In an electromagnetic wave, the ratio of energy densities of electric and magnetic fields is ______ 1. Fill in the blank with the correct answer from the options given below. (4) $1:c^2$

(2) 1:c

(1) 1:1 (3) c:1

- Match List-I has four graphs showing variation of poposition to flow of ac versus frequency with circuit 2. characteristic in List-II. 3

(3)

3. Of the following, the correct arrangement of electromagnetic spectrum in decreasing order of wavelength is

Fill in the blank with the correct answer from the options given below.

- (1) Radio waves, X-rays, Infrared waves, microw vs, visible waves
- (2) Infrared waves, microwaves, Radio waves, X-10, visible waves
- (3) Radio waves, microwaves, Infrared waves, visible waves, X-rays
- (4) X-rays, visible waves, Infrared waves, microwaves, Radio waves
- 4. Match Electromagnetic waves listed in column I with Production method/device in column II

	Column-I Electromagnetic waves		Column-II Production method/device
(A)	Microwaves	(I)	LC oscillator
(B)	Infrared	(II)	Magnetron
(C)	X-rays	(III)	Vibration data with the second
(D)	Radio waves	(IV)	Bombarding large atomic number metal target with fast moving electrons

The correctly matched combination is as in option :

- (1) (A) (I), (B) (II), (C) (III), (D) (IV)
- (3) (A) (II), (B) (I), (C) (IV), (D) (III)

5. In the figure given below, APB is a curved surface of radius of curvature 10 cm separating air and a transparent material ($\mu = 4/3$). A point object O is placed in air on the principal axis of the surface 20 cm from P. The distance of the image of O from P will be ______.

Fill in the blank with the correct answer from the options given below.

(1) 16 cm left of P in air

(2) 16 cm right of P in water

(A) - (II), (B) - (III), (C) - (IV), (D) - (I) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)

(3) 20 cm right of P in water

(4) 20 cm left of P in air

SPACE FOR ROUGH WORK

9.

6. For fixed values of radii of curvature of lens, power of the lens will be

Fill in the blank with the correct answer from the options given below.

- (2) $P \propto \mu^2$ (3) $P \propto 1/\mu$ (1) $P \propto (\mu - 1)$ (4) $P \propto \mu^{-2}$
- The graph correctly representing the variation of image distance 'v' for a convex lens of focal length 7. 'f' versus object distance 'u' is

Fill in the blank with the correct answer from the options given below.

Using light from a monochromatic source to stud#diffraction in a single slit of width 0.1 mm, the linear 8. width of central maxima is measured to be 5 mm on a screen held 50 cm away. The wavelength of light

Fill in the blank with the correct answer from the options given below.

 $2.5 \times 10^{-7} \,\mathrm{m}$ (1)(2) 4×10^{-7} m $5 \times 10^{-7} \, {\rm m}$ (3)

(4) $7.5 \times 10^{-7} \,\mathrm{m}$

Radiation of frequency $2v_0$ is incident on a metal with threshold frequency v_0 . The correct statement of the

- Fill in the blank with the correct answer from the options given below. No photoelectrons will be emitted
- (1)
- All photoelectrons emitted will have kinetic energy equal to hv_0 (2)
- Maximum kinetic energy of photoelectrons emitted can be hv_0 (3) Maximum kinetic energy of photoelectrons emitted will be $2hv_0$ (4)

SPACE FOR ROUGH WORK $E = h v = h v = h (-2v_0) =$ colleged India's largest Student Review Platfor

10. A point source causing photoelectric emission from a metallic plate is moved away from the plate. The variation of photoelectric current with distance from the source is correctly represented by the graph

Fill in the blank with the correct answer from the options given below.

A(c)

- 1

1

(7)

17. A wire carrying current I, bent as shown in the figure, is placed in a uniform field B that emerges normally out from the plane of the figure. The force on this wire is ______.

Fill in the blank with the correct answer from the options given below.

- (1) 4BIR, directed vertically downward
- (2) 3BIR, directed vertically upward

(3) BI (2R + π R), vertically downward

- (4) 2π BIR, from P to Q
- 18. The refractive index of the material of an equilateral prism is $\sqrt{2}$. The angle of minimum deviation of that prism is ______.

 $\Delta \Delta \$ \& \Box \heartsuit \&$

Fill in the blank with the correct answer from the options given below.

- (1) 60°
- (2) 75°
- (3) 30°
- (4) 90°

Sin 100 + 52 Augu = 60

S&□ ØS

Collegedunia

 19. The transfer of integral number of is one of the evidence of quantization of electric chaper Fill in the blank with the correct answer from the options given below. (1) photons (2) nuclei (3) electrons (4) neutrons 20. When a slab of insulating material 4 mm thick is introduced between the plates of a parallel plate capa of separation 4 mm, it is found that the distance between the plates has to be increased by 3.2 mm to restrict the capacity to its original value. The dielectric consolution of the material is	322	E/B	(8)	
 (1) photons (2) nuclei (3) electrons (4) neutrons 20. When a slab of insulating material 4 mm thick is introduced between the plates of a parallel plate capa of separation 4 mm, it is found that the distance between the plates has to be increased by 3.2 mm to reinform the optime given below. (1) 2 (2) 5 (4) 7 21. A copper ball of density 8.0 g/cc and 1 cm in diametars immersed in oil of density 0.8 g/cc. The charge the ball if it remains just suspended in oil in an electric field of intensity 6000 V/m acting in the up direction is	19.	The transfer of integral number of	is one of the evi	dence of quantization of electric charge. low.
 (1) protons (2) interf (2) interf		(1) photons (2) puolei	(3) electrons	(4) neutrons
 20. When a slab of insulating material 4 mm thick is infordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increased by 3.2 mm to reinfordance between the plates has to be increases the material is increases in the original value. The dielectric constant potential difference. When the temperature of the metal to increases, thermal velocity of the electrons increases (2) decreases, thermal velocity of the electrons increases (2) decreases, thermal velocity of the electrons increases (3) increases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (5) increases, thermal velocity of the electrons increases (6) increases, thermal velocity of the electrons increases (7) increases (7)	-			een the plates of a parallel plate capacit
of separation 4 mm, it is found that the distance between the vertice constant of the material is	20.	When a slab of insulating material 4 mm	thick is introduced between the plates	has to be increased by 3.2 mm to resto
Fill in the blank with the correct answer from the optime given below. (1) 2 (2) 5 (3) (4) 7 21. A copper ball of density 8.0 g/cc and 1 cm in diameters immersed in oil of density 0.8 g/cc. The charg the ball if it remains just suspended in oil in an electric field of intensity 600n V/n acting in the up direction is		of separation 4 mm, it is found that the d	stance between the part	erial is
Fill in the blank with the correct answer from the optime structure of the metal of density 0.8 g/cc. The charge the ball if it remains just suspended in oil in an electric field of intensity 600π V/m acting in the up direction is		the capacity to its original value. The die	the options given bel	ow.
 (1) 2 (2) 5 A copper ball of density 8.0 g/cc and 1 cm in diameters immersed in oil of density 0.8 g/cc. The charg the ball if it remains just suspended in oil in an electric field of intensity 600π V/m acting in the up direction is		Fill in the blank with the correct answer I	rom the options gave	(4) 7
 21. A copper ball of density 8.0 g/cc and 1 cm in managed ma		(1) 2 (2) 5	in diamoter as immersed	in oil of density 0.8 g/cc. The charge of
the ball if it remains just suspended in oil in an electron the direction is	21.	A copper ball of density 8.0 g/cc and 1 cr	in diameteris field of it	ntensity 600π V/m acting in the upwar
direction is		the ball if it remains just suspended in o		
Fill in the blank with the correct answer from the options $\beta \tan \theta^{-2} C$ (4) $1 \times 10^{-6} C$ (1) $2 \times 10^{-6} C$ (2) $2 \times 10^{-5} C$ (3) $1 \times 10^{-5} C$ (4) $1 \times 10^{-6} C$ (2. A metal wire is subjected to a constant potential difference. When the temperature of the metal increases, the drift velocity of the electron in it		direction is	the entions given belo	ow. (Take $g = 10 \text{ m/s}^2$)
(1) 2×10^{-6} (2) 2×10^{-2} (3) TABLE 22. A metal wire is subjected to a constant potential difference. When the temperature of the metal increases, the drift velocity of the electron in it		Fill in the blank with the correct answer fi	om the options given (2) 1 × 10 ⁻⁵ ((4) 1×10^{-6} C
 22. A metal wire is subjected to a constant potential difference. When an every increases, the drift velocity of the electron in it		(1) 2×10^{-6} C (2) 2×10^{-5} C	(3) 1×10	en the temperature of the metal win
increases, the drift velocity of the electron in it	22	A metal wire is subjected to a constant	potential difference. Wi	
Fill in the blank with the correct answer from the options given below. (1) increases, thermal velocity of the electrons decreases (2) decreases, thermal velocity of the electrons increases (3) increases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases 23. For the given mixed combination of resistors calculate the total resistance between points A and B. $4\Omega_{A}T^{T}Z_{A}\Omega_{A}$		increases, the drift velocity of the electron	in it	
(1) increases, thermal velocity of the electrons decreases (2) decreases, thermal velocity of the electrons increases (3) increases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (5) For the given mixed combination of resistors calculate the total resistance between points A and B. 23. For the given mixed combination of resistors calculate the total resistance between points A and B. (4) $4\Omega_{\mu}\pi^{\mu}$ $Z_{4}\Omega^{\mu}$ $Z_{$		Fill in the blank with the correct answer fr	om the options given belo	w.
(1) decreases, thermal velocity of the electrons increases (3) increases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (5) For the given mixed combination of resistors calculate the total resistance between points A and B. (1) $4\Omega_{pr}$ $\frac{1}{2}4\Omega_{pr}$ $\frac{1}{2}4\Omega_{pr}$ $\frac{1}{2}2\Omega_{pr}$ $\frac{1}{2}\Omega_{pr}$ $\frac{1}{2}$		(1) increases, thermal velocity of the elec	trons decreases	
(3) increases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (5) increases, thermal velocity of the electrons increases (4) decreases, thermal velocity of the electrons increases (5) increases, thermal velocity of the electrons increases (6) decreases, thermal velocity of the electrons increases (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω (1) 14Ω (2) 18Ω (3) 4Ω (4) 14Ω (3) 4Ω (4) 14Ω (4) 14Ω (5) $1000000000000000000000000000000000000$		(1) decreases, thermal velocity of the ele	ctrons decreases	
(4) decreases, thermal velocity of the electrons inclusion 23. For the given mixed combination of resistors calculate the total resistance between points A and B. 4 $\Omega_{\mu}\pi^{\mu}$ Z_{μ}^{μ} Ω_{μ}^{μ} Z_{μ}^{μ} Z_{μ}^{μ} Ω_{μ}^{μ} Z_{μ}^{μ} Z_{μ		(3) increases, thermal velocity of the elec	trons increases	
23. For the given mixed combination of resistors calculated to that resistant of the resis		(4) decreases, thermal velocity of the elec	en calculate the total resist	ance between points A and B.
23. The set of the set of the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω SPACE FOR ROUGH WORK (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (2) 18Ω (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (3) 4Ω (4) 14Ω Choose the correct answer from the options given below. (4) 14Ω Choose the correct answer from the options given below. (5) $1000000000000000000000000000000000000$		For the given mixed combination of resisto	rs calculatonic total reside	
$4\Omega_{A}^{A} \frac{2}{2}$ $4\Omega_{A}^{A} \frac{2}{2}$ $4\Omega_{A}^{A} \frac{2}{2}$ $4\Omega_{A}^{A} \frac{2}{2}$ $6\Omega_{A}^{A} \frac{2}{2}$ $G\Omega_{A}^{A} \frac{2}{2}$ $G\Omega_{A}^$	23.	10 5 40	<	
$\begin{array}{c} 4 \Omega_{2} \pi^{4} & 8 \Omega \\ 4 \Omega_{2} \pi^{4} & 8 \Omega \\ 12 \Omega \\ 6 \Omega_{2} \pi^{4} & 7 \Omega \\ 12 \Omega \\$		412 7 2		
$\begin{array}{c} 4 \Omega_{\mu} \mathbf{x}^{\mu} & 8 \Omega & \mathbf{x}^{\mu} \mathbf{x}^{\mu} \Omega \\ 6 \Omega_{\mu} \mathbf{x}^{\mu} & \mathbf{x}^{\mu} \Omega \\ \mathbf{x}^{\mu} & \mathbf{x}^$		/ www		
$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & &$		40 × 80 Z	Ω	
A Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω SPACE FOR ROUGH WORK 10^{2}		7 4	<u> </u>	
A A Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω SPACE FOR ROUGH WORK 12 12 12 12 12 12 12 12		12.9	7 00	
$\begin{array}{c} 6 \Omega_{\mu} \mathcal{A} \\ A \\ Choose the correct answer from the options given below. \\ (1) 9 \Omega \\ (2) 18 \Omega \\ (3) 4 \Omega \\ (4) 14 \Omega \\ \end{array}$ $\begin{array}{c} (4) 14 \Omega \\ (5) 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$			Y C	
A Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω (4) 14Ω SPACE FOR ROUGH WORK SPACE FOR ROUGH WORK		60.24	20 52	
A Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω SPACE FOR ROUGH WORK M M M M M M M M M M		F	28	
A Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω (4) 14Ω (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω (4) 14Ω (4) 14Ω (5) 10^{-1} (5) 10^{-1} (6) 10^{-1} (7) 10^{-1}			×.	
Choose the correct answer from the options given below. (1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω SPACE FOR ROUGH WORK AFdFIK AFdFIK SFACE FOR ROUGH WORK AFdFIK AFDFIK AF		A	B	
(1) 9Ω (2) 18Ω (3) 4Ω (4) 14Ω (4) 14Ω SPACE FOR ROUGH WORK MO (4) 14Ω MO (4) 14Ω MO		Choose the correct answer from the options g	given below.	
SPACE FOR ROUGH WORK		(1) 9Ω (2) 18Ω	(3) 4Ω	(4) 14 Ω
The solution of the solution work work the solution of the sol			OR BOLICU MORK	M. Ind K
The stitle with the stitle the st	_	s Ala - 4 SPACE	OR HOUGH WORK	2 AFATUR
Collegedur	~	2 ~ 18 19 No 9 8	· 1 · Not	Att En = 2 1
Collegedur	An	TID Lingolv	we	3. 4 E E V * 3. W K
collegedur	f	100 01-1.	milin Vec	A* , 1 - A 12.2 -3
- collegedur		ALY) SE	y A V bi	1 to what the h
Collegeau		X X X	B & Nay	
	-	in Sta	No site	Yes conegeaun
		1 2 0	"SINO	India's largest Student Review

322	E/B					(9)				
24.	A cel the sa wire t	ll of emf l ame emf i remains th	1.1 V and is now con he same. T	interr nnect The in	al resistar ed in serie ternal resi	nce 0.5 Ω as with the stance of	is conn e intent the sec	ected to a ion of in ond cell i	a wire of res creasing the s	istance curre	e 0.5 Ω . Another cell of nt but the current in the
	Fill in	the blan	k with the	corre	ct answer	from the	options	given be	elow.		
	(1)	1Ω		(2)	2.5 Ω		(3)	1.5 Ω		(4)	2Ω
	P, Q, arms may b	R and S a of a whea e balance	are four watstone bri ed is	ires o idge o	f resistanc circuit. Th	es 3, 3, 3 e resistan	and 4 s ice with	2 respect which S	ively. They 5 must be sl	are co nunted	onnected to form the four I in order that the bridge
	Fill in	the blank	k with the	corre	ct answer	from the	options	s given b	elow.		70
	(1)	14 Ω		(2)	12 Ω		(3)	15 Ω		(4)	7Ω
	Magne mome	etic mom nt will be	nent of a	thin	bar magne	et is 🍕 I'.	If it is	bent in	to a semici	rcular	form, its new magnetic
	Fill in	the blank	c with the	corre	ct answer	from the	option	s given b	elow.		214
	(1) 1	Μ/π		(2)	M/2	\triangleleft	(3)	Μ		(4)	$2M/\pi$
	Ferron	nagnetic	material u	sed i	n Transfor	mers mu	st have		· · ·		
	Fill in	the blank	with the	corre	ct answer	from the	option	s given b	elow.		
	 (1) L (2) H (3) H (4) L 	ow perm ligh perm ligh perm ow perm	eability an neability a neability a eability an	nd Hi nd Lo nd H nd Lo	gh Hyster ow Hyster igh Hyster ow Hyster	esis loss resis loss esis loss esis loss					
	A cond the rat	ducting rite at whi	ing of rad	ius r agnet	is placed i tic field v	aries	ng mag x, the	electric	field inten	sity at	t any point of the ring is
	FIII III	the blank	with the	corre	ct answer	nonedie	(2)	2		(4)) 4r/x
	(1) 1	x		(2)	rx/2	\leq	(3)	ZIX		(,)	manaformer. If the mutual
	A 50 induct	Hz ac c ance betv	current of veen the j	' cres prima	t value 1 iry and se	A flow	s throu be 0.5	igh the H, the	crest volta	r a u ige ind	duced in the secondary is
	Fill in	the blank	with the	corre	ct answer	from the	option	s given l	below.		
	(1)	75 V	20102122022	(2)	150 V	0	(3)	100 V		(4)) 200 V
	A lon 100 tu solence total c	g solenoi urns and bid reduce charge flo	id of dian radius 0.0 es at a cor owing thro	neter 1 m istant ugh t	0.1 m has is placed rate to 0 he coil du	s 2 × 10 with its A from 4 ring this t	⁴ turns axis co A in 0 time is	per met inciding .05 s. If	er. At the with the set the resistant pelow.	centre olenoi ce of t	e of the solenoid a coil of id axis. The current in the the coil is $10\pi^2 \Omega$, then the
	rill in	the blan	k with the	corre	22 C	Tondie	(2)	16		(4)	32π µC
	(1)	16 µC		(2)	32 µC	\langle	(3)	10π μ		()	52000
ch-l	2:00	1.1 V .5 RI 0.5 P	.r. M:	=217 027	T = h n/m V	ACE FOR = IR E = T	ROUG	ih wor T	x = 0.5 = 0.5	= <u>1,1</u>	$50H_3 AC = Opt A1(0.8) 1.1 (x) TC_2 2TTyn^20.5 M = 6.5 H$
1 SAL	15	7	= 1.1	0.5) (0.5) IR= 1	1 R. 1.	1 = I 3	7	1/21	= 10 = 00	collegedur India's Largest Student Review

31.	Lower half of a conv	vex lens is	made onaque V									
	Lower half of a convex lens is made opaque. Which of the following statement describes the image of_{the} object placed in front of the lens ?											
	(A) No change in image											
	(B) Image will show only half of the object											
	(C) Intensity of image gets reduced											
	Choose the correct answer from the options given below											
a.	(1) (A) only	(2)	(B) only	(3) 63 (C) only	(4)	(B) and (C) only						
32.	Two slits are made 0.1 mm apart and the screen is placed 2 m away. The fringe separation when a light wavelength 500 nm is used is											
	Fill in the blank with	the correct	et answer from t	he options given below.								
	(1) 1 cm	(2)	0.15 cm	(3) 1.5 cm	(4)	0.1 cm						
33	For an astronomical	telescope	having objective	e lens of focal length 10 m	and eye	piece lens of focal leng						
55.	10 cm, telescope's the tube length and magnification respectively are											
	Fill in the blank with the correct answer from the options given below.											
	(1) $20 \text{ cm}, 1$	(2)	1000 cm, 1	(3) 1010 cm, 1	(4)	1010 cm, 100						
34.	According to Bohr's	Model		00 M								
	(A) The radius of the orbiting electron is directly proportional to 'n'.											
	(B) The speed of the orbiting electron is directly propagional to '1/n'.											
	(C) The magnitude of the total energy of the orbiting electron is directly proportional to ' $1/n^{2}$ '.											
	(D) The radius of the orbiting electron is directly proportional to ' n^{2} '.											
	(D) The radius of the orthogonal states of the options given below.											
	Choose the concet	C) only		(2) (A), (B) and (D) only							
	(1) (A), (B) and (C) (A)	ind (D)		(4) (B), (C) and (D) only							
	(3) (A), (B), (C) $=$											
35.	For a full wave rectifier, if the input frequency is 50 Hz, the output frequency will be											
	Fill in the blank wi	(2)	100 Hz			0.77						
	(1) 50 Hz	(_)	100 IIL		(4)	0 Hz						
26	For an electric dipole in a non-uniform electric field with dipole moment parallel to direction of the field											
30.	the force F and torque τ on the dipole respectively are											
	Fill in the blank with the correct answer from the options given below.											
	(1) $F = 0, \tau = 0$	(2)	$F \neq 0, \tau = 0$	(3) $\mathbf{F} = 0, \tau \neq 0$	(4)	$F \neq 0 \tau \neq 0$						
_	191 = 1	,h	SPACE EC	P POUlou wa	()	1 7 0, 170						
	v1211	25 62	T T T T	TH ROUGH WORK								
	E=-12, 2 +=100/ -= ====											
	V	A,		A .	,							
6		Ka	- L									
/												
		4										
		1		6		<u>t</u>						

(11)

Two large plane parallel sheets shown in the figure have equal but opposite surface charge densities $+\sigma$ and $-\sigma$. A point charge $-\sigma$ densities $+\sigma$ 37. and $-\sigma$. A point charge q placed at points P₁, P₂ and P₃ experiences forces F₁, F₂ and F₃ respectively. Then

Choose the correct answer from the options given below.

- (2) $\vec{F}_1 = 0, \vec{F}_2 \neq 0, \vec{F}_3 = 0$ (4) $\vec{F}_1 = 0, \vec{F}_3 \neq 0, \vec{F}_2 = 0$ (1) $\vec{F}_1 = 0, \vec{F}_2 = 0, \vec{F}_3 = 0$ < (3) $\vec{F_1} \neq 0, \vec{F_2} \neq 0, \vec{F_3} \neq 0$
- Two charged metallic spheres with radii R_1 and R_2 are brought in contact and then separated. The ratio of 38. final charges Q_1 and Q_2 on the two spheres despectively will be _

Fill in the blank with the correct answer from the options given below.

(1)
$$\frac{Q_1}{Q_2} = \frac{R_2}{R_1}$$
 (2) $\frac{Q_1}{Q_2} < \frac{R_1}{R_2}$ (3) $\frac{Q_1}{Q_2} > \frac{R_1}{R_2}$ (4) $\frac{Q_1}{Q_2} = \frac{R_1}{R_2}$

Two charged particles, placed at a distance d apart in vacuum, exert a force F on each other. Now, each of the charges is doubled. To keep the force unchanged, the distance between the charges should be changed 39. to

Fill in the blank with the correct answer from the options given below. (4) d/2(3) d (2) 2d

Two parallel plate capacitors of capacitances 2 μ F and 3 μ F are joined in series and the combination is connected to a battery of V volts. The values of potential across the two capacitors V_1 and V_2 and energy stored in the two capacitors U_1 and U_2 respectively are related as _____. 40. Fill in the blank with the correct answer from the options given below.

(1)
$$\frac{V_1}{V_2} = \frac{U_1}{U_2} = \frac{3}{2}$$

(3) $\frac{V_1}{V_2} = \frac{3}{2}$ and $\frac{U_1}{U_2} = \frac{2}{3}$
(4) $\frac{V_1}{V_2} = \frac{2}{3}$ and $\frac{U_1}{U_2} = \frac{2}{3}$

SPACE FOR ROUGH WORK $\begin{array}{c} R_{1} = O_{2} \\ R_{1} = R_{2} \\ R_{2} \\$ collegedunia

Two resistances of 100 Ω and 200 Ω are connected in series across a 20 V battery as shown in figure below. The reading in a 200 Ω are connected in series across a 20 V battery as shown in figure. 41. below. The reading in a 200 Ω voltmeter connected across the 200 Ω resistance is

Fill in the blank with the correct answer from the options given below.

(2) $\frac{20}{3}$ V

(1) 4V

The current through a $4/3 \Omega$ external resistance connected to a parallel combination of two cells of 42. 2 V and 1 V emf and internal resistances of 1 Ω and 2 Ω respectively is Fill in the blank with the correct answer from the options given below. (4) 5/6 A

(3) 10 V

(3) 34 A (2) 2/3 A (1)1 A

A metallic wire of uniform area of cross section has a resistance R, resistivity ρ and power rating P at V volts. The wire is uniformly stretched to reduce the radius to half the original radius. The values 43. of resistance, resistivity and power rating at V volts are now denoted by R', p' and P' respectively. The corresponding values are correctly related as Fill in the blank with the correct answer from the options given below.

(2) $\beta'_{+} = (1/2) \rho, R' = (1/2) R, P' = (1/2) P$

(B) diamagnetics

- (1) $\rho' = 2\rho, R' = 2R, P' = 2P$
- (3) $\rho' = \rho, R' = 16R, P' = (1/16) P$

(4) $\rho' = \rho, R' = (1/16) R, P' = 16P$

Three magnetic materials are listed below 44.

(C) ferromagnetics

(A) paramagnetics Choose the correct order of the materials in increasing order of magnetic susceptibility.

(2) (C), (A), (B) (1) (A), (B), (C)

(3) (A), (C)

(4) (B), (C), (A)

(4) 16 V

- Two infinitely long straight parallel conductors carrying turrents I_1 and I_2 are held at a distance d apart in vacuum. The force F on a length L of one of the conductors due to the other is _____. 45. Fill in the blank with the correct answer from the options given below.
 - (2) proportional to $I_1 \times I_2$ but independent of length L (1) proportional to L but independent of $I_1 \times I_2$

(3) proportional to $I_1 \times I_2 \times L$

(4) proportional to $\frac{L}{I_1 \times I_2}$

SPACE FOR ROUGH WORK

(13)

