

# Complex Numbers And Quadratic Equations JEE Main PYQ - 3

Total Time: 25 Minute

Total Marks: 40

# Instructions

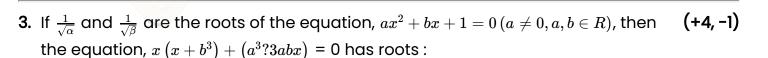
# Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

# Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To deselect your chosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.




# **Complex Numbers And Quadratic Equations**

**1.** The sum of all real values of x satisfying the equation  $(x^2 - 5x + 5)^{x^2+4x-60} = 1$  is (+4, -1)

- a. 3
  b. -4
  c. 6
  d. 5
- **2.** For all complex numbers z of the form 1 + i $\alpha$ ,  $\alpha \in R$ , if z = x + iy, then :

(+4, -1)

- **a.**  $y^2 4x + 2 = 0$
- **b.**  $y^2 + 4x 4 = 0$
- **c.**  $y^2 4x + 4 = 0$
- **d.**  $y^2 + 4x + 2 = 0$



- **a.**  $\alpha^{3/2}$  and  $\beta^{3/2}$
- **b.**  $\alpha \beta^{1/2}$  and  $\alpha^{1/2} \beta$
- **c.**  $\sqrt{\alpha\beta}$  and  $\alpha\beta$
- **d.**  $\alpha^{-rac{3}{2}}$  and  $\beta^{-rac{3}{2}}$
- **4.** If, for a positive integer n, the quadratic equation, x(x+1) + (x+1)(x+2) + (+4, -1).... +  $(x + \overline{n-1})(x+n) = 10n$  has two consecutive integral solutions, then n is equal to :

**a.** 9



**b.** 10

**c.** 11

**d.** 12

- 5. If *m* is chosen in the quadratic equation  $(m^2 + 1)x^2 3x + (m^2 + 1)^2 = 0$  such that the sum of its roots is greatest, then the absolute difference of the cubes of its roots is :
  - **a.**  $8\sqrt{3}$
  - **b.**  $4\sqrt{3}$
  - **c.**  $10\sqrt{5}$
  - **d.**  $8\sqrt{5}$
- 6. If  $\tan A$  and  $\tan B$  are the roots of the quadratic equation,  $3x^2 10x 25 = 0$ , (+4, -1) then the value of  $3\sin^2(A+B) - 10\sin(A+B)?\cos(A+B) - 25\cos^2(A+B)$  is :
  - **a.** -10

**b.** 10

- **c.** -25
- **d.** 25

| 7. If $\frac{z-\alpha}{z+\alpha}$ $(\alpha \in R)$ is a purely imaginary number and $ z =2$ , then a value of $\alpha$ is : | (+4, -1) |
|-----------------------------------------------------------------------------------------------------------------------------|----------|
| <b>a.</b> 1                                                                                                                 |          |
| <b>b.</b> 2                                                                                                                 |          |
| C. $\sqrt{2}$                                                                                                               |          |
| <b>d.</b> $\frac{1}{2}$                                                                                                     |          |



- 8. If z be a complex number satisfying |Re(z)| + |Im(z)| = 4, then |z| cannot be: (+4, -1)
  - **a.**  $\sqrt{7}$ **b.**  $\sqrt{\frac{17}{2}}$
  - **c.**  $\sqrt{10}$
  - **d.**  $\sqrt{8}$
- 9. Suppose Anil's mother wants to give 5 whole fruits to Anil from a basket of 7 red (+4, apples, 5 white apples and 8 oranges If in the selected 5 fruits, at least 2 -1) oranges, at least one red apple and at least one white apple must be given, then the number of ways, Anil's mother can ofter 5 fruits to Anil is\_\_\_\_\_
- **10.** Let  $a \in R$  and let  $\alpha, \beta$  be the roots of the equation  $x^2 + 60^{\frac{1}{4}}x + a = 0$  If  $\alpha^4 + \beta^4 = (+4, -30, \text{ then the product of all possible values of } a \text{ is}_{----}$





# Answers

#### 1. Answer: a

#### **Explanation:**

$$(x^{2} - 5x + 5)^{x^{2} + 4x - 60} = 1 = (x^{2} - 5x + 5)^{0}$$

$$\Rightarrow x^{2} + 4x - 60 = 0 [a^{x} = a^{y} \Rightarrow x = y \text{ if } a \neq 1, 0, -1]$$

$$x = -10, 6$$

$$\& \text{ base } x^{2} - 5x + 5 = 0 \text{ or } 1 \text{ or } -1$$
If  $x^{2} - 5x + 5 = 0$ 

$$x^{2} - 5x + 5 = 1$$

$$\therefore x = 4, 1$$

$$x = 2, 3$$

$$x = 3 \text{ does not satisfy eqn.}$$

But it will not satisfy original equation . Hence solutions are – 10, 6, 4, 1, 2So, sum of solutions = -10 + 6 + 4 + 1 + 2 = 3

#### Concepts:

#### 1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that  $i^2 = 1$ . So, for every equation which does not have a real solution we can use i = -1.



| Equations           | Detailed Explanations                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $3x^2 + 4x + 6 = 0$ | In this expression, the known values $a = 3$ , $b = 4$ and $c = 6$ ; while x remains the unknown factor.                                        |
| $2x^2 - 6x = 0$     | Here, the known factors $a = 2$ and $b = 6$ . However, can<br>you ascertain the value of c? Well, the value of $c = 0$ as<br>it is not present. |
| 7x - 4 = 0          | Here the value of a is equal to zero since the equation is not quadratic.                                                                       |

#### 2. Answer: b

#### **Explanation**:

$$(1 + i\alpha)^{2} = x + iy$$

$$1 - \alpha^{2} + 2i\alpha = x + iy$$
so  $x = 1 - \alpha^{2}, y = 2\alpha$ 
putting  $\alpha = y/2$ 

$$x = 1 - \left(\frac{y}{2}\right)^{2}$$

$$\Rightarrow y^{2} + 4x - 4 = 0$$

#### Concepts:

#### 1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that  $i^2 = 1$ . So, for every equation which does not have a real solution we can use i = -1.



| col | leged | lunia |  |
|-----|-------|-------|--|
|     |       |       |  |

| Equations           | Detailed Explanations                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $3x^2 + 4x + 6 = 0$ | In this expression, the known values $a = 3$ , $b = 4$ and $c = 6$ ; while x remains the unknown factor.                                        |
| $2x^2 - 6x = 0$     | Here, the known factors $a = 2$ and $b = 6$ . However, can<br>you ascertain the value of c? Well, the value of $c = 0$ as<br>it is not present. |
| 7x - 4 = 0          | Here the value of a is equal to zero since the equation is not quadratic.                                                                       |

#### 3. Answer: a

#### **Explanation:**

$$\frac{1}{\sqrt{\alpha}} + \frac{1}{\sqrt{\beta}} = -\frac{b}{a}also\frac{1}{\sqrt{\alpha\beta}} = \frac{1}{a}$$

$$\Rightarrow \sqrt{\alpha} + \sqrt{\beta} = -b$$
now  $x(x+b^3) + a^3 - 3abx$ 

$$= x^2 + (b^3 - 3ab)x + a^3$$

$$= x^2 + b(b^2 - 3a)x + a^3$$

$$= x^2 - (\sqrt{\alpha} + \sqrt{\beta}) \{\alpha + \beta + 2\sqrt{\alpha\beta} - 3\sqrt{\alpha\beta}\} x + \alpha\beta\sqrt{\alpha\beta}$$

$$= x^2 - (\alpha\sqrt{\alpha} + \beta\sqrt{\beta}) + \alpha\beta\sqrt{\alpha\beta}$$

$$\Rightarrow \text{ roots are } \alpha\sqrt{\alpha} \text{ and } \beta\sqrt{\beta}$$

#### Concepts:

#### 1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that i<sup>2</sup> = 1. So, for every equation which does not have a real solution we can use i = -1.



| Equations           | Detailed Explanations                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $3x^2 + 4x + 6 = 0$ | In this expression, the known values $a = 3$ , $b = 4$ and $c = 6$ ; while x remains the unknown factor.                                        |
| $2x^2 - 6x = 0$     | Here, the known factors $a = 2$ and $b = 6$ . However, can<br>you ascertain the value of c? Well, the value of $c = 0$ as<br>it is not present. |
| 7x - 4 = 0          | Here the value of a is equal to zero since the equation is not quadratic.                                                                       |

#### 4. Answer: c

#### **Explanation:**

Rearranging equation, we get  $nx^{2} + \{1 + 3 + 5 + \dots + (2n - 1)\}x + \{1.2 + 2.3 + \dots + (n - 1)n\} = 10n$  $\Rightarrow nx^2 + n^2x + rac{(n-1)n(n+1)}{3} = 10\,n$  $\Rightarrow x^2 + nx + \left(rac{n^2 - 31}{3}
ight) = 0$ Given difference of roots = 1 $\Rightarrow |lpha - eta| = 1$ ⇒ D = 1  $\Rightarrow n^2 - rac{4}{3}\left(n^2 - 31
ight) = 1$ So, *n* = 11

#### **Concepts:**

#### 1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that i<sup>2</sup> = 1. So, for every equation which does not have a real solution we can use i = -1.



| Equations           | Detailed Explanations                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $3x^2 + 4x + 6 = 0$ | In this expression, the known values $a = 3$ , $b = 4$ and $c = 6$ ; while x remains the unknown factor.                                        |
| $2x^2 - 6x = 0$     | Here, the known factors $a = 2$ and $b = 6$ . However, can<br>you ascertain the value of c? Well, the value of $c = 0$ as<br>it is not present. |
| 7x - 4 = 0          | Here the value of a is equal to zero since the equation is not quadratic.                                                                       |

#### 5. Answer: d

#### **Explanation**:

$$SOR = \frac{3}{m^2 + 1} \Rightarrow (S.O.R)_{max} = 3$$
  
when  $m = 0$   
 $\alpha + \beta = 3$   
 $\alpha\beta = 1$   
 $|\alpha^2 - \beta^2| = ||\alpha - \beta| (\alpha^2 + \beta^2 + \alpha\beta)|$   
 $= \left|\sqrt{(\alpha - \beta)^2 - \alpha\beta} ((\alpha + \beta)^2 - \alpha\beta)\right|$   
 $= |\sqrt{9 - 4} (9 - 1)|$   
 $= \sqrt{5} \times 8$ 

#### Concepts:

#### 1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that  $i^2 = 1$ . So, for every equation which does not have a real solution we can use i = -1.



| Equations           | Detailed Explanations                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $3x^2 + 4x + 6 = 0$ | In this expression, the known values $a = 3$ , $b = 4$ and $c = 6$ ; while x remains the unknown factor.                                        |
| $2x^2 - 6x = 0$     | Here, the known factors $a = 2$ and $b = 6$ . However, can<br>you ascertain the value of c? Well, the value of $c = 0$ as<br>it is not present. |
| 7x - 4 = 0          | Here the value of a is equal to zero since the equation is not quadratic.                                                                       |

#### 6. Answer: c

#### **Explanation:**

$$3x^{2} - 10x - 25 = 0$$
  

$$\tan A + \tan B = \frac{10}{3}$$
  

$$\tan (A + B) = \frac{\tan A + \tan 1}{1}$$
  

$$= \frac{\frac{10}{3}}{1 + \frac{23}{3}}$$
  

$$= \frac{10}{28} = \frac{5}{14}$$
  
Divide and multiply by  $\cos^{2} \times (A + B)$   
 $3 \tan^{2}(A + B) - 10 \tan(A + B) - 25 (\cos^{2}(A + B))$   
 $3\frac{25}{196} - 10 (\frac{5}{14}) - 25 (\cos^{2}(A + B))$   
 $\frac{75 - 700 - 4500}{196} (\cos^{2}(A + B))$   
 $- \frac{5525}{196} (\frac{1}{1 + \tan^{2}(A + B)})$   
 $- \frac{5525}{291} (\frac{1}{1 + \frac{25}{196}})$   
 $= \frac{-5521}{221}$ 

#### Concepts:

#### 1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that  $i^2 = 1$ . So, for every equation which does not have a real solution we can use i = -1.



| Equations           | Detailed Explanations                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $3x^2 + 4x + 6 = 0$ | In this expression, the known values $a = 3$ , $b = 4$ and $c = 6$ ; while x remains the unknown factor.                                        |
| $2x^2 - 6x = 0$     | Here, the known factors $a = 2$ and $b = 6$ . However, can<br>you ascertain the value of c? Well, the value of $c = 0$ as<br>it is not present. |
| 7x - 4 = 0          | Here the value of a is equal to zero since the equation is not quadratic.                                                                       |

#### 7. Answer: b

#### Explanation:

 $egin{aligned} rac{z-lpha}{z+lpha}+rac{ar{z}-lpha}{ar{z}+lpha}&=0\ zar{z}+zlpha-lphaar{z}-lpha^2+zar{z}-zlpha+ar{z}lpha-lpha^2&=0\ |z|^2&=lpha^2, a=\pm2 \end{aligned}$ 

#### Concepts:

#### 1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that  $i^2 = 1$ . So, for every equation which does not have a real solution we can use i = -1.

| Equations           | Detailed Explanations                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $3x^2 + 4x + 6 = 0$ | In this expression, the known values $a = 3$ , $b = 4$ and $c = 6$ ; while x remains the unknown factor.                                        |
| $2x^2 - 6x = 0$     | Here, the known factors $a = 2$ and $b = 6$ . However, can<br>you ascertain the value of c? Well, the value of $c = 0$ as<br>it is not present. |
| 7x - 4 = 0          | Here the value of a is equal to zero since the equation is not quadratic.                                                                       |



#### 8. Answer: a

### **Explanation:**

 $\begin{array}{ll} z=x+iy & |x|+|y|=4 \\ |z|=\sqrt{x^2+y^2} \Rightarrow |z|_{min}=\sqrt{8} \ \& \ |z|_{max}=4=\sqrt{16} \\ \text{So} \ |\textbf{z}| \ \text{cannot be} \ \sqrt{7} \end{array}$ 

## Concepts:

#### 1. Complex Numbers and Quadratic Equations:

Complex Number: Any number that is formed as a+ib is called a complex number. For example: 9+3i,7+8i are complex numbers. Here i = -1. With this we can say that  $i^2 = 1$ . So, for every equation which does not have a real solution we can use i = -1.

Quadratic equation: A polynomial that has two roots or is of the degree 2 is called a quadratic equation. The general form of a quadratic equation is  $y=ax^2+bx+c$ . Here  $a\neq 0$ , b and c are the real numbers.

| Equations           | Detailed Explanations                                                                                                                           |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $3x^2 + 4x + 6 = 0$ | In this expression, the known values $a = 3$ , $b = 4$ and $c = 6$ ; while x remains the unknown factor.                                        |
| $2x^2 - 6x = 0$     | Here, the known factors $a = 2$ and $b = 6$ . However, can<br>you ascertain the value of c? Well, the value of $c = 0$ as<br>it is not present. |
| 7x - 4 = 0          | Here the value of a is equal to zero since the equation is not quadratic.                                                                       |

#### 9. Answer: 6860 - 6860

#### Explanation:

#### The correct answer is 6860

7 Red apple(RA),5 white apple(WA), 8 oranges (O)

5 fruits to be selected (Note:- fruits taken different)

Possible selections :- (2O, 1RA, 2WA) or (2O,



$$\begin{split} & 2RA, 1WA) \text{ or } (3O, 1RA, 1WA) \\ & \Rightarrow {}^8C_2{}^7C_1{}^5C_2 + {}^8C_2{}^7C_2{}^5C_1 + {}^8C_3{}^7C_1{}^5C_1 \\ & \Rightarrow 1960 + 2940 + 1960 \\ & \Rightarrow 6860 \end{split}$$

#### Concepts:

## 1. Quadratic Equations:

A **polynomial** that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is **y=ax<sup>2</sup>+bx+c**. Here a≠0, b, and c are the **real n umbers**.

Consider the following equation  $ax^2+bx+c=0$ , where  $a\neq 0$  and a, b, and c are real coefficients.

The solution of a <u>quadratic equation</u> can be found using the formula,  $x=((-b\pm\sqrt{b^2-4ac}))/2a)$ 

#### Two important points to keep in mind are:

- A polynomial equation has at least one root.
- A polynomial equation of degree 'n' has 'n' roots.

Read More: Nature of Roots of Quadratic Equation

# There are basically four methods of solving quadratic equations. They are:

- 1. Factoring
- 2. Completing the square
- 3. Using Quadratic Formula
- 4. Taking the square root

#### 10. Answer: 45 - 45

#### **Explanation:**

The correct answer is 45.



$$x^2 + 60^{\frac{1}{4}}x + a = 0 \overset{\alpha}{\searrow}_{\beta}^{\alpha}$$

 $\begin{aligned} \alpha + \beta &= -60^{\frac{1}{4}} \& \alpha \beta = a \\ \text{Given } \alpha^4 + \beta^4 &= -30 \\ \Rightarrow & \left(\alpha^2 + \beta^2\right)^2 - 2\alpha^2 \beta^2 = -30 \\ \Rightarrow & \left\{(\alpha + \beta)^2 - 2\alpha\beta\right\}^2 - 2a^2 = -30 \\ \Rightarrow & \left\{60^{\frac{1}{2}} - 2a\right\}^2 - 2a^2 = -30 \\ \Rightarrow & 60 + 4a^2 - 4a \times 60^{\frac{1}{2}} - 2a^2 = -30 \\ \Rightarrow & 2a^2 - 4.60^{\frac{1}{2}}a + 90 = 0 \\ \text{Product} &= \frac{90}{2} = 45 \end{aligned}$ 

## Concepts:

# 1. Quadratic Equations:

A **polynomial** that has two roots or is of degree 2 is called a quadratic equation. The general form of a quadratic equation is **y=ax<sup>2</sup>+bx+c**. Here a≠0, b, and c are the **real n umbers**.

Consider the following equation  $ax^2+bx+c=0$ , where  $a\neq 0$  and a, b, and c are real coefficients.

The solution of a <u>quadratic equation</u> can be found using the formula,  $x=((-b \pm \sqrt{b^2-4ac}))/2a)$ 

#### Two important points to keep in mind are:

- A polynomial equation has at least one root.
- A polynomial equation of degree 'n' has 'n' roots.

#### Read More: Nature of Roots of Quadratic Equation

There are basically four methods of solving quadratic equations. They are:



- 1. Factoring
- 2. Completing the square
- 3. Using Quadratic Formula
- 4. Taking the square root

