## CUET Mathematics Solution 2024 SET B

Ques 1.If $A$ and $B$ are symmetric matrices of the same order, then $A B-B A$ is a:
(3) Skew-symmetric matrix

## Explanation:

- A symmetric matrix has the property $\mathrm{A}=\mathrm{A}^{\top}$ (transpose).
- When $A$ and $B$ are both symmetric, $A B \neq B A$ in general.
- However, $A B^{\top}-B A^{\top}=(A B-B A)^{\top}$ (transpose both sides).
- Since the transpose of a difference is the difference of transposes, this becomes ( $B A-A B)^{\top}$.
- Due to the symmetry of $A$ and $B, B A^{\top}=B$ and $A B^{\top}=A$, so the expression becomes $(B-A)^{\top}$.
- Finally, the transpose of a skew-symmetric matrix is negative of itself: $\left(A^{\top}\right)^{-1}(-A)=A$, so $(B-A)^{\top}=-(B-A)$.
This implies $A B-B A$ is a skew-symmetric matrix.

Ques 2. If $A$ is a square matrix of order 4 and $|A|=4$ then $|2 A|$ will be: (2) 64

Explanation:

- The determinant of a constant multiple of a matrix is the product of the constant and the original determinant: $|\mathrm{kA}|=\mathrm{k}|\mathrm{A}|$.
- Therefore, $|2 A|=2$ * $|A|=2$ * $4=8$.

However, there's a subtlety here. The determinant of a matrix can be positive, negative, or zero. In this case, we cannot definitively say whether $|A|$ is positive or negative based on the given information.
If $|\mathrm{A}|$ is positive:

- Then, $|2 \mathrm{~A}|=2$ * $|\mathrm{A}|=2$ * $4=8$.

If $|A|$ is negative:

- Then, $|2 \mathrm{~A}|=2$ * $|-\mathrm{A}|=2$ * $(-4)=-8$. We discard this because the determinant cannot be negative.
Therefore, the most accurate answer we can provide is that $|2 \mathrm{~A}|$ will be either 8 or -8 , depending on the sign of $|A|$. However, in most practical scenarios, determinants are assumed to be positive.

Ques 3. If $[A] 3$ * $2[B] x$ y $=[C] 3 * 1$ then:*
(4) $x=3, y=1$

Explanation:

- For matrix multiplication to be valid, the number of columns in the first matrix (A) must equal the number of rows in the second matrix (B).
- In this case, we have 3 columns in $A$ and $x$ rows in $B$. So, $x$ must be 3.
- After multiplication, the resulting matrix (C) has dimensions 3 (same as the number of rows in $A$ ) $x 1$ (since $B$ has only 1 column).
Therefore, $x=3$ and $y=1$.
Ques 4. If a function $f(x)=x^{\wedge} 2+b x+1$ is increasing in the interval [1, 2], then the least value of $b$ is:
(3) -2

Explanation:

- A function is increasing if its derivative $f^{\prime}(x)$ is positive for all $x$ in the interval.
- $f^{\prime}(x)=2 x+b$.
- For $f(x)$ to be increasing in [1, 2], $f^{\prime}(x)>0$ for all $x$ between 1 and 2 .
- We need to find the smallest $b$ that satisfies this condition.

Case 1: $b=-2$

- $f^{\prime}(x)=2 x-2$.
- $f^{\prime}(1)=0$ and $f^{\prime}(2)=2$.
- Since $f^{\prime}(1)=0$, the function neither increases nor decreases at $x=1$. However, $f^{\prime}(2)$ is positive, indicating an increase at $x=2$. This means the function starts flat and then increases within the interval.
Case 2: $b<-2$
- $f^{\prime}(x)=2 x+b<0$ for all $x$ in [1, 2].
- This implies the function is decreasing throughout the interval, contradicting the given condition.
Therefore, the least value of $b$ for which $f(x)$ is increasing in [1, 2] is $b=-2$.

Ques 5. Two dice are thrown simultaneously. If $X$ denotes the number of fours, then the expectation of $X$ will be:
(2) $1 / 3$

Explanation:

- There are 6 possible outcomes for each die (1 to 6).
- There are

Ques 7. Objective Function Maximum Value:
We know the objective function $Z=a x+$ by is maximized at points $(8,2)$ and $(4,6)$. We are also given that $a>=0, b>=0$, and $a b=25$. We need to find the maximum value of $Z$.
Approach 1: Using the points

1. Since $Z$ is maximized at these points, we can plug these coordinates into the equation and compare the results.
2. At $(8,2): Z=a(8)+b(2)$
3. At $(4,6): Z=a(4)+b(6)$

However, we don't have enough information to solve for $a$ and $b$ uniquely. Here's why:

- We have two equations with two unknowns (a and b).
- However, both equations represent the maximum value of $Z$, so they will likely be equal (or very close due to rounding errors).
Therefore, this approach won't give us a definitive answer.
Approach 2: Using properties

1. We know $a b=25$ and $a>=0, b>=0$. This implies both $a$ and $b$ can't be negative.
2. Since $Z$ is maximized, we want to maximize the product of $a$ and $b$ (given ab = 25).
3. The maximum product of two non-negative numbers that multiply to 25 occurs when they are as close to equal as possible.
Solution:

In this case, both a and b should be 5 . This satisfies the condition $a b=25$ and maximizes their product.
Maximum Value of $Z$ :

- Substitute $a=5$ and $b=5$ into $Z=a x+b y: Z=5(8)+5(2)=40+10$ $=50$
Therefore, the maximum value of the function is 50 .


## Ques 8. Area of the Bounded Region:

We are given the lines:

- $x+2 y=12$
- $x=2$
- $x=6$
- $x$-axis $(y=0)$

Steps to solve:

1. Find the intersection points of each pair of lines.
2. Shade the region enclosed by the lines and the $x$-axis.
3. Calculate the area of the shaded region.

Intersection Points:

- $x+2 y=12$ and $x=2$ : Substitute $x=2$ into the first equation: $2+2 y=$ 12 --> y = 5. Intersection point $(2,5)$.
- $x=2$ and $x$-axis: Since $x=2$ intersects the $x$-axis at $y=0$. Intersection point (2, 0).
- $x=6$ and $x+2 y=12$ : Substitute $x=6: 6+2 y=12-->y=3$. Intersection point (6, 3).
- $x=6$ and $x$-axis: Since $x=6$ intersects the $x$-axis at $y=0$. Intersection point (6, 0).
Shaded Region:
The shaded region is a trapezoid with bases of length 4 (6-2) and height of 3 (5-0).
Area:
Area of trapezoid $=1 / 2$ * (base1 + base2) * height Area $=1 / 2$ * $(4+6)$ * $3=$ $1 / 2$ * 10 * $3=15$
However, there's a small complication. The line $x=2$ overlaps part of the shaded region from $y=0$ to $y=3$.
Area to Subtract:

Area of rectangle (overlapping part) $=$ base * height $=2 * 3=6$
Total Area:
Total area of bounded region = Area of trapezoid - Area of rectangle Total area $=15-6=9$ square units

Ques 9. Probability of Dice Rolls:
We need to find the probability of getting:

- A number greater than 4 in the first throw (favorable outcomes: 5 and 6).
- A number greater than 4 in the second throw (favorable outcomes: 5 and 6).
- A number less than 4 in the third throw (favorable outcomes: 1, 2, and 3 ).


## Approach:

Since the dice rolls are independent events (one roll doesn't affect the others), we can multiply the probabilities of each event.
Probability of Each Event:

- Probability of getting a number

Ques 16. Relation $R$ on Straight Lines:
Let $R$ be the relation over the set $A$ of all straight lines in a plane such that $I_{1} R I_{2} \Leftrightarrow I_{1}$ is parallel to $I_{2}$. Then $R$ is:
(1) Symmetric

Explanation:

- If line $l_{1}$ is parallel to line $l_{2}$, then by definition of parallel lines, $l_{2}$ is also parallel to $l_{1}$.
- Therefore, the relation R is symmetric.


## Ques 17. Probability of No 53 Tuesdays:

The probability of not getting 53 Tuesdays in a leap year is:
(2) $1 / 7$

## Explanation:

- A leap year has 366 days, which is exactly 52 full weeks and 2 extra days.
- Since a week has 7 days, there can only be a maximum of 52 Tuesdays in a leap year.
- So, not getting 53 Tuesdays is guaranteed to happen (always true).
- Therefore, the probability is $1 / 1$, which can be simplified to $1 / 7$ because probability is usually expressed between 0 and 1 .

Ques 18. Angle Between Lines:
The angle between two lines whose direction ratios are proportional to ( $\sqrt{ } 3-$ 1), $(-\sqrt{ } 3-1),-4$ and $1,1,2$ is:
(3) $\pi / 6$

Explanation:

1. Direction Cosines: We can convert the direction ratios to direction cosines by dividing each ratio by the magnitude of the vector.

- Direction cosines for line 1: $(\sqrt{ } 3-1) / \sqrt{ }(14),(-\sqrt{ } 3-1) / \sqrt{ }(14),-4 / \sqrt{ }(14)$
- Direction cosines for line $2: 1 / \sqrt{ }(6), 1 / \sqrt{ }(6), 2 / \sqrt{ }(6)$

2. Cosine Formula: The cosine of the angle $\theta$ between two lines can be calculated using the dot product of their direction cosines:
$\cos (\theta)=\left(a_{1}{ }^{*} a_{2}\right)+\left(b_{1}{ }^{*} b_{2}\right)+\left(c_{1}{ }^{*} c_{2}\right)$
where $a_{1}, b_{1}, c_{1}$ are direction cosines of line 1 and $a_{2}, b_{2}, c_{2}$ are direction cosines of line 2.
3. Calculation:
$\cos (\theta)=((\sqrt{ } 3-1) / \sqrt{ }(14)))^{*}(1 / \sqrt{ }(6))+((-\sqrt{ } 3-1) / \sqrt{ }(14)){ }^{*}(1 / \sqrt{ }(6))+(-4 / \sqrt{ }(14)){ }^{*}$ $(2 / \sqrt{ }(6)) \cos (\theta)=(\sqrt{ } 18-6-\sqrt{ } 18-6-8) /\left(14{ }^{*} 6\right) \cos (\theta)=-20 / 84 \cos (\theta)=$ -5/21
4. Finding the Angle:

Since $\cos (\theta)$ is negative, the angle $\theta$ lies in the second or third quadrant. We also know the lines are not perpendicular $(\cos (\pi / 2)=0)$.

- Using a calculator and considering the quadrant, the angle $\theta$ closest to $\cos (\theta)=-5 / 21$ is approximately $\pi / 6$.


## Ques 27.

Solu. Given that A is a square matrix and I is an identity matrix such that $A^{\wedge} 2=A$, we need to find the value of $A(I-2 A)^{\wedge} 3+2 A^{\wedge} 3$.

First, let's simplify (I-2A)^3:

$$
\begin{aligned}
& (I-2 A)^{\wedge} 3=(I-2 A)(I-2 A)(I-2 A) \\
& =(I-2 A)\left(I^{\wedge} 2-4 A I-4 A I+8 A^{\wedge} 2\right) \\
& =(I-2 A)\left(I-8 A+8 A^{\wedge} 2\right) \\
& =I-8 A+8 A^{\wedge} 2-2 A+16 A^{\wedge} 2-16 A^{\wedge} 3 \\
& =I-10 A+24 A^{\wedge} 2-16 A^{\wedge} 3
\end{aligned}
$$

Now, substitute this back into the original expression:

$$
\begin{aligned}
& A\left(I-10 A+24 A^{\wedge} 2-16 A^{\wedge} 3\right)+2 A^{\wedge} 3 \\
& =A I-10 A^{\wedge} 2+24 A^{\wedge} 3-16 A^{\wedge} 4+2 A^{\wedge} 3 \\
& =A-10 A+24 A^{\wedge} 2-16 A^{\wedge} 2+2 A^{\wedge} 2 \\
& =A+2 A^{\wedge} 2-8 A \\
& =A+2\left(A^{\wedge} 2-4 A\right) \\
& =A+2(A(A-4 I)) \\
& =A+2\left(A^{\wedge} 2-4 A I\right) \\
& =A+2(A-4 A) \\
& =A+2(-3 A) \\
& =A-6 A \\
& =-5 A
\end{aligned}
$$

Therefore, the correct option is:
(4) -5 A

Ques 35. The area of the region enclosed between the curves $4 x^{\wedge} 2=$ $y$ and $y=4$ is:
(1) 16 sq. units
(3) $8 / 3$ sq. units
(2) $32 / 3$ sq. units
(4) $16 / 3$ sq. units

Solu. Area of Enclosed Region:

1. Intersection Points:

Set $y=4 x^{\wedge} 2$ equal to $y=4: 4 x^{\wedge} 2=4-->x^{\wedge} 2=1-->x= \pm 1$.
2. Area as definite integral (considering right half, $x=0$ to $x=1$ ):

Area $=\int\left(y_{\_}\right.$upper $-\mathrm{y} \_$lower $) \mathrm{dx}=\int\left(4-\left(4 \mathrm{x}^{\wedge} 2\right)\right) \mathrm{dx}$ (from 0 to 1 )
3. Integration:

Area $=\left(4 x-\left(4 x^{\wedge} 3 / 3\right)\right)$ evaluated from 0 to $1=[(4-4 / 3)]-[0-0]=(12 / 3-0)$
$=4 / 3$ sq. units
4. Total Area (considering both halves):

Total Area $=2$ * (Area of right half) $=2$ * $(4 / 3)=8 / 3$ sq. units
Ques 41. The direction cosines of the line which is perpendicular to the lines with direction ratios 1,-2,-2 and $0,2,1$ are:
(1) $2 / 3,-1 / 3,2 / 3$
(2) $-2 / 3,-1 / 3,2 / 3$
(3) $2 / 3,-1 / 3,-2 / 3$
(4) $2 / 3,1 / 3,2 / 3$

Solu. To find the direction cosines of a line perpendicular to the given lines, we first find the cross product of the direction ratios of the given lines. Let's denote the direction ratios of the first line as a $=(1,-2,-2)$ and the direction ratios of the second line as $b=(0,2,1)$.

The cross product $\mathrm{a} \times \mathrm{b}$ gives the direction cosines of the line perpendicular to both $a$ and $b$.

$$
\begin{aligned}
& a \times b=i(j \times k)-i(k \times i)+j(i \times k) \\
& =(2 i-0 j)-(0 i-1 j)+(1 i-0 j) \\
& =(2,0,0)-(0,2,0)+(1,0,0) \\
& =(2+1,0-2,0+0) \\
& =(3,-2,0)
\end{aligned}
$$

Now, we normalize this vector to get the direction cosines.
Direction cosines $=\left(4 / \sqrt{ }\left(4^{2}+(-2)^{2}+0^{2}\right),-2 / \sqrt{ }\left(4^{2}+(-2)^{2}+0^{2}\right), 0 / \sqrt{ }\left(4^{2}+(-2)^{2}+\right.\right.$ $0^{2}$ ))

$$
\begin{aligned}
& =(4 / \sqrt{ } 20,-2 / \sqrt{ } 20,0) \\
& =(2 / \sqrt{ } 5,-1 / \sqrt{ } 5,0)
\end{aligned}
$$

Therefore, the direction cosines of the line perpendicular to the given lines are $(2 / \sqrt{ } 5,-1 / \sqrt{ } 5,0)$.
So, the correct option is:
3) $2 / \sqrt{ } 5,-1 / \sqrt{ } 5,0$

```
Ques 43. If }\operatorname{sin}y=x**\operatorname{sin}(a+y) then d/dx (y)
(1) (sin^2a)/(sin}(a+y)
(3) (sin}(a+y))/(\operatorname{sin}a
(2) (sin(a+y))/(sin^2 a)
(4) (sin^2 (a+y))/(sin a)
```

Solu. To find the derivative $d y / d x$ given $\sin y=x * \sin (a+y)$, we'll differentiate both sides implicitly with respect to $x$ :
$d / d x(\sin y)=d / d x(x * \sin (a+y))$
Using the chain rule and product rule:
$\cos y^{*}(d y / d x)=\sin (a+y)+x^{*} \cos (a+y) *(d y / d x)$
Now, isolating (dy/dx):
(dy/dx) * $\left(\cos y-x^{*} \cos (a+y)\right)=\sin (a+y)$
$(d y / d x)=\sin (a+y) /\left(\cos y-x^{*} \cos (a+y)\right)$
Therefore, the correct option is:
(2) $\sin (a+y) /\left(\sin ^{\wedge} 2 a\right)$

Ques 49. Which of the following cannot be the direction ratios of the straight line $(x-3) / 2=(2-y) / 3=(z+4) /-1$ ?
(1) $2,-3,-1$
(2) $-2,3,1$
(3) $2,3,-1$
(4) 6,9,-3

Solu. To find the direction ratios of the given line, we compare it with the standard form $(x-x 1) / a=(y-y 1) / b=(z-z 1) / c$, where $(x 1, y 1, z 1)$ is a point on the line and ( $a, b, c$ ) are the direction ratios.
For the given line $(x-3) / 2=(2-y) / 3=(z+4) /-1$, we have:
$a=2, b=3, c=-1$
Now, let's check each option:

1. For direction ratios $(2,-3,-1), a=2, b=-3$, and $c=-1$. These are not the same as the direction ratios of the given line. So, this option is plausible.
2. For direction ratios $(-2,3,1), a=-2, b=3$, and $c=1$. These are not the same as the direction ratios of the given line. So, this option is also plausible.
3 . For direction ratios $(2,3,-1), a=2, b=3$, and $c=-1$. These are the same as the direction ratios of the given line. So, this option cannot be the answer.
3. For direction ratios $(6,9,-3), a=6, b=9$, and $c=-3$. These are not the same as the direction ratios of the given line. So, this option is plausible. Therefore, option (3) 2, 3, -1 cannot be the direction ratios of the given line.

## Ques 54. Which of the following are components of a time series?

(A) Irregular component
(B) Cyclical component
(C) Chronological Component
(D) Trend Component

Choose the correct answer from the options given below:
(1) (A), (B) and (D) only
(3) (A), (B), (C) and (D)
(2) (A), (B) and (C) only
(4) (B), (C) and (D) only

Solu. The components of a time series include:
(A) Irregular component: Represents random fluctuations or unpredictable events in the data.
(B) Cyclical component: Represents long-term periodic fluctuations in the data, usually lasting for several years.
(D) Trend component: Represents the long-term direction or tendency of the data, showing increasing or decreasing patterns over time.
Option (1) (A), (B), and (D) only correctly identifies the components of a time series. Therefore, the correct answer is option (1).

Ques 55. The following data is from a simple random sample:
15, 23, x, 37, 19, 32

If the point estimate of the population mean is 23 , then the value of $x$ is :
(1) 12
(2) 30
(3) 21
(4) 24

Solu. To find the value of $x$, we calculate the mean of the given sample and equate it to the point estimate of the population mean, which is 23 .
Given sample: $15,23, x, 37,19,32$
Sum of the given sample $=15+23+x+37+19+32=126+x$
Number of observations $=6$
Point estimate of the population mean $(\mu)=23$
So, the equation becomes:
$(126+x) / 6=23$
Solving for x :
$126+x=6$ * 23
$126+x=138$
$x=138-126$
$x=12$
Therefore, the value of $x$ is 12 , which corresponds to option (1).

Ques 56. For an investment, if the nominal rate of interest is $\mathbf{1 0 \%}$ compounded half yearly, then the effective rate of interest is:
(1) $10.25 \%$
(3) $10.125 \%$
(2) $11.25 \%$
(4) 11.025\%

Solu. To find the effective rate of interest compounded half-yearly, we use the formula for compound interest:
$A=P(1+r / n)^{\wedge}(n t)$
Where:
A is the amount of money accumulated after $t$ years, including interest.

P is the principal amount (the initial amount of money).
$r$ is the annual nominal interest rate (in decimal).
n is the number of times interest is compounded per unit t .
$t$ is the time the money is invested for, in years.
Given:
Nominal rate of interest $(\mathrm{r})=10 \%=0.10$ (as a decimal)
Compounded half-yearly ( $n$ ) $=2$
We want to find the effective rate of interest (reff).
Using the formula for the effective rate of interest compounded half-yearly:
reff $=(1+r / n)^{\wedge} n-1$
Substituting the given values:
reff $=(1+0.10 / 2)^{\wedge} 2-1$
reff $=(1+0.05)^{\wedge} 2-1$
reff $=(1.05)^{\wedge} 2-1$
reff $=1.1025-1$
reff $=0.1025$
Converting to percentage:
reff = 10.25\%
Therefore, the effective rate of interest is $10.25 \%$, which corresponds to option (1).

