

Complex Numbers And Quadratic Equations JEE Main PYQ - 2

Total Time: 25 Minute

Total Marks: 40

Instructions

Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To deselect your chosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.

Complex Numbers And Quadratic Equations

1. The least positive integer n such that $1-\frac{2}{3}-\frac{2}{3^2}-....--\frac{2}{3^{n-1}}<\frac{1}{100}$, is : (+4, -1) **a**. 4 **b.** 5 **c.** 6 **d.** 7 2. The least positive integer n for which $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^n = 1$, is : (+4, -1) **a**. 2 **b.** 3 **c.** 5 **d**. 6 3. The complex number $z=rac{i-1}{\cos{rac{\pi}{3}}+i\sin{rac{\pi}{3}}}$ is equal to : (+4, -1) **a.** $\sqrt{2}i\left(\cos\frac{5\pi}{12} - i\sin\frac{5\pi}{12}\right)$ **b.** $\cos \frac{\pi}{12} - i \sin \frac{\pi}{12}$ **C.** $\sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)$ **d.** $\sqrt{2} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right)$

4. If $a \neq \pm b$ and are purely real, $z \in complex number$, $Re(az^2 + bz) = a$ and (+4, -1) $Re(bz^2 + az) = b$ then number of value of z possible is

a. 0

b. 1

c. 2

d. 3

- 5. If the equations $x^2 + 2x + 3 = 0$ and $ax^2 + bx + c = 0, a, b, c \in R$ have a common (+4, -1) root, then a : b : c is
 - **a.** 1:02:03
 - **b.** 3:02:01
 - **c.** 1:03:02
 - **d.** 3:01:02
- 6. Let z_0 be a root of the quadratic equation, $x^2 + x + 1 = 0$. If $z = 3 + 6iz_0^{81} 3iz_0^{93}$, (+4, -1) then arg z is equal to :
 - **a.** $\frac{\pi}{4}$ **b.** $\frac{\pi}{3}$ **c.** 0
 - **d.** $\frac{\pi}{6}$
- 7. If z is a complex number of unit modulus and argument θ , then $arg\left(\frac{1+z}{1+\bar{z}}\right)$ is (+4, -1) equal to
 - **a.** $-\theta$
 - **b.** $\frac{\pi}{2} \theta$
 - **c.** θ
 - **d.** $\pi \theta$
- **8.** A complex number z is the said to be unimodular if |z| = 1. Suppose z_1 and z_2 (+4, -1) are complex number such that $\frac{z_1-2z_2}{2-z_1z_2}$ is unimodular and z_2 is not unimodular.

Then the point z_1 lies on a :

- a. Straight line parallel to x-axis
- b. Straight line parallel to y-axis
- c. Circle of radius 2
- **d.** Circle of radius $\sqrt{2}$
- 9. If the value of real number a> 0 for which $x^2-5ax+1-0$ and $x^2-ax-5-0$ have a (+4, common real root is $\frac{3}{\sqrt{2\beta}}$ then β is equal to_____ -1)
- 10. A triangle is formed by X-axis, Y-axis and the line 3x + 4y = 60 Then the number (+4, of points P(n, b) which lie strictly inside the triangle, where a is an integer and b -1) is a multiple of a, is ____

Answers

1. Answer: c

Explanation:

 $1-2\left(\frac{1}{3^{1}}+\frac{1}{3^{2}}\right)$

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

2. Answer: b

Explanation:

$$\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^n = 1 \ \left(\frac{-2\omega^2}{-2\omega}\right)^n = 1 \ \omega^n = 1$$
 least positive integer value of n is 3.

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

3. Answer: d

Explanation:

$$Z = \frac{i+1}{\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}} = \frac{i-1}{\frac{1}{2} + \frac{\sqrt{3}}{2}i}$$

= $\frac{i-1}{\frac{1}{2} + \frac{\sqrt{3}}{2}i} \times \frac{\frac{1}{2} - \sqrt{\frac{3}{2}i}}{\frac{1}{2} - \sqrt{3/2i}} = \frac{\sqrt{3} - 1}{2} + \frac{\sqrt{3} + 1}{2}i$
Apply polar form,
 $r \cos \theta = \frac{\sqrt{3} - 1}{2}$

 $r \sin \theta = \frac{\sqrt{3}+1}{2}$ Now, $\tan \theta = \frac{\sqrt{3}+1}{\sqrt{3}-1}$ So, $\theta = \frac{5\pi}{12}$ So, the correct option is (D) : $\sqrt{2} \left(\cos \frac{5\pi}{12} + i \sin \frac{5\pi}{12} \right)$

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

• "a" is a real number

• "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

4. Answer: a

Explanation:

$$a(x^{2} - y^{2}) + bx = a \dots (i)$$

$$b(x^{2} - y^{2}) + ax = b \dots (ii)$$

$$(i) - (ii)$$

$$(a - b)(x^{2} - y^{2}) + (b - a)x = a - b$$

$$\Rightarrow x^{2} - y^{2} - x = 1$$

$$(i) + (ii)$$

$$(a + b)(x^{2} - y^{2}) + x(a + b) = a + b$$

$$\Rightarrow x^{2} - y^{2} + x = 1$$

$$\Rightarrow x = 0$$

$$\Rightarrow y^{2} = -1$$
therefore, no complex number is possible.
The correct option is (A): 0

Concepts:

1. Complex Number:

A Complex Number is written in the form

a + ib

where,

- "a" is a real number
- "b" is an imaginary number

The Complex Number consists of a symbol "i" which satisfies the condition $i^2 = -1$. Complex Numbers are mentioned as the extension of one-dimensional number lines. In a complex plane, a Complex Number indicated as a + bi is usually represented in the form of the point (a, b). We have to pay attention that a Complex Number with absolutely no real part, such as – i, -5i, etc, is called purely imaginary. Also, a Complex Number with perfectly no imaginary part is known as a real number.

5. Answer: a

Explanation:

Given equations are $x^2 + 2x + 3 = 0...(i)$ and $ax^2 + bx + c = 0...(ii)$ Since, E (i) has imaginary roots, so E (ii) will also have both roots same as E (i). Thus, $\frac{a}{1} = \frac{b}{2} = \frac{c}{3}$ Hence, a : b : c is 1 : 2 : 3.

Concepts:

1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that $i^2 = 1$. So, for every equation which does not have a real solution we can use i = -1.

Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is $y=ax^2+bx+c$. Here $a\neq 0$, b and c are the real numbers.

Equations	Detailed Explanations
$3x^2 + 4x + 6 = 0$	In this expression, the known values $a = 3$, $b = 4$ and $c = 6$; while x remains the unknown factor.
$2x^2 - 6x = 0$	Here, the known factors $a = 2$ and $b = 6$. However, can you ascertain the value of c? Well, the value of $c = 0$ as it is not present.
7x - 4 = 0	Here the value of a is equal to zero since the equation is not quadratic.

6. Answer: a

Explanation:

 $\begin{aligned} z_0 &= \omega \text{ or } \omega^2 \text{ (where } \omega \text{ is a non-real cube root of unity)} \\ z &= 3 + 6i(\omega)^{81} - 3i(\omega)^{93} \\ z &= 3 + 3i \\ \Rightarrow \arg z &= \frac{\pi}{4} \end{aligned}$

Concepts:

1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that $i^2 = 1$. So, for every equation which does not have a real solution we can use i = -1.

Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is $y=ax^2+bx+c$. Here $a\neq 0$, b and c are the real numbers.

Equations	Detailed Explanations
$3x^2 + 4x + 6 = 0$	In this expression, the known values $a = 3$, $b = 4$ and $c = 6$; while x remains the unknown factor.
$2x^2 - 6x = 0$	Here, the known factors $a = 2$ and $b = 6$. However, can you ascertain the value of c? Well, the value of $c = 0$ as it is not present.
7x - 4 = 0	Here the value of a is equal to zero since the equation is not quadratic.

7. Answer: c

Explanation:

The correct option is(C): θ .

Given, |z| = 1, arg $2 = \theta \therefore z = e^{i\theta}$ But $\bar{z} = \frac{1}{z}$ $\therefore arg\left(\frac{1+z}{1+\frac{1}{2}}\right) = arg(z) = \theta$

Concepts:

1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that $i^2 = 1$. So, for every equation which does not have a real solution we can use i = -1.

Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is $y=ax^2+bx+c$. Here $a\neq 0$, b and c are the real numbers.

Equations	Detailed Explanations
$3x^2 + 4x + 6 = 0$	In this expression, the known values $a = 3$, $b = 4$ and $c = 6$; while x remains the unknown factor.
$2x^2 - 6x = 0$	Here, the known factors a = 2 and b = 6. However, can you ascertain the value of c? Well, the value of c = 0 as it is not present.
7x - 4 = 0	Here the value of a is equal to zero since the equation is not quadratic.

8. Answer: c

Explanation:

$$\begin{split} \left| \frac{z_1 - 2z_2}{2 - z_1 \bar{z}_2} \right| &= 1 \\ (z_1 - 2z_2) \left(\bar{z}_1 - 2\bar{z}_2 \right) = (2 - z_1 \bar{z}_2) \left(2 - \bar{z}_1 z_2 \right) \\ \left| z_1 \right|^2 - 2z_1 \bar{z}_2 - 2z_2 \bar{z}_1 + 4 \left| z_2 \right|^2 \\ &= 4 - 2\bar{z}_1 z_2 - 2z_1 \bar{z}_2 + \left| z_1 \right|^2 \left| z_2 \right|^2 \\ \left| z_1 \right|^2 \left| z_2 \right|^2 - \left| z_1 \right|^2 - 4 \left| z_2 \right|^2 + 4 = 0 \\ \left(\left| z_1 \right|^2 - 4 \right) \left(\left| z_2 \right|^2 - 1 \right) = 0 \\ &\Rightarrow \left| z_1 \right| = 2 \end{split}$$

Concepts:

1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that $i^2 = 1$. So, for every equation which does not have a real solution we can use i = -1.

Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is $y=ax^2+bx+c$. Here $a\neq 0$, b and c are the real numbers.

Equations	Detailed Explanations
$3x^2 + 4x + 6 = 0$	In this expression, the known values $a = 3$, $b = 4$ and $c = 6$; while x remains the unknown factor.
$2x^2-6x=0$	Here, the known factors $a = 2$ and $b = 6$. However, can you ascertain the value of c? Well, the value of $c = 0$ as it is not present.
7x - 4 = 0	Here the value of a is equal to zero since the equation is not quadratic.

9. Answer: 13 - 13

Explanation:

Two equations have common root

 $\therefore (4a)(26a) = (-6)^2 = 36$ $\Rightarrow a^2 = \frac{9}{26}$ $\therefore a = \frac{3}{\sqrt{26}}$ $\Rightarrow \beta = 13$ So, the correct answer is 13.

Concepts:

1. Quadratic Equations:

A **polynomial** that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is **y=ax²+bx+c**. Here a≠0, b, and c are the **real n**

umbers.

Consider the following equation $ax^2+bx+c=0$, where $a\neq 0$ and a, b, and c are real coefficients.

The solution of a <u>quadratic equation</u> can be found using the formula, $x=((-b \pm \sqrt{b^2-4ac}))/2a)$

Two important points to keep in mind are:

- A polynomial equation has at least one root.
- A polynomial equation of degree 'n' has 'n' roots.

Read More: Nature of Roots of Quadratic Equation

There are basically four methods of solving quadratic equations. They are:

- 1. Factoring
- 2. Completing the square
- 3. Using Quadratic Formula
- 4. Taking the square root

10. Answer: 31 - 31

Explanation:

The correct answer is 31

 $(1,1)(1,2)-(1,14) \Rightarrow 14 \text{ pts.}$ If x=2,y=227=13.5 $(2,2)(2,4)...(2,12) \Rightarrow 6 \text{ pts.}$ If x=3,y=451=12.75 $(3,3)(3,6)-(3,12) \Rightarrow 4 \text{ pts.}$ If x=4,y=12 $(4,4)(4,8) \Rightarrow 2 \text{ pts.}$ If x=5·y=445=11.25 $(5,5),(5,10) \Rightarrow 2 \text{ pts.}$ If x=6,y=221=10.5 $(6,6) \Rightarrow 1\text{ pt}$ If x=7,y=439=9.75

 $(7,7) \Rightarrow 1pt$ If x=8,y=9 $(8,8) \Rightarrow 1pt$ If x=9y=433=8.25 \Rightarrow no pt. Total =31 pts.

Concepts:

1. Quadratic Equations:

A **polynomial** that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is **y=ax²+bx+c**. Here a≠0, b, and c are the **real n umbers**.

Consider the following equation $ax^2+bx+c=0$, where $a\neq 0$ and a, b, and c are real coefficients.

The solution of a <u>quadratic equation</u> can be found using the formula, $x=((-b\pm\sqrt{b^2-4ac}))/2a)$

Two important points to keep in mind are:

- A polynomial equation has at least one root.
- A polynomial equation of degree 'n' has 'n' roots.

Read More: Nature of Roots of Quadratic Equation

There are basically four methods of solving quadratic equations. They are:

- 1. Factoring
- 2. Completing the square
- 3. Using Quadratic Formula
- 4. Taking the square root