

Complex Numbers And Quadratic Equations JEE Main PYQ - 1

Total Time: 25 Minute

Total Marks: 40

Instructions

Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To deselect your chosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.

Complex Numbers And Quadratic Equations

- **1.** For all $z \in C$ on the curve $C_1 : |z| = 4$, let the locus of the point $z + \frac{1}{z}$ be the (+4, -1) curve C_2 Then:
 - **a.** the curve C_1 lies inside C_2
 - **b.** the curves C_1 and C_2 intersect at 4 points
 - **c.** the curve C_2 lies inside C_1
 - **d.** the curves C_1 and C_2 intersect at 2 points
- **2.** Let z be a complex number such that $\left|\frac{z-2i}{z+i}\right| = 2z \neq -i$ Then z lies on the circle (+4, -1) of radius 2 and centre
 - **a.** (2,0)
 - **b.** (0, 2)

 $\mathbf{C}.\ (0,0)$

- **d.** (0, -2)
- **3.** Let $z_1 = 2 + 3i$ and $z_2 = 3 + 4i$ The set $S = \left\{ z \in C : |z z_1|^2 |z z_2|^2 = |z_1 z_2|^2 \right\}$ (+4, -1) represents a
 - **a.** straight line with the sum of its intercepts on the coordinate axes equals -18
 - **b.** hyperbola with eccentricity 2
 - c. hyperbola with the length of the transverse axis 7
 - d. straight line with the sum of its intercepts on the coordinate axes equals
 14
- **4.** Let $y(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16})$ Then y' y'' at x = -1 is equal (+4, -1) to :

- a. 976b. 944c. 496
- **d.** 464
- **5.** Consider the lines L_1 and L_2 given by

(+4, -1)

 $L_1: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z-2}{2}$ $L_2: \frac{x-2}{1} = \frac{y-2}{2} = \frac{z-3}{3}$

A line L_3 having direction ratios 1, -1, -2, intersects L_1 and L_2 at the points P and Q respectively. Then the length of line segment PQ is

a.
$$3\sqrt{2}$$

b. 4
c. $2\sqrt{6}$
d. $4\sqrt{3}$

- 6. Let $z_1 = 2 + 3i$ and $z_2 = 3 + 4i$. The set $S = \left\{ z \in C : |z z_1|^2 |z z_2|^2 = |z_1 z_2|^2 \right\}$ (+4, -1) represents a
 - **a.** straight line with the sum of its intercepts on the coordinate axes equals -18
 - **b.** hyperbola with eccentricity 2
 - c. hyperbola with the length of the transverse axis 7
 - d. straight line with the sum of its intercepts on the coordinate axes equals
 14
- 7. Let $y(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)(1+x^{16})$. Then y' y'' at x = -1 is (+4, -1) equal to :

- **a.** 976**b.** 944
- **c.** 496
- **d.** 464
- **8.** Consider the lines L_1 and L_2 given by

(+4, -1)

 $L_1: \frac{x-1}{2} = \frac{y-3}{1} = \frac{z-2}{2}$ $L_2: \frac{x-2}{1} = \frac{y-2}{2} = \frac{z-3}{3}$

A line L_3 having direction ratios 1, -1, -2, intersects L_1 and L_2 at the points P and Q respectively. Then the length of line segment PQ is

9. Let z = 1 + i and $z_1 = \frac{1+i\bar{z}}{\bar{z}(1-z)+\frac{1}{z}}$ Then $\frac{12}{\pi} \arg(z_1)$ is equal to ____ (+4, -1)

10. Let the equation of the plane passing through the line x - 2y - z - 5 = 0 = x + (+4, y + 3z - 5) and parallel to the line x + y + 2z - 7 = 0 = 2x + 3y + z - 2 be ax + by + -1) cz = 65 Then the distance of the point (a, b, c) from the plane 2x + 2y - z + 16 = 0is _____

Answers

1. Answer: b

Explanation:

Let $w = z + \frac{1}{z} = 4e^{i\theta} + \frac{1}{4}e^{-i\theta}$ $\Rightarrow w = \frac{17}{4}\cos\theta + i\frac{15}{4}\sin\theta$ So locus of w is ellipse $\frac{x^2}{(\frac{17}{4})^2} + \frac{y^2}{(\frac{15}{4})^2} = 1$ Locus of z is circle $x^2 + y^2 = 16$ So intersect at 4 points

The Correct Option is (B): the curves C_1 and C_2 intersect at 4 points

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

2. Answer: d

Explanation:

The correct answer is (D) : (0, -2) $(z - 2i)(\overline{z} + 2i) = 4(z + i)(\overline{z} - i)$ $z\overline{z} + 4 + 2i(z - \overline{z}) = 4(z\overline{z} + 1 + i(\overline{z} - z))$ $3z\overline{z} - 6i(z - \overline{z}) = 0$ $x^2 + y^2 - 2i(2iy) = 0$ $x^2 + y^2 + 4y = 0$

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

3. Answer: d

Explanation:

$$((x - 2)^2 + (y - 3)^2) - ((x - 3)^2 - (y - 4)^2) = 1 + 1$$

? $x + y = 7$

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, –5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

4. Answer: c

Explanation:

 $y = \frac{1-x^{32}}{1-x} ? y - xy = 1 - x^{32}$ y' - xy' - y = -32x^{31} y" - xy" - y' - y' = -(32)(31)x^{30} at x = -1 ? y' - y" = 496

Concepts:

1. Relations and functions:

A **relation** R from a non-empty set B is a subset of the cartesian product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A × B.

A relation f from a set A to a set B is said to be a **function** if every element of set A has one and only one image in set B. In other words, no two distinct elements of B have the same pre-image.

Representation of Relation and Function

Relations and functions can be represented in different forms such as arrow representation, algebraic form, set-builder form, graphically, roster form, and tabular form. Define a function f: $A = \{1, 2, 3\} \rightarrow B = \{1, 4, 9\}$ such that f(1) = 1, f(2) = 4, f(3) = 9. Now, represent this function in different forms.

- 1. Set-builder form $\{(x, y): f(x) = y^2, x \in A, y \in B\}$
- 2. Roster form {(1, 1), (2, 4), (3, 9)}
- 3. Arrow Representation

5. Answer: c

Explanation:

The correct answer is (C) : $2\sqrt{6}$ Let P = $(2\lambda+1,\lambda+3,2\lambda+2)$ Let Q = $(\mu+2,2\mu+2,3\mu+3)$ $\Rightarrow \frac{2\lambda-\mu-1}{1} = \frac{\lambda-2\mu-1}{-1}$ $= \frac{2\lambda-3\mu-1}{-2} \Rightarrow \lambda = \mu = 3$ $\Rightarrow P(7,6,8)$ and Q(5,8,12)PQ = $2\sqrt{6}$

Concepts:

1. Application of Derivatives:

Various Applications of Derivatives-

Rate of Change of Quantities:

If some other quantity 'y' causes some change in a quantity of surely 'x', in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, 'y' is a function of 'x' then the rate of change of 'y' related to 'x' is to be given by

 $rac{ riangle y}{ riangle x} = rac{y_2 - y_1}{x_2 - x_1}$

This is also known to be as the Average Rate of Change.

Increasing and Decreasing Function:

Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).

- If for any two points x_1 and x_2 in the interval x such a manner that $x_1 < x_2$, there holds an inequality $f(x_1) \le f(x_2)$; then the function f(x) is known as increasing in this interval.
- Likewise, if for any two points x_1 and x_2 in the interval x such a manner that $x_1 < x_2$, there holds an inequality $f(x_1) \ge f(x_2)$; then the function f(x) is known as decreasing in this interval.
- The functions are commonly known as strictly increasing or decreasing functions, given the inequalities are strict: f(x₁) < f(x₂) for strictly increasing and f(x₁) > f(x₂) for strictly decreasing.

Read More: Application of Derivatives

6. Answer: d

Explanation:

$$((x-2)^2 + (y-3)^2) - ((x-3)^2 - (y-4)^2) = 1+1$$

 $\Rightarrow x+y=7$

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

7. Answer: c

Explanation:

```
The correct answer is (C) : 496

y = \frac{1-x^{32}}{1-x}

\Rightarrow y - xy = 1 - x^{32}

y' - xy' - y = -32x^{31}

y'' - xy'' - y' - y' = -(32)(31)x^{30}

at x=-1

\Rightarrow y' - y'' = 496
```

Concepts:

1. Relations and functions:

A **relation** R from a non-empty set B is a subset of the cartesian product A × B. The subset is derived by describing a relationship between the first element and the second element of the ordered pairs in A × B.

A relation f from a set A to a set B is said to be a **function** if every element of set A has one and only one image in set B. In other words, no two distinct elements of B have the same pre-image.

Representation of Relation and Function

Relations and functions can be represented in different forms such as arrow representation, algebraic form, set-builder form, graphically, roster form, and tabular form. Define a function f: $A = \{1, 2, 3\} \rightarrow B = \{1, 4, 9\}$ such that f(1) = 1, f(2) = 4, f(3) = 9. Now, represent this function in different forms.

- 1. Set-builder form $\{(x, y): f(x) = y^2, x \in A, y \in B\}$
- 2. Roster form {(1, 1), (2, 4), (3, 9)}
- 3. Arrow Representation

Table Representation -

x	У
1	1
2	4
3	9

Explanation:

 $Let P = (2\lambda + 1, \lambda + 3, 2\lambda + 2)$ $Let Q = (\mu + 2, 2\mu + 2, 3\mu + 3)$ $\Rightarrow \frac{12\lambda - \mu - 1}{1} = \frac{-1\lambda - 2\mu + 1}{-1} = \frac{2\lambda - 3\mu - 1}{-2}$ $\Rightarrow \lambda = \mu = 3 \Rightarrow P(7, 6, 8) \text{ and, } Q(5, 8, 12)$ $PQ = 2\sqrt{6}$

Concepts:

1. Application of Derivatives:

Various Applications of Derivatives-

Rate of Change of Quantities:

If some other quantity 'y' causes some change in a quantity of surely 'x', in view of the fact that an equation of the form y = f(x) gets consistently pleased, i.e, 'y' is a function of 'x' then the rate of change of 'y' related to 'x' is to be given by

 $rac{ riangle y}{ riangle x} = rac{y_2 - y_1}{x_2 - x_1}$

This is also known to be as the Average Rate of Change.

Increasing and Decreasing Function:

Consider y = f(x) be a differentiable function (whose derivative exists at all points in the domain) in an interval x = (a,b).

- If for any two points x_1 and x_2 in the interval x such a manner that $x_1 < x_2$, there holds an inequality $f(x_1) \le f(x_2)$; then the function f(x) is known as increasing in this interval.
- Likewise, if for any two points x_1 and x_2 in the interval x such a manner that $x_1 < x_2$, there holds an inequality $f(x_1) \ge f(x_2)$; then the function f(x) is known as decreasing in this interval.
- The functions are commonly known as strictly increasing or decreasing functions, given the inequalities are strict: f(x₁) < f(x₂) for strictly increasing and

 $f(x_1) > f(x_2)$ for strictly decreasing.

Read More: Application of Derivatives

9. Answer: 9 - 9

Explanation:

The correct answer is 9.

 $\begin{aligned} z - 1 + i \\ z_1 &= \frac{1 + i\bar{z}}{\bar{z}(1 - z) + \frac{1}{z}} \\ z_1 &= \frac{1 + i(1 \quad i)}{(1 - i)(1 - 1 - i) + \frac{1}{1 + i}} \\ &= \frac{1 + i - i^2}{(1 - i)(-i) + \frac{1 - i}{2}} \\ &= \frac{2 + i}{(1 - i)(-i) + \frac{1 - i}{2}} \\ &= \frac{2 + i}{-3i - 1} = \frac{4 + 2i}{-3i - 1} \\ &= \frac{-(4 + 2i)(3i - 1)}{(3i)^2 - (1)^2} \\ &\operatorname{Arg}(z_1) &= \frac{3\pi}{4} \\ \therefore \frac{12}{\pi} \operatorname{arg}(z_1) &= \frac{3\pi}{4} \end{aligned}$

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, –5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

10. Answer: 9 - 9

Explanation:

The correct answer is 9. Equation of plane is $\begin{array}{cccc}
(x - 2y - z - 5) + b(x + y + 3z - 5) = 0 \\
\begin{vmatrix} 1 + b & -2 + b & -1 + 3b \\
1 & 1 & 2 \\
2 & 3 & 1 \end{vmatrix} = 0 \\
\Rightarrow b = 12 \\
\therefore \text{ plane is } 13x + 10y + 35z = 65 \\
\text{Distance from given point to plane} = 9$

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as -i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.