opaque. Which of the following statement describes the image of the object placed in front of the lens?
(A) No change in image
(B) Image will show only half of the object
(C) Intensity of image gets reduced

Choose the correct answer from the options given below.
(1) (A) only
(2) (B) only
(3) 0 (C) only
(4) (B) and (C) only
32. Two slits are made 0.1 mm apart and the screen is placed 2 m away. The fringe separation when a light of wavelength 500 nm is used is \qquad .
Fill in the blank with the correct answer from the optiok given below.
(1) 1 cm
(2) 0.15 cm
(3) 1.5 cm
(4) 0.1 cm
33. For an astronomical telescope having objective lens of focal length 10 m and eyepiece lens of focal length 10 cm , telescope's the tube length and magnification respectively are \qquad .
Fill in the blank with the correct answer from the options given below.
(1) $20 \mathrm{~cm}, 1$
(2) $1000 \mathrm{~cm}, 1$
(3) $O^{1010 \mathrm{~cm}, 1}$
(4) $1010 \mathrm{~cm}, 100$
34. According to Bohr's Model
(A) The radius of the orbiting electron is directly prop tional to ' n '.
(B) The speed of the orbiting electron is directly propenional to ' $1 / \mathrm{n}$ '.
(C) The magnitude of the total energy of the orbiting E Eटिctron is directly proportional to $11 / \mathrm{n}^{2}$.
(D) The radius of the orbiting electron is directly proportional to ' n^{2}.

Choose the correct answer from the options given below
(1) (A), (B) and (C) only
(2) (A), (B) and (D) only
(3) (A), (B), (C) and (D)
(4) (B), (C) and (D) only
35. For a full wave rectifier, if the input frequency is 50 H 2 the output frequency will be \qquad .
Fill in the blank with the correct answer from the optiongiven below.
(2) 100 Hz
(1) 50 Hz
(3) 25 Hz
(4) 0 Hz
36. For an electric dipole in a non-uniform electric field with dipole moment parallel to direction of the fild the force F and torque τ on the dipole respectively are Fill in the blank with the correct answer from the options given below.
(1) $\mathrm{F}=0, \tau=0$
(2) $\mathrm{F} \neq 0, \tau=0$
(3) $\mathrm{F}=0, \tau \neq 0$
(4) $\mathrm{F} \neq 0, \tau \neq 0$

37. Two large plane parallel sheets shown in the figure have equal but opposite surface charge densities $+\sigma$ and $-\sigma$. A point charge q placed at points P_{1}, P_{2} and P_{3} experiences forces F_{1}, F_{2} and F_{3} respectively. Then

Choose the correct answer from the options given below.
(1) $\vec{F}_{1}=0, \vec{F}_{2}=0, \vec{F}_{3}=0$
(2) $\vec{F}_{1}=0, \vec{F}_{2} \neq 0, \vec{F}_{3}=0$
(3) $\overrightarrow{\mathrm{F}}_{1} \neq 0, \overrightarrow{\mathrm{~F}}_{2} \neq 0, \overrightarrow{\mathrm{~F}}_{3} \neq 0$
(4) $\vec{F}_{1}=0, \vec{F}_{3} \neq 0, \vec{F}_{2}=0$
38. Two charged metallic spheres with radii R_{1} and R_{2} are brought in contact and then separated. The ratio of final charges Q_{1} and Q_{2} on the two spherespectively will be \qquad .
Fill in the blank with the correct answer from the options given below.
(1) $\frac{Q_{1}}{Q_{2}}=\frac{R_{2}}{R_{1}}$

(3) $\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}>\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
(4) $\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
39. Two charged particles, placed at a distance d apart in vacuum, exert a force F on each other. Now, each of the charges is doubled. To keep the force unchanged, the distance between the charges should be changed to \qquad .
Fill in the blank with the correct answer from the options given below.
(1) 4 d
(2) 2 d
(3) d
(4) $\mathrm{d} / 2$
40. Two parallel plate capacitors of capacitances $2 \mu \mathrm{~F}$ and $3 \mu \mathrm{~F}$ are joined in series and the combination is connected to a battery of V volts. The values of potential across the two capacitors V_{1} and V_{2} and energy stored in the two capacitors U_{1} and U_{2} respectively are related as \qquad .
Fill in the blank with the correct answer from the options given below.
(1) $\frac{V_{1}}{V_{2}}=\frac{U_{1}}{U_{2}}=\frac{3}{2}$
(3) $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{3}{2}$ and $\frac{\mathrm{U}_{1}}{\mathrm{U}_{2}}=\frac{2}{3}$

\square	(2) $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{U}_{1}}{\mathrm{U}_{2}}=\frac{2}{3}$
4	
(4) $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{2}{3}$ and $\frac{\mathrm{U}_{1}}{\mathrm{U}_{2}}=\frac{3}{2}$	

SPACE FOR ROUGH WORK

 below. The reading in a 200Ω voltmeter connected across the 200Ω resistance is \qquad -.

Fill in the blank with the correct answer from the options gifen below.
(1) 4 V
(2) $\frac{20}{3} \mathrm{~V}$
(3) $10 / \mathrm{V}$
(4) 16 V
42. The current through a $4 / 3 \Omega$ external resistance connected to a parallel combination of two cells of 2 V and 1 Vemf and internal resistances of 1Ω and 2Ω respectively is \qquad .
Fill in the blank with the correct answer from the options giyen below.
(1) 1 A
(2) $2 / 3 \mathrm{~A}$
(3) 24 A
(4) $5 / 6 \mathrm{~A}$
43. A metallic wire of uniform area of cross section has a resjstance R, resistivity ρ and power rating P at V volts. The wire is uniformly stretched to reduce the radius to half the original radius. The values of resistance, resistivity and power rating at V volts are low denoted by $R^{\prime}, \rho^{\prime}$ and P^{\prime} respectively. The corresponding values are correctly related as \qquad .
Fill in the blank with the correct answer from the options given below.
(1) $\rho^{\prime}=2 \rho, \mathrm{R}^{\prime}=2 \mathrm{R}, \mathrm{P}^{\prime}=2 \mathrm{P}$
(2) $\sigma^{\prime}=(1 / 2) \rho, R^{\prime}=(1 / 2) R, P^{\prime}=(1 / 2) P$
(3) $\rho^{\prime}=\rho, R^{\prime}=16 R, P^{\prime}=(1 / 16) P$
(4) $\rho^{\prime}=\rho, R^{\prime}=(1 / 16) R, P^{\prime}=16 \mathrm{P}$
44. Three magnetic materials are listed below
(A) paramagnetics
(B) diamagnetics
(C) ferromagnetics

Choose the correct order of the materials in increasing ordep of magnetic susceptibility.
(1) (A), (B), (C)
(2) (C), (A), (B)
(3) 领, (A), (C)
(4) (B), (C), (A)
45. Two infinitely long straight parallel conductors carrying currents I_{1} and I_{2} are held at a distance d apart in vacuum. The force F on a length L of one of the conducto \qquad -
Fill in the blank with the correct answer from the options gijen below.
(1) proportional to L but independent of $\mathrm{I}_{1} \times \mathrm{I}_{2}$
(2) profiortional to $\mathrm{I}_{1} \times \mathrm{I}_{2}$ but independent of length L
(3) proportional to $\mathrm{I}_{1} \times \mathrm{I}_{2} \times \mathrm{L}$
(4) proportional to $\frac{L}{I_{1} \times I_{2}}$
46. In the circuit shown below, a current 3 I enters
' r ' but resistances $2 R$ and R resper A enters at A. The semicircular parts $A B C$ and $A D C$ have equal radii
\qquad -.

Fill in the blank with the corre
(1) $\frac{\mu_{0} \mathrm{I}}{4 \mathrm{r}}$ out of the plane
(3) $\frac{\mu_{0} 3 \mathrm{I}}{4 \mathrm{r}}$ out of the plane
the options given below.
(2) $\frac{\mu_{0} \mathrm{I}}{4 \mathrm{r}}$ into the plane
(4) $\frac{\mu_{0} 3 I}{4 r}$ into the plane
47. A square loop with each side 1 cm , carrying a current of 10 A , is placed in a magnetic field of 0.2 T . The direction of magnetic field is parallel to the plane of the loop. The torque experienced by the loop is \qquad .
Fill in the blank with the correct answer from the options given below.
(1) zero
(2) $2 \times 10^{-4} \mathrm{Nm}$
(3) $2 \times 10^{-2} \mathrm{Nm}$
(4) 2 Nm
48. In an ac circuit, the current leads the volta ${ }^{\circ}$ by $\pi / 2$. The circuit is \qquad .
Fill in the blank with the correct answer from the options given below.
(1) purely resistive
(2) should havecircuit elements with resistance equal to reactance.
(3) purely inductive
(4) purely capacitive
49. In a pair of adjacent coils, for a change 8% current in one of the coils from 0 A to 10 A in 0.25 s , the magnetic flux in the adjacent coil changes' 6 , 15 Wb . The mutual indutance of the coils is \qquad . Fill in the blank with the correct answer from the options given below.
(1) 120 H
(2) 12 H
(3) 1.5 H
(4) 0.75 H
50. A wire of irregular shape in figure (a) and a circular loop of wire in figure (b) are placed in different uniform magnetic fields as shown in the figures below. In figure (a), the magnetic field is perpendicular into the plane. In figure (b), the magnetic field is perpendicular out of the plane.

The wire in figure (a) is turning into a circylar loop and that in figure (b) into a narrow straight wire. The direction of induced current will be \qquad -.
Fill in the blank with the correct answer from the options given below.
(1) clockwise in both (a) and (b)
(2) anticlockwise in both (a) and (b)
(3) clockwise in (a) and anticlockwise in (b)
(4) anticlockwise in (a) and clockwi

