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PREFACE

Conquering the Physics GRE represents the combined efforts
of two MIT graduate students frustrated with the lack of
decent preparation materials for the Physics GRE subject test.
When we took the exams, in 2007 and 2009, we did what
any student in the internet age would do – searched the var-
ious online bookstores for “physics GRE prep,” “physics GRE
practice tests,” and so on. We were puzzled when the only
results were physics practice problems that had nothing to
do with the GRE specifically or, worse, GRE practice books
having nothing to do with physics. Undeterred, we headed
to our local brick-and-mortar bookstores, where we found
a similar situation. There were practice books for every sin-
gle GRE subject exam, except physics. Further web searches
unearthed www.grephysics.net, containing every problem
and solution from every practice test released up to that point,
and www.physicsgre.com, a web forum devoted to discussing
problems and strategies for the test. We discovered these sites
had sprung up thanks to other frustrated physicists just like
us: there was no review material available, so students did the
best they could with the meager material that did exist. This
situation is particularly acute for students in smaller depart-
ments, who have fewer classmates with whom to study and
share the “war stories” of the GRE.
This book endeavors to fix that situation. Its main con-

tribution is a set of three full-length practice tests and fully
worked solutions, designed to be as close as possible in style,
difficulty, content distribution, and format to the actual GRE
exam.We have also included reviewmaterial for all of the nine
content areas on the Physics GRE exam: classical mechanics,
electricity and magnetism, optics and waves, thermodynam-
ics and statistical mechanics, quantum mechanics, atomic
physics, special relativity, laboratory methods, and specialized
topics. To our knowledge, this is the first time that reviews
of standard undergraduate subjects such as classical mechan-
ics and thermodynamics have been paired with less standard

material such as laboratory methods in the same text, specif-
ically focused on aspects of these subjects relevant for the
GRE. Exam-style practice problems and worked solutions are
included for each review chapter, giving over 150 additional
GRE-style practice problems in addition to the 300 from the
exams. The shorter chapters have review problems at the very
end, while the longer ones have review problems distributed
throughout the chapter.
The chapter on quantum mechanics and atomic physics is

the longest, for two reasons: the combination of these two
topics makes up nearly 25% of the exam, and the formal-
ism of quantum mechanics is so different from the rest of
the physics topics covered on the GRE that we felt it worth-
while to discuss a number of calculational shortcuts in detail.
Unique to our book is a chapter on special tips and tricks rele-
vant for taking the GRE as a standardizedmultiple-choice test.
Some of the standard test-taking wisdom still applies, but we
have found that the structure of the multiple answer choices
often provides valuable hints on how to solve a problem: you
will not find this information in any other test-prep book,
because it is based on techniques such as dimensional analysis
and back-of-the-envelope estimation, which most test-prep
authors (who are not physicists) are simply unaware of.
Next, a brief word on what this book is not. This is not

a detailed review of undergraduate physics: many of the
more difficult subjects get an extremely abbreviated treat-
ment, designed to highlight only those formulas and problem
types relevant for the exam. We believe this will help you suc-
ceed on the Physics GRE, but if any of the standard subjects
are completely unfamiliar to you, please do not try to teach
them to yourself from our book. There are many excellent
texts out there relevant for that purpose, and we have included
a list of them in the Resources section following this preface.
We strongly encourage you to consult these references, as we
have found them useful both in writing this present text and



x Preface

in our careers as active physics researchers.We will often refer
to them throughout the review chapters.
Last, a comment on the structure of this book. We realize

that there are many,many equations to learn that are relevant
for GRE-style physics problems. To keep the amount you feel
you have to memorize to a minimum, we only assign equa-
tion numbers to equations we feel are important to remember
– everything else you can safely ignore. (This is not to say
that you should memorize every single numbered equation –
Chapter 9 contains useful advice for what to memorize and
what to derive.) Also, whilemost of the review chapters review
material in roughly the order it was presented when you first
learned it, Chapter 1 is structured very differently. We assume
that you still remember many of the basic facts of classi-
cal mechanics from your freshman year introductory physics
course, and so we focus our attention on problem types that
are standard on the GRE, rather than on specific subtopics.
We hope you will find this approach useful.
A book like this could never have been written without the

help and support of other people. We especially thank Yichen
Shen for his useful contributions to the condensed matter sec-
tion of the Specialized Topics review. We thank Jen Sierchio
and other members of the physicsgre.com community, as well
as Raghu Mahajan, Nate Thomas, Jaime Varela, and Dustin
Katzin at MIT, who proofread an early version of our first
sample exam. Thanks also to Alex Shvonski, Kevin Satzinger,
Jasen Scaramazza, Alastair Heffernan, Rizki Sharif, Benjamin
Blumer, Andrew Ochoa, Ryan Janish, and especially Vinay
Ramasesh for proofreading the first public versions of the
sample exams and providing useful feedback. Y.K. would like
to thank his advisor, Jesse Thaler, for bearing with him while
working on a project that siphoned valuable time away from
research. A.A. thanks Y.K. for being so accommodating and
flexible toward his occasional “vanishing acts” from writing
to attend to research obligations. A.A. also thanks his advisor,
Enectalí Figueroa-Feliciano, andmany other collaborators too
numerous to name, for accepting (or at least pretending not
to notice) any drag that this project caused on his research
productivity.
Although we have made every effort to eliminate all factual

and typographical errors from this book, the long errata lists
for any physics textbook speak to the fact that this is impos-
sible, especially in a first edition. If you find any mistakes
of any kind, please email us at physics@physicsgreprep.com
and let us know. Even the smallest of typos is worth

fixing. We will be compiling an errata list on our website,
www.physicsgreprep.com, which we will update on a regular
basis. If you would like to receive information on errata as we
find them, please email us. We also would greatly appreciate
any feedback on this book, both positive and negative, as we
strive to improve its usefulness for students everywhere.

Yoni Kahn and Adam Anderson

Preface To The Third Edition
Since Conquering the Physics GRE was first published, both
authors have completed graduate school and gone on to
careers in academia: Yoni as a theoretical particle physicist,
and Adam as an observational cosmologist. If this kind of
career path is what you’re hoping for, this is the book for
you! Conquering the Physics GRE remains the only compre-
hensive reference book specifically tailored to the topics on
ETS’s Physics GRE, and indeed we often refer to this book as
a quick reference for key undergraduate physics topics.
The revised third edition, published by Cambridge Univer-

sity Press, makes numerous changes in response to comments
from students and faculty who have used this book for GRE
preparation. Most importantly, the three full-length sample
exams have been completely reworked so that the difficulty
and types of questions better match the current content of
the exam. We have added an equation index, a subject index,
and a problems index so you can easily look up particular
terms or concepts that appear on practice problems and solu-
tions as well as in the review material. Finally, we have made
many improvements to the review chapters, including addi-
tional figures, diagrams, and practice problems; an updated
Nobel Prize section; and brand-new review problems for the
Tips and Tricks chapter. We hope that these changes make
this book a better reference not only for the GRE but for your
bookshelf in your future physics career.
We are thankful to the many people who have made

this revised edition possible, including Vince Higgs, Lucy
Edwards, and Esther Migueliz at Cambridge University Press,
and Lia Hankla, Sean Muleady, and Ahmed Akhtar at Prince-
ton for proofreading. We also thank the many students who
submitted errata for previous editions and suggestions for
topics that now appear in this book.

Yoni Kahn and Adam Anderson



HOW TO USE THIS BOOK

Studying for the GRE can be overwhelming! This book is long
because it contains all the information you need to ace the
exam, but not every student needs to study every chapter in
equal detail. Here are some suggestions for how to use this
book.

● Only numbered equations are worth remembering. The
Physics GRE is a test of outside knowledge, so some mem-
orization is inevitable. However, we have made a concerted
effort to separate equations that are only used in specific
worked examples from equations that are worth remember-
ing for the test. Only the equations worth remembering are
given equation numbers and are included in the Equation
Index at the back of the book along with the page number
where they appear; anything else you can safely forget for
test day. This is still quite a long list, so rather than mem-
orize each equation, check out Chapter 9 for suggestions
on how to reduce your memorization workload by deriving
more complex equations from more basic ones.

● Use these sample exams as diagnostics. ETS has released
precious few actual GREs, and only the most recent (from
2001, 2008, and 2017) are representative of the current con-
tent of the test. We strongly suggest you leave the ETS
exams until shortly before the actual test, where you can
take them under simulated test-taking conditions. To start
your studying, consider taking one of the sample exams
provided in this book as a diagnostic, and note which
areas you need to review the most. You can then focus
on the review chapters covering these particular subject
areas. Once you feel you’ve sufficiently filled in the gaps
in your knowledge of undergraduate physics, you can take
another sample exam and track your improvement, leav-
ing the last exam for extra practice a week or two before
the test, should you need it. Because we don’t have access
to ETS’s proprietary scoring formula, we do not attempt to

offer any conversion between raw score and scaled score
(200–990) for our sample exams. Guessing at a formula
would be extremely misleading at best, so use your score
on our exams only as an estimate, but by all means use
the ETS-provided conversion charts when taking the ETS
exams.

● Don’t try to learn all of undergraduate physics from our
book. We have tailored the length and content of each of
our review chapters to roughly follow the proportions of
the GRE: 20% classical mechanics, 18% electromagnetism,
9% optics and waves, 10% thermodynamics and statistical
mechanics, 22% quantum mechanics and atomic physics,
6% relativity, 6% laboratory methods, and 9% specialized
topics. Our expositions of standard first- and second-year
undergraduate topics are extremely brief or nonexistent,
and we have given slightly more weight to more unfamiliar
topics you’re unlikely to find together in a single book, in
order to make this book self-contained. If you find yourself
totally mystified by a topic or completely unfamiliar with
a formula, look it up in a more detailed reference! We’ve
provided a list of suggested resources below.

● Treat the end-of-chapter or end-of-section problems as
subject practice rather than actual exam questions.While
our review problems follow the GRE multiple-choice for-
mat and don’t require calculators, we don’t intend them to
exactly replicate GRE questions in style and difficulty: that’s
the purpose of the sample exams. Rather, the problems are
there to highlight important problem types or calculational
shortcuts, and as a result may feature solutions with more
steps than you would see on test day. We recommend you
work these problems as you’re studying a particular chap-
ter, but don’t feel the need to keep to the GRE time limit of
under two minutes per question.

Best of luck studying!



RESOURCES

Here we collect all the texts we recommend and will refer
to in the review chapters. If you’re wondering why books by
Griffiths show up so often, it’s likely because he was on the
question-writing committee for the Physics GRE several years
ago. Anecdotally, we know that questions are recycled very
often (which is why so few exams have been released), so it’s
likely that many of the questions you’ll see on your exam were
written by Griffiths or consciously modeled after his books.
● Classical Mechanics: Whatever book you used for fresh-
man physics should suffice here. For a more in-depth
review of advanced topics, try Classical Dynamics of Par-
ticles and Systems by S.T. Thornton and J.B. Marion.

● Electricity and Magnetism: D.J. Griffiths, Introduction to
Electrodynamics. This book covers everything you’ll need to
know about electricity and magnetism on the GRE, except
for circuits. For circuits and a review of the most basic
electricity andmagnetism problems, which Griffiths glosses
over, consult any standard freshman physics textbook. A
good treatment of electromagnetic waves can also be found
in R.K. Wangsness, Electromagnetic Fields. E. Purcell, Elec-
tricity and Magnetism is an extremely elegant introduction
emphasizing physical concepts rather than mathematical
formalism, should you need to relearn the basics of any
topic. Under no circumstances should you consult Jackson!
It’s far too advanced for anything you’ll need for the GRE.

● Optics and Waves: Like classical mechanics, nearly all the
relevant information is covered in your freshman physics
textbook. Anything you’re missing can be found in the
relevant chapters of Introduction to Electrodynamics by
Griffiths.

● Thermodynamics and Statistical Mechanics: No over-
whelming recommendation here. Thermal Physics and Ele-
mentary Statistical Physics by C. Kittel, or Fundamentals of
Statistical and Thermal Physics by F. Reif, are decent. Sta-
tistical Physics, by F. Mandl has some decent pedagogy and

the nice feature of many problems with worked solutions.
Fermi’s Thermodynamics is a classic for the most basic
aspects of the subject.

● Quantum Mechanics and Atomic Physics: D.J. Griffiths,
Introduction to Quantum Mechanics. This is really the only
reference you need, even for atomic physics questions.
Shankar and Sakurai are serious overkill, stay away from
them for GRE purposes!

● Special Relativity: Chapter 12 of Introduction to Electro-
dynamics by Griffiths, and Chapter 3 of Introduction to
Elementary Particles, also by Griffiths, for more examples
of relativistic kinematics. Note that, confusingly, the two
books use different sign conventions, so be careful!

● Laboratory Methods: For advanced circuit elements, The
Art of Electronics by P. Horowitz and W. Hill is a classic,
and used in many undergraduate laboratory courses. An
excellent general reference for radiation detection is Radi-
ation Detection and Measurement by G.F. Knoll. Chapter
1 covers general properties of radiation, Chapters 2 and 4
cover interactions of radiation with matter, Chapter 10 cov-
ers photon detectors, and Chapter 3 covers precisely the
kind of probability and counting statistics you’ll be asked
about on the GRE. The rest of that book goes into far more
detail than necessary, so don’t worry about it. For lasers, try
O. Svelto, Principles of Lasers, Chapters 1 and 6.

● Specialized Topics:The first chapter of D.J. Griffiths, Intro-
duction to Elementary Particles, is a mandatory read. It
seems that every GRE in the last several years has contained
at least one question that can be answered purely by picking
facts out of this chapter. The rest of the book is pretty good
too, but the later chapters are almost certainly too advanced
for the GRE. For condensedmatter, try Introduction to Solid
State Physics by C. Kittel, or Chapters 1–9 of Solid State
Physics by N. Ashcroft and N. Mermin for a more advanced
treatment written in a friendly and accessible style.



Resources xiii

● All-around: L. Kirkby’s Physics: A Student Companion is a
nice all-around summary of a wide range of physics topics.
It’s geared toward students studying for exams, so it is
concise and more distilled than the subject-specific books.

There are also several useful websites containing information
related to the Physics GRE:

● www.grephysics.net: A compilation of the 400 problems
released by ETS prior to 2011, and student-contributed
solutions.

● www.physicsgre.com: A web forum for discussion of issues
related to the GRE, and the grad school application process
in general. Highly recommended: one of us (Y.K.) met sev-
eral future colleagues on this forum before meeting them in
person.

● www.aps.org/careers/guidance/webinars/gre-strategies.cfm:
A webinar on Physics GRE preparation given by one of
us (Y.K.) for the American Physical Society, drawing on
strategies discussed in this book.





1 Classical Mechanics

Classical mechanics is the cornerstone of the GRE, making up
20% of the exam, and at the same time has the dubious distinc-
tion of being the subject that turns so many people away from
physics. Your first physics class was undoubtedly a mechan-
ics class, at which point you probably wondered what balls,
springs, ramps, rods, and merry-go-rounds had to do in the
slightest with the physics of the real world. So rather than
(a) attempt the impossible task of covering your 1000-page
freshman-year textbook in this much shorter reference, or (b)
risk turning you away from physics before you’ve even taken
the exam, we’ll structure this chapter a little differently than
the rest of the book. We’re not going to review such things as
Newton’s laws, force balancing, or the definition of momen-
tum; you should know these things in your sleep, or the rest
of the exam will seem impossibly hard. Rather than review
basic topics, we’ll review standard problem types you’re likely
to encounter on the GRE. The more advanced topics will get
their own brief treatment as well. After finishing this chapter,
you will have reviewed nearly all the material you’ll need for
the classical mechanics section of the test, but in a format that
is much more useful for the way the problems will likely be
presented on the test. If you need a more detailed review of
any of these topics, just open up any undergraduate physics
text.

1.1 Blocks

One of the first things you learned in the first semester of
freshman year physics was probably how to balance forces
using free-body diagrams. Rather than rehash that discus-
sion, which you can find in absolutely any textbook, we’ll
review it through a series of example problems that are GRE

favorites. They involve objects, usually called “blocks,” with
certain masses, doing silly things like sitting on ramps, being
pushed against springs, and traveling on carts. So here we go.

1.1.1 Blocks on Ramps

Here’s a basic scenario (Fig. 1.1): a block of mass m is on a
ramp inclined at an angle θ , and suppose we want to know
the coefficient of static friction μ required to keep it in place.
The usual solutionmethod is to resolve any forces F into com-
ponents along the ramp (F‖) and perpendicular to the ramp
(F⊥). Rather than fuss with trigonometry or similar triangles,
we can just do this by considering limiting cases, a theme that
we’ll return to throughout this book. In this case, we have to
resolve the gravitational force Fg . If the ramp is flat (θ = 0),
then there is no force in the direction of the ramp, so grav-
ity acts entirely perpendicularly, and Fg,‖ = 0. On the other
hand, if the ramp is sheer vertical (θ = π/2), then gravity acts
entirely parallel to the ramp (Fg,⊥ = 0), and the block falls
straight down. Knowing that there must be sines and cosines
involved, and the magnitude of Fg ismg, this uniquely fixes

Fg,‖ = mg sin θ , Fg,⊥ = mg cos θ .

For the block not to accelerate perpendicular to the ramp, we
need the perpendicular forces to balance, which fixes the nor-
mal force to be N = mg cos θ . Then the frictional force is
Ff = μmg cos θ , which must balance the component of grav-
ity parallel to the ramp, Fg,‖ = mg sin θ . Setting these equal
gives

μmg cos θ = mg sin θ =⇒ μ = tan θ .
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m

F
F⊥

F||

θ

Figure 1.1 Free-body diagram of forces for a block on an inclined
ramp.

Again, we can check this by limiting cases. If θ = 0, then we
don’t need any friction to hold the block in place, and μ = 0.
If θ = π/2, we need an infinite amount of friction to glue
the block to the ramp and keep if from falling vertically, so
μ = ∞. Both of these check out.
Standard variants on this problem include applied forces

and blocks attached to pulleys which hang over the side of the
ramp, but surprisingly, neither the basic problem nor its vari-
ants have shown up on recent exams. Perhaps it is considered
too standard by the GRE, such that most students will have
memorized the problem and its variants so completely that
it’s not worth testing. In any case, consider it a simple review
of how to resolve forces into components by using a limiting-
cases argument, as this can potentially save you a lot of time
on the exam.

1.1.2 Falling and Hanging Blocks

The next step up in complexity is to have two or more
blocks interacting – for example, two blocks tied together with

a rope, falling under the influence of gravity, or the same
blocks hanging from a ceiling. These kinds of questions test
your ability to identify precisely which forces are acting on
which blocks. A foolproof, though time-consuming, method
is to use free-body diagrams, where you draw each individual
block and only the forces acting on it. This avoids the pit-
fall of double-counting, or applying the same force twice to
two different objects, and ensures that you take into careful
account the action/reaction balance of Newton’s third law. See
Example 1.1.
Sometimes, though, simple physical reasoning will suffice,

especially in situations where the blocks aren’t really distinct
objects. For example, consider placing one block on top of
another and letting them both fall under the influence of grav-
ity. If we ignore air resistance, there is absolutely no physical
distinction between the block–block system, and one larger
block with the combined mass of both. In fact, a variant
of precisely this argument was used in support of Galileo’s
discovery that the gravitational acceleration of objects was
independent of their mass. We could even put a massless
string between the two blocks, and the argument would still
hold: since the whole system must fall with acceleration g,
there can be no tension in the string. (Do the free-body anal-
ysis and check this yourself!) When interactions between the
blocks become important, for example when they exert forces
on one another through friction, then we must usually treat
them as independent objects, though, as we’ll see in Section
1.1.3, there are cases where the same kind of reasoning works.

EXAMPLE 1.1

A 5 kg block is tied to the bottom of a 20 kg block with a massless string. When an experimenter holds the 20 kg
block stationary, the tension in the string is T1. The experiment is repeated with the 20 kg block hanging under the
5 kg block, and the tension in the string is now T2. What is T2/T1?
Our physical intuition tells us that T1/g = 5 kg and T2/g = 20 kg, since in both cases the function of the string

is to support the weight of the lower block. So we expect T2/T1 = 4. This intuition is confirmed by a limiting-cases
analysis: if the mass of the lower block is zero, then no matter the mass of the upper block, the string just dangles
below the block with no tension, so the tensionmust be proportional to the mass of the lower block but independent
of the mass of the upper one.
Let’s check the intuition by doing a full free-body analysis. In order to treat both cases at once, call the mass of the

top blockm1 and that of the bottom blockm2, as in Fig. 1.2. The forces on the two blocks are illustrated in Fig. 1.3. F
is the force applied by the experimenter. Notice how the string tension acts up on the bottom block but down on the
top block, and that the magnitude of T is the same for both blocks. For the purposes of the GRE, this is the definition
of a massless string: it carries the same tension at every point. Setting the acceleration ofm2 equal to zero, since it is
stationary, let’s solve for T: T −m2g = 0, so indeed, T = m2g, the weight of the bottom block, and our intuition is
correct. In this case it wasn’t even necessary to consider the forces on the top block, a convenient time-saver!
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EXAMPLE 1.1 (Cont.)

m1

m2

Figure 1.2 Two blocks suspended from one another by a massless string.

F T

Tm1g m2g

m1 m2

Figure 1.3 Free-body diagram for two blocks on a string.

1.1.3 Blocks in Contact

F
M

m
F

M
m

Figure 1.4 Typical setups for blocks moving together with friction.

There are two standard setups for these kinds of problems,
illustrated in Fig. 1.4. Both get at all the core concepts of force
balancing, Newton’s second and third laws, and friction. In
the second setup, you might be asked, given friction between
the two blocks, what the minimum force is such that the mass
m does not fall down due to gravity, or, if m is placed on the
surface as well, how the force of one block on another changes
depending on whether F is applied to M or m. As with the
falling and hanging blocks, the key is to remember that the
blocks are independent objects, so wemust consider the forces
on each independently. See Example 1.2.

1.1.4 Problems: Blocks

1. A block of mass 5 kg is positioned on an inclined plane at
angle 45◦. A force of 10 N is applied to the block, parallel to
the ground. If the coefficient of kinetic friction is 0.5, which
of the following is closest to the acceleration of the block?
Assume there is no static friction.

F

45°

(A)
√
2 m/s2 up the ramp

(B)
√
2 m/s2 down the ramp

(C) 5
√
2 m/s2 up the ramp

(D) 5
√
2 m/s2 down the ramp

(E) 25
√
2 m/s2 down the ramp

3m

2m

m

T2

T1

T3

2. Three blocks of masses m, 2m, and 3m are suspended
from the ceiling using ropes, as shown in the diagram.
Which of the following correctly describes the tension in
the three rope segments, labeled T1, T2, and T3?

(A) T1 < T2 < T3

(B) T1 < T2 = T3
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EXAMPLE 1.2

Here’s an example using the setup shown in Fig. 1.4 (left): A block of mass 2 kg sits on top a block of mass
5 kg, which is placed on a frictionless surface. A force of 10 N is applied horizontally to the 5 kg block. What
is the minimum coefficient of static friction between the two blocks such that they move together without
slipping?
We could do a full free-body diagram of all the forces in the problem, but simple physical reasoning provides

a useful shortcut. Note that, as long as the blocks don’t slip, the two blocks are really behaving as one object of
mass M + m, just like the falling blocks attached by a massless string in Section 1.1.2 above. Thus we expect the
final expression for μ to depend on the combination M + m, rather thanM or m individually, since μ determines
whether the two blocks stick together and act as a composite system.
To see this explicitly, let’s analyze the motion of the top block first. The forces on the top block are its weight

−mg, the normal force N1 provided by the bottom block, and the frictional force Ff = μN1. Since the top block is
not accelerating vertically, we must have N1 = mg and the net force forward is Ff = μmg. Now the top block will
begin to slip just as the force F1 on it is equal to the maximum force that friction can supply; in other words, the
slipping condition is F1 = Ff = μmg. But by definition we also know that F1 = ma, where a here is the acceleration
of the two-block system – since both blocks are stuck together, they experience the same acceleration. The mass of
the total system is M + m and the applied force is F, so F = (M + m)a. Substituting the values for a and F1 into
F1 = ma, we find

μmg = m
F

M +m
=⇒ μ = F

(M +m)g
,

which as expected depends onM+m. Notice that we didn’t ever have to do a free-body analysis of the second block
alone: instead, we applied Newton’s second law to the two-block system in the second step.
Of course, we can also do a free-body analysis for the block of mass M. We have the applied force F acting

forwards, but there is also a force acting backwards, from Newton’s third law: the bottom block is providing a
frictional force which pushes the top block forwards, so the bottom block feels an equal force backwards. The net
horizontal force is then F − μmg, where the second term is the magnitude of the friction force derived above. The
acceleration of the bottom block is a = 1

M (F − μmg), and we want the frictional force on the top block to provide
at least this acceleration, a = Ff /m, or the blocks will slip. Thus

1
M

(F − μmg) = μmg
m

=⇒ μ = F
(M +m)g

,

the same answer as before. Plugging in the numbers, we find μ ≈ 0.14.

(C) T1 = T2 = T3

(D) T1 = T2 > T3

(E) T1 > T2 > T3

F

M

m

3. Two blocks of masses M and m are oriented as shown
in the diagram. The block M moves on a surface with

coefficient of kinetic friction μ1, and the coefficient of
static friction between the two blocks is μ2. What is the
minimum force F which must be applied toM such thatm
remains stationary relative toM?

(A)
μ1

μ2
mg

(B)
μ1

μ2

Mm
M +m

g

(C) (μ1M + μ2m) g

(D)
(

μ1 + 1
μ2

)
(m+M)g

(E)
(

μ1M + m
μ2

)
g
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1.2 Kinematics

Kinematics is the first physics that almost everyone learns,
so it should be burned into the reader’s mind already. For
almost all problems it is sufficient to know the equations
of motion for a particle undergoing constant acceleration.
The primary types of problem worth reviewing are projectile
motion problems and problems involving reference frames.
To solve projectile motion in two dimensions, you only need
the equations of motion for the x- and y-coordinates of the
particle,1

x(t) = v0xt + x0, y(t) = −1
2
gt2 + v0yt + y0, (1.1)

where we define coordinates such that gravity acts in the
negative y-direction and g = 10 m/s2. Restricting to one
dimension, there is another useful formula relating the initial
and final velocities of an object, vi and vf , its acceleration a,
and the change in position between the initial and final states
�x, if the acceleration is constant:

v2f − v2i = 2a�x. (1.2)

A two-line derivation of this formula uses the work–energy
theorem, reviewed in Section 1.3.4.
For problems involving reference frames, just solve the

problem in one frame, and then transform to the frame that
the problem is asking about. For example, consider the situa-
tion in Fig. 1.5: a ball is thrown out of a car moving at constant
velocity. Ignoring air resistance, in the frame of the car, the
ball moves directly perpendicular to the road. In the frame of
an observer at rest, the car is moving forwards, so the motion

Figure 1.5 A ball thrown out of a moving car, in the frame of a
stationary bystander.
1 In this book, we use the convention of numbering only equations
describing general results worth memorizing for the exam. We therefore
numbered the kinematics formulas here, while we didn’t number the
equations in the previous section that applied to a specific problem
involving blocks. This should help you focus on remembering the
equations that actually matter for the exam. We have listed all numbered
equations in the equation index at the back of the book, along with page
numbers, for your convenience.

of the ball is the sum of the two velocities. In other words, the
ball moves diagonally, both forward and away from the road.
See Example 1.3.
From the point of view of solving problems, however, one

should avoid kinematics like the plague. It often results in hav-
ing to solve quadratic equations, and although this is simple in
principle, it is usually a huge waste of time. As a rule of thumb,
only resort to kinematics if you need to know the explicit time
dependence of a system. In nearly all other cases, the basic
energy considerations discussed in Section 1.3 will be faster
and computationally simpler.

1.2.1 Circular Motion

One kinematic situation that arises often on GRE questions is
circular motion. We will consider this in slightly more detail
in Section 1.6 when we discuss orbits. For now, consider a
particle moving on a circular path. Its acceleration vector can
always be decomposed into radial and tangential components.
If its tangential acceleration is zero, then its tangential velocity
is constant; it is moving in uniform circular motion about the
center of the circle. But its radial acceleration is nonzero, and
has value

a = v2

r
, (1.3)

where v is the speed of the particle and r is the radius of its
orbit. From this, we can immediately also infer that the force
needed to keep the particle in its orbit, the centripetal force, is

F = mv2

r
. (1.4)

Indeed, since the tangential acceleration is zero, it must expe-
rience some force, directed radially inwards, that keeps it
moving in a circular path at a constant speed. Remember
that this does not tell you what kind of force is acting on the
body. It just tells you that if you see a body moving uniformly
in a circle of radius r with constant speed v, then you can
determine what centripetal force must be acting on it.
While uniform circular motion is perhaps the most com-

mon example, it is certainly not the most general. There are
many cases of nonuniform circular motion: for example, a
roller-coaster going around a circular loop-the-loop, or a ver-
tical pendulum attached to a rigid rod with sufficient initial
speed to complete a full revolution. In these cases the angle
between the gravitational force vector and the velocity vec-
tor varies as the object goes around the circle, giving a varying
tangential acceleration in addition to the centripetal force, and
the above formulas do not apply throughout the whole orbit.
However, the uniform circular motion equations do apply
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EXAMPLE 1.3

Suppose an astronaut is on a rocket that is moving vertically at constant speed u. When the rocket is at a height h,
the astronaut throws a ball horizontally out of the rocket with velocity w, as shown in Fig. 1.6. What is the speed of
the ball when it hits the ground?

u

w

h

Figure 1.6 A ball is thrown horizontally at velocity w out of a rocket moving vertically upwards at constant velocity u.

In the frame of the rocket, the ball’s initial y-velocity is zero, but in the ground frame its initial velocity is u,
the relative velocity between the two reference frames. From our kinematic formula (1.2) above, we have for the
y-component of the velocity

vy =
√
u2 + 2gh.

The x-component of the velocity is always the same, vx = w, since no forces act in the x-direction, so we have a total
speed

v =
√
v2x + v2y =

√
u2 + w2 + 2gh.

at two very special places: the top and bottom of the circle,
where gravity acts purely vertically, and thus radially, such
that the object is instantaneously in uniform circular motion.
At all other points in the orbit, other methods (such as energy
conservation) must be used to find the velocity.
The centripetal force equation is not so interesting on its

own, so a very common class of problems involves combining
it with some other type of physics. A typical template might
look roughly like this: A particle is moving in a circle. Identify
the physics that is causing the centripetal force. Set the expres-
sion for this force equal to the centripetal force. Then solve for
whatever quantity is requested. See Example 1.4.

1.2.2 Problems: Kinematics

1. A cannonball is fired with a velocity v. At what angle from
the ground must the cannonball be fired in order for it to
hit an enemy that is at the same elevation, but a distance d
away?

(A) arcsin(v/gd)
(B) arcsin(gd/(2v))
(C) arcsin(2gd/v)
(D) (1/2) arcsin(gd/v2)
(E) arcsin(gd/v2)

2. A satellite (massm) is in geosynchronous orbit around the
Earth (mass ME), such that its orbit has the same period
as the Earth’s rotation. If the Earth has angular rotational
velocity ω, what is the radius of a geosynchronous orbit?

(A)
GME

ω2

(B)
Gm
ω2

(C)
(
GME

ω2

)1/3

(D)
√
GME

ω2

(E) There is no possible geosynchronous orbit.
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EXAMPLE 1.4

An electron (charge e) moves perpendicularly to a uniform magnetic field of magnitude B. If the kinetic energy of
the particle doubles, by howmuch must the magnetic field change for the particle’s trajectory to remain unchanged?
We know that the magnetic force on the electron is perpendicular to its motion (see Section 2.2.6 for a review), so

it is a centripetal force, and the electron moves in a circle. More specifically, the forces are constant, so the electron
executes uniform circular motion. Setting the magnetic and centripetal forces equal gives us

evB = mv2

r
.

Rearranging just a little, we can find the magnetic field

B = mv
er

.

If the kinetic energy of the particle doubles, its velocity increases by
√
2, so B must increase to

√
2B in order to

maintain the same radius. This template occurs very frequently. Though circular motion can involve many different
types of physics, identifying the centripetal force and setting it equal to mv2/r will give you an additional equation
to help solve the problem at hand.

1.3 Energy

Conservation of energy can be stated as follows:

If an object is acted on only by conservative forces, the
sum of its kinetic and potential energies is constant along
the object’s path.

Conservative forces are those for which the work done by
the force is independent of the path taken between the starting
and ending points, but the most useful definition (although
it seems tautological) is a force to which you can associate
a (time-independent) potential energy. The most common
examples are gravity, spring forces, and electric forces. The
most common example of a force that is not conservative,
and probably the only such example you’ll see on the GRE,
is friction: an object traveling from point A to B and back to
A will slow down due to friction the whole way through, even
though the starting point is the same as the ending point.
A standard subset of GRE classical mechanics problems are

most easily solved by straightforward application of conserva-
tion of energy. It’s important to recognize these problems so
you immediately jump to the fastest solution method, rather
than fish around for the right kinematics formulas, so we’ll
state a general principle:

If you want to know how fast or how far something goes,
use conservation of energy.

If you want to know how much time something takes, use
kinematics.

It’s baffling that this simple dichotomy isn’t introduced in
first-year physics courses. It’s based on the idea that total
energy is a combination of kinetic energies, which depend on
velocities, and potential energies, which depend on positions.
Setting Einitial = Efinal lets you solve for one in terms of the
other, but nowhere in the equation does time appear explic-
itly. On the other hand, kinematics gives you explicit formulas
for position and velocity as a function of time t (see equation
(1.1)). Of course, some problems will require a combination
of both methods, for example using conservation of energy
to solve for a velocity which you then plug into a kinematics
formula, but, as a very general rule, if time doesn’t appear in
the problem then you can leave kinematics out of the picture.
However, we’ll address a common exception to this rule at the
end of Section 1.3.2.

1.3.1 Types of Energy

To begin with, you should know the following formulas cold:

Translational kinetic energy:
1
2
mv2 (1.5)

Rotational kinetic energy:
1
2
Iω2 (1.6)

Gravitational potential energy on Earth: mgh (1.7)

Spring potential energy:
1
2
kx2 (1.8)

Hopefully the standard notation is familiar to you: v is
linear velocity, ω is angular velocity, m is mass, I is the
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moment of inertia, h and x are displacements, g is gravita-
tional acceleration at Earth’s surface (which should always
be approximated to 10 m/s2 on the GRE when numerical
computations are required), and k is the spring constant.
There are two important points to remember about potential
energy:

● It is only defined up to an additive constant: we are free to
choose the zero of potential energy wherever is most con-
venient, which is usually some physically relevant position
such as the bottom of a ramp or the uncompressed length
of a spring.

● It is measured from the center of mass of an extended object.
The usefulness of the center of mass concept (see Section
1.4.4) is that it allows us to treat extended objects like point
masses, with all their mass concentrated at the location of
the center of mass.

There are other types of potential energy, but all can be
summarized by a definition. For any conservative force F, the
change in potential energy �U between points a and b is

�U = −
∫ b

a
F · dl. (1.9)

The line integral looks scary but it really isn’t, since in all
cases of interest the integral will be along the direction of
the force vector. Probably the only time you might have to
use this formula is if you can’t remember the electrostatic or
gravitational potential right away, so we’ll do that example
here. The gravitational force between twomassesm1 andm2 is

Fgrav = Gm1m2

r2
r̂. (1.10)

You may have seen this equation in the form

Fgrav, 1 on 2 = −Gm1m2

r2
r̂,

stating that the force on mass m2 from m1 points along the
vector r̂ from m1 to m2, with the minus sign to indicate that
the force is attractive. As we’ll see, there are minus signs
everywhere, so even though it’s (deliberately) a bit ambigu-
ous, we find (1.10) a more useful mnemonic for the GRE
– just remember that gravity is attractive, and fill in the
signs depending on which force (1 on 2 or 2 on 1) you’re
computing. See Example 1.5.
Alternatively, if you’re given the potential, you can com-

pute the force by inverting equation (1.9):

F = −∇U. (1.11)

Again, watch the minus sign!

1.3.2 Kinetic/Potential Problems

The simplest energy problem involves a mass on a ramp of
some complicated shape, asking about its final velocity given
that it starts at a certain height, or what initial height it will
need to get over a loop-the-loop, or something like that.
Because gravity is a conservative force, the shape of the ramp
is irrelevant, as long as it’s frictionless. If there’s friction, then
the shape of the ramp does matter because the work done by
friction depends on the distance traveled – we’ll get to that in
a bit. First we’ll look at a standard example.

EXAMPLE 1.5

Let’s find the gravitational potential of a satellite of mass m in the gravitational field of the Earth, of mass M. The
most common choice is to set the zero of potential energy at r = ∞, so the potential of the satellite at a finite
distance r from the center of the Earth is

U(r) = −
∫ r

∞
−GmM

r′2
dr′ = − GmM

r′

∣∣∣∣
r

∞
= −GmM

r
.

Note the signs: the force on the satellite is directed towards the Earth, or in the −r̂ direction, but dl = +r̂ dr′, so
the dot product is negative. The final sign makes sense because gravitational potential decreases (that is, becomes
more negative) as the satellite gets closer to the Earth; in other words, it is attracted towards the Earth. Probably the
most confusing part of this whole business is the signs, which the GRE loves to exploit. Rather than worrying about
putting the signs in the right place throughout the whole problem, it may be best to just compute the unsigned
quantity, then fill in the sign at the end with physical reasoning.
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EXAMPLE 1.6

A block slides down a frictionless quarter-circle ramp of radius R, as shown in Fig. 1.7. How fast is it traveling when
it reaches the bottom?

R

Figure 1.7 Block sliding down a quarter-circle ramp.

The quarter-circle shape is irrelevant except for the fact that it gives us the initial height: the block starts at height
R above the bottom. At the top, the block is stationary, so its velocity is zero and there is no kinetic energy; all the
energy is potential. Here the obvious choice is to set the zero of gravitational potential energy at the bottom of the
ramp, so that the potential at the top is mgR. Wait a minute – the problem didn’t tell us the mass of the block! Let’s
call it m, and see if we can resolve the situation as we finish the problem. At the bottom of the ramp, all the energy
is kinetic, because we’ve defined the potential energy to be zero there. If the block’s speed at the bottom is v, then its
kinetic energy is 1

2mv2. We now apply conservation of energy:

0+mgR = 1
2
mv2 + 0

=⇒ v = √2gR.

Conveniently enough, the mass cancels out since both the kinetic and potential energies are directly proportional
tom.

There are a couple things to note about Example 1.6:

● This was the very simplest version of the problem. The
block could have had a nonzero speed at the top, in which
case it would have had nonzero kinetic energy there. So
don’t automatically assume that conservation of energy is
equivalent to “potential at top equals kinetic at bottom,”
which is not true in general!

● This problem can easily be extended to a kinematics prob-
lem by asking how far the block travels after it is launched
off the bottom of the ramp, assuming the ramp is some
height above the ground.2 The first step of this problem
would still be finding the initial velocity when it leaves the
ramp, exactly as we found above.

2 Note that this is an exception to our rule about distances being associated
with energy rather than kinematics: the block travels with constant
horizontal speed once it leaves the ramp, so the only thing dictating how
far it goes is the time it takes to fall vertically to the ground, which we
must get from kinematics. So this is an exception only because it’s actually
a two-dimensional problem.

● The fact that the mass cancels out is actually quite com-
mon in problems involving only a gravitational potential,
since both kinetic and potential energies are proportional
to m. So if the problem doesn’t give you a mass, don’t
panic! That’s actually a strong clue that the right approach
is conservation of energy.

1.3.3 Rolling Without Slipping

A common variant of the above problem is a round object
(sphere, cylinder, and so forth) rolling down a ramp. If the
object rolls without slipping, then its linear velocity v and
angular velocity ω are related by

v = Rω, (1.12)

where R is the radius. (Dimensional analysis dictates where
to put the R so that v comes out with the correct units.)
Then in addition to its kinetic energy, 1

2mv2, the object also
has rotational kinetic energy 1

2 Iω
2, where I is its moment

of inertia. The rolling-without-slipping condition (1.12) lets
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you substitute v for ω and express everything in terms of v,
after which you can solve for v exactly as above. Incidentally,
it’s friction that causes rolling without slipping, as friction is
responsible for resisting the motion of the point of contact
with the object so that it can instantaneously rotate around
this pivot. In this situation friction does no work, but instead
is responsible for diverting translational energy into rotational
energy. Without friction, all objects would simply slide, rather
than roll.

Rolling-without-slipping problems almost always boil
down to the kinds of cancellations shown in Example 1.7:
the kinetic energy is of the form αmv2, with α some num-
ber that accounts for the moment of inertia. Here, α was 3/4
for the cylinder and 7/10 for the sphere. Notice that the prob-
lem didn’t ask which object arrives first, only which object had
the greater velocity at the bottom: the former is a kinematics
question, which by our general principle can’t be answered by
conservation of energy alone.

EXAMPLE 1.7

A cylinder of mass m and radius r, and a sphere of mass M and radius R, both roll without slipping down an
inclined plane from the same initial height h, as shown in Fig. 1.8. The cylinder arrives at the bottom with greater
linear velocity than the sphere

(A) ifm > M
(B) if r > R
(C) if r > 4

5R
(D) never
(E) always

M, m
R, r

Figure 1.8 Ball or cylinder rolling down an inclined ramp.

You should immediately recognize that the mass is a red herring: since the moment of inertia is proportional to
the mass, the same arguments as in Section 1.3.2 go through, and the mass cancels out of the conservation of energy
equation for both objects. But let’s see how this works explicitly. The moments of inertia are 1

2mr2 for the cylinder
and 2

5MR2 for the sphere (neither of which you should memorize, since they’re among the few useful quantities
given in the table of information at the start of the test). The energy conservation equations read

mgh = 1
2
mv2cyl +

1
2

(
1
2
mr2
)

ω2
cyl (cylinder),

Mgh = 1
2
Mv2sph +

1
2

(
2
5
MR2

)
ω2
sph (sphere).

As promised, we can cancelm from both sides of the first equation, andM from both sides of the second, which lets
us equate the two right-hand sides. Now, substituting ωcyl = vcyl/r and ωsph = vsph/R, we have(

1
2
+ 1

4

)
v2cyl =

(
1
2
+ 1

5

)
v2sph.

The radii also cancel! So we can read off immediately that vcyl < vsph, and the cylinder always arrives slower,
choice D.
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1.3.4 Work–Energy Theorem

Since energy is conserved only if the forces acting in the prob-
lem are conservative, you might well ask how we can quantify
the effects of nonconservative forces such as friction. The
answer is simple: we just add a work term to one side of the
energy balance equation:

Einitial +Wother = Efinal, (1.13)

where Wother is the work due to nonconservative forces.
Because work is a signed quantity, the signs can get a little
tricky, but you can usually figure them out just by reason-
ing logically. For example, friction always acts to oppose an
object’s motion, so the work done by friction is always nega-
tive, and this means that Efinal < Einitial: the object is losing
energy due to friction, as it should. You may also be used to
seeing this equation in the form

W = �KE. (1.14)

Here, the right-hand side is the change in kinetic energy, while
the left-hand side is the work done by all forces, including the
conservative ones. The alternate form (1.13) simply absorbs
the effect of conservative forces into the definition of the total
energy by rewriting the work as a potential energy. Indeed,
recall the general definition of work,

W =
∫

F · dl, (1.15)

which is of the same form as (1.9) up to a minus sign.

Example 1.8 works through a standard example, which can
be tweaked in several ways to make it less straightforward:

● The quarter-circle ramp could have had a coefficient of fric-
tion as well. In that case, the frictional force would have
varied at different points on the ramp. Note that we could
not simply apply the formulas for uniform circular motion
to determine the normal force, because the block is not
moving with constant velocity (see the discussion in Sec-
tion 1.2.1). This is actually a pretty interesting problem, but
it requires solving an ugly differential equation for v, which
is far beyond anything you’ll see on the GRE.

● Similarly, the frictional surface might not have been flat, in
which case the normal force at different points would also
have changed.

But the problem we’ve solved is entirely typical of GRE prob-
lems, and illustrates possible shortcuts you should be on
the lookout for. Never solve more of a problem than you
absolutely must!

1.3.5 Problems: Energy

30°

L

The following three questions refer to the diagram: a pinball
machine launch ramp consisting of a spring of force constant
k and a 30◦ ramp of length L.

EXAMPLE 1.8

Let’s revisit the quarter-circle ramp problem (Example 1.6), but this time suppose that, after exiting the ramp, the
block slides along a flat surface with coefficient of friction μ. How far down this surface does the block travel before
it stops? Now, we could start where we left off, by using the speed v = √2gR at the bottom of the ramp, then com-
puting the kinetic energy, and continuing from there. But that would actually be toomuch work (no pun intended!).
Instead, let’s just apply the work–energy theorem directly. The block’s initial energy is mgR. The frictional force is
μmg along the flat surface (recall that μ is the proportionality constant between the normal force and the frictional
force), and so after traveling a distance x, friction does work μmgx. When the block has stopped, its energy is zero.
Applying the work–energy theorem, we have

mgR− μmgx = 0 =⇒ x = R
μ
.

That’s it! We never even had to solve for the velocity at the bottom of the ramp. As a sanity check, we can examine
the limiting cases μ → 0 and μ → ∞: as μ → 0, there is no friction, so the block never stops, and as μ → ∞,
infinite friction means that the block stops right away. You can do a similar analysis for R→ 0,∞.

 



12 Classical Mechanics

1. You want to launch the pinball (a sphere of mass m and
radius r) so that it just barely reaches the top of the ramp
without rolling back. What distance should the spring be
compressed? You may assume friction is sufficient that
the ball begins rolling without slipping immediately after
launch.

(A)

√
2mgL2

5kr

(B)
√
mgL
k

(C)
√
2mgL
k

(D)
√
mgr
k

(E)
√
2mgr
k

2. What is the ball’s speed immediately after being launched?

(A)
√
gL

(B)
√
2
5
gL

(C)
√
5
7
gL

(D)
√

7
10

gL

(E)
√
10
7
gL

3. Now suppose the ramp is waxed, so there is no friction.
What is the distance the spring should be compressed this
time?

(A)

√
2mgL2

5kr

(B)
√
mgL
k

(C)
√
2mgL
k

(D)
√
mgr
k

(E)
√
2mgr
k

1.4 Momentum

If you have gotten this far in physics, then you don’t need a
refresher on the physics of conservation of momentum. Some

of the problems, however, take a bit of practice to learn to
solve quickly. In general, you just need to remember that

Momentum is always conserved in a system in the absence
of external forces.

This caveat about external forces is sometimes important: for
example, if two balls collide in mid-air, the total horizontal
momentum is conserved, but not the total vertical momen-
tum because gravity is acting in that direction. In fact, the
vertical momentum will continually increase in the down-
ward direction according to Newton’s second law F = ṗ. The
trick with momentum problems is just to be sure that you
are counting all types of momenta – linear and angular – and
writing down the correct conservation equations.

1.4.1 Linear Collisions

This class of problem involves point particles that undergo
collisions or explosions: for the purposes of the GRE,

If things are colliding, try conservation of momentum first.

Collisional forces can be arbitrarily complicated, but because
they are all internal among the colliding particles, the total
momentum is conserved as long as there are no additional
external forces such as gravity. You just need to set the initial
momentum equal to the final momentum and solve for the
necessary variables. A special case is when the initial and final
energies of the system are the same – this is known as an elastic
collision, and imposing conservation of energy can give you
an additional equation to solve (to find outgoing velocities,
for example). Don’t assume a collision is elastic unless you are
explicitly told so, as this can lead to many trap answers. See
Example 1.9.
Solving momentum conservation problems like this one

invariably reduces to solving systems of linear equations. This
often gets complicated, and if you’re like most people, it is
easy to make algebraic errors. Don’t do it! Exhaust all lim-
iting cases and dimensional analysis arguments before doing
algebra. After this, if you think the algebra is easy, then do it.
If you think it will be messy, just skip it and come back later.
Since you may not even have time to finish the exam, triage is
essential.

1.4.2 Rotational Motion and Angular
Momentum

Like linear momentum problems, the game here is always to
write the angular momentum in the initial state and in the
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EXAMPLE 1.9

A ball of massM strikes another ball of mass m initially at rest. The ball of massM scatters at an angle θ relative to
its initial direction. Suppose the ball of massM initially has speed V , and both balls have a final speed v. What is the
scattering angle φ of the ball of massm, as defined in Fig. 1.9?

M m

M

m

V

v

v

θ

φ

Figure 1.9 Collision of two balls in two dimensions.

Applying conservation of momentum in two dimensions, we get the two equations

MV = Mv cos θ +mv cosφ (parallel to initial direction),

0 = Mv sin θ +mv sinφ (perpendicular to initial direction).

We know M, m, V , v, and θ here and we are solving for φ. Thus all we actually need is the second of the two
equations, which gives us the result that

φ = arcsin
(
−M
m

sin θ

)
.

The minus sign makes good physical sense: if θ is positive, the mass-M ball goes up, giving a negative φ. The ball
of massm goes down, conserving momentum perpendicular to the initial direction. For practice, do a limiting-case
analysis for theM andm dependence as well.

final state, then set the two equal. The angular momentum of
a point particle of linear momentum p is defined by

L = r× p, (1.16)

where r is the vector from a chosen reference point to the par-
ticle. Remember that rotational motion is always defined with
respect to a reference point or axis. For an extended body we
also have

L = Iω, (1.17)

where I is the moment of inertia and ω is the angular veloc-
ity vector. Conceptually, I plays the same role as the mass
m in the definition of linear angular momentum p = mv.
Extending themetaphor, the analogue of force F for rotational
motion is the torque

τ = r× F. (1.18)

Classic problems include merry-go-rounds and spinning
disks. For instance, if a person jumps onto a spinning disk
with a known moment of inertia, how does the rotational
velocity change? Just equate L = Iω in the initial and final
states.
We wrote angular momentum and torque in their vector

form for completeness above. Note, however, that the vector
form is only really needed for the definitions of L and τ . The
analogues of the equations p = mv and F = dp/dt are only
used on the GRE in their scalar forms:

L = Iω, (1.19)

τ = dL
dt

. (1.20)

Problems involving angular momentum can also be con-
ceptual, asking for the configuration of momentum, velocity,
and acceleration vectors for a system involving rotational
motion. The key point to remember is that the angular
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momentum vector L is generally parallel3 to the angular
velocity vector ω, which points along the axis of rotation, just
like an object’s linear momentum is parallel to its velocity. The
direction of L is determined by the right-hand rule: curl the
fingers of your right hand in the direction of rotation, and
your thumb gives the direction of L.
More advanced classical mechanics texts will discuss rotat-

ing reference frames, which are mostly beyond the scope of
the GRE. All you need to know is that a reference frame
rotating at constant angular velocity � is not inertial, but,
nonetheless, one can write a formula resembling Newton’s
second law F = ma at the price of introducing “fictitious”
forces, which only appear because of the noninertial choice of
coordinates:

Fcentrifugal = −m	2r, (1.21)

FCoriolis = −2m�× v. (1.22)

The centrifugal force (which we emphasize once again is not
a real force!) is the apparent force on an object in a uni-
formly rotating frame that pushes it away from the axis of
rotation. The Coriolis force vanishes if the object is station-
ary in the rotating frame, but often appears in the context of
the Earth’s rotation, which defines a rotating frame. Unless
the motion of the object is defined with respect to a rotat-
ing frame, in which case you typically need to use the Coriolis
force, we recommend sticking with inertial frames to avoid
confusion.

1.4.3 Moment of Inertia

As we’ve seen, an object’s moment of inertia is analogous to its
mass in the context of rotation, but, unlike mass, it depends
on the distance from the center of rotation. Let’s start with a
point particle of massm: the moment of inertia scales with the
radius as

I = mr2, (1.23)

which accounts for the fact that, at fixed rotational frequency,
the particle will have a higher linear velocity at higher radii.
Thankfully, the moment of inertia of a system of many par-
ticles is just the sum of the individual moments of inertia,

3 Strictly speaking, this is only true if the system is rotating about one of its
principal axes. But these correspond to various axes of symmetry, and
practically all the rotating objects you’ll see on the GRE are symmetric to
some extent and rotating about their axes of symmetry, so to the best of
our knowledge you can ignore this subtlety for GRE purposes. The
exception is in problems involving precession, which we haven’t yet seen
appear on the GRE.

X1 X2

Figure 1.10 A penny is rotated about two axes X1 and X2. The
moments of inertia for rotation about each axis are related by the
parallel axis theorem.

so we can generalize to extended objects with arbitrary mass
distributions by integrating:

I =
∫

r2 dm, (1.24)

where dm is an infinitesimal mass element (which can depend
on position) and the integration is taken over the entire
system. Conceptually, objects with more mass further from
the axis of rotation are “harder” to rotate and have a larger
moment of inertia.
Typically, the integral for moment of inertia is solved by

changing integration variables to spatial variables, using the
density dm = ρdV . Note that, if you’re given the density, for
example ρ = Ar3 for a sphere, you actually have to do two
integrals: one to set the total massm equal to

∫
ρdV to elimi-

nate the constant A, and the other to compute the moment of
inertia. The GRE does provide the formulas for the moments
of inertia for rods, disks, and spheres on the equations page at
the beginning of the test. Typically this is sufficient, though it
is useful practice to compute these formulas.
The parallel axis theorem is a fast and frequently invaluable

tool for computing the moment of inertia of systems built out
of smaller pieces whose moments of inertia are known. If we
know the moment of inertia I of a system of mass M rotat-
ing about an axis through its center of mass (CM), then its
moment of inertia about any axis parallel to the CM axis is
given by

I = ICM +Mr2, (1.25)

where r is the distance between the CM axis and the parallel
axis. For instance, the moment of inertia of a penny rotating
about an axis perpendicular to the center of one of its faces
is given on the GRE formula page as I = (1/2)MR2. The
moment of inertia of the penny when rotating about an axis
that passes through the edge of the penny (see Fig. 1.10) would
just be I = (1/2)MR2 +MR2 = (3/2)MR2.
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EXAMPLE 1.10

Consider a rod of massM and length L whose density varies quadratically, ρ(x) = Ax2, where A is a constant and x
is the distance from the left end of the rod, as shown in Fig. 1.11. What is the position of the center of mass of the
rod?

x = 0 x = L

Figure 1.11 A rod of length L with a position-dependent density ρ(x).

The total mass is

M =
∫ L

0
ρ(x) dx = 1

3
AL3,

so A = 3M/L3. The center of mass is then

xCM = 1
M

∫ L

0
xρ(x) dx = 1

M
3M
L3

∫ L

0
x3 dx = 3

L3

(
1
4
L4
)
= 3

4
L,

to the right of the center of the rod, which makes sense because the density increases from left to right.

1.4.4 Center of Mass

For reference, the center of mass of an extended object of mass
M can be calculated similarly to the moment of inertia using

rCM =
∫
r dm
M

. (1.26)

Instead of weighting the mass by the square of the distance
from the axis of rotation, the center of mass weights the
mass by the displacement from the origin. In principle, equa-
tion (1.26) is actually three integrals, one for each coordinate.
The corresponding formula for a system of point masses just
replaces the integral by a sum

rCM =
∑

i rimi

M
. (1.27)

In particular, for a single mass m at position r, the center of
mass is just r, as it should be. See Example 1.10.

1.4.5 Problems: Momentum

1. What is the moment of inertia, about an axis through its
center, of a sphere of radius R, massM, and density varying
with radius as ρ(r) = Ar?

(A) 4
3MR6

(B) 4
9MR2

(C) 2
5MR2

(D) 2π
3 MR2

(E) 4π
5 MR2

2. A block explodes into three pieces of equal mass. Piece A
has speed v after the explosion, and pieces B and C have
speed 2v. What is the angle between the directions of piece
A and piece B?

(A) π

(B) π − arccos(1/2)

(C) π − arccos(1/3)

(D) π − arccos(1/4)

(E) 0

3. A disk of mass M and radius R rotates at angular velocity
ω0. Another disk of mass M and radius r is dropped on
top of the rotating disk such that their centers coincide.
Both disks now spin at a new angular velocity ω. What
is ω?

(A) r2ω0/(R2 + r2)

(B) R2ω0/(R2 + r2)

(C) (R2 + r2)ω0/r2

(D) (R2 + r2)ω0/R2

(E) ω0
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R

4. A small puck of massM is attached to a massless string that
drops through a hole in a platform, as shown in the dia-
gram above. The puck rotates at radius R when the tension
in the string is T. The string is pulled downwards until the
radius of rotation is r < R. What is the change in energy
of the puck when the radius is decreased? You may assume
the puck is a point mass.

(A) (1/2)TR(R2/r2 − 1)
(B) (1/2)TR(r2/R2 − 1)
(C) (1/2)Tr(R2/r2 − 1)
(D) (1/2)Tr(r2/R2 − 1)
(E) 0

1.5 Lagrangians and Hamiltonians

As you probably know, Lagrangian andHamiltonianmechan-
ics provide an elegant way of rewriting the results of classical
mechanics, which are most useful for formal results and for
dealing with systems with strange constraints, such as a par-
ticle confined to the surface of a sphere. Lagrangians and
Hamiltonians are fascinating in their own right, and the basis
for much of quantum mechanics and quantum field the-
ory, but, as we’ll emphasize throughout this book, almost
none of this is relevant for the GRE. Instead, Lagrangian and
Hamiltonian questions fall into just two categories:

● Write down the Lagrangian or Hamiltonian function.
● Write down the Lagrangian or Hamiltonian equations of
motion.

Of course, there are sub-topics within each of these, most
importantly conceptual questions dealing with conserved
quantities, but these two topics cover all the important bases.
Note in particular that you don’t have to solve the equations
of motion.While Lagrangians and Hamiltonians make it easy
to write down the equations, they’re typically horrible coupled
differential equations with no easy solutions. This is sort of the
idea of this formulation of mechanics: the actual coordinates
of the particle as a function of time aren’t so important, but
instead one is concerned with properties of the motion (such
as energy, momentum, and time dependence) which are easy
to see in this framework.

Warning: what follows will be a drastically simplified ver-
sion of Lagrangian and Hamiltonian mechanics. We are
leaving out many subtleties and special cases, which are cov-
ered in standard treatments, but are not important for the
GRE.

1.5.1 Lagrangians

The Lagrangian L of a system is a scalar function described by
this absurdly simple formula:

L(q, q̇, t) = T − U. (1.28)

Here T is the total kinetic energy of the system, U is the
potential energy, and q is the collection of all the coordi-
nates describing the degrees of freedom of the system. Note
the minus sign! The Lagrangian is not the total energy of
the system. Note also that the Lagrangian is not only a func-
tion of the coordinates q, but also of the velocities q̇. It is
a peculiarity of the Lagrangian formalism that the coordi-
nates and their time derivatives are considered as independent
variables.
Let’s discuss the coordinates in more detail, since that’s

where almost all of the difficulty of Lagrangians comes in. The
power of Lagrangian mechanics lies in being able to choose
coordinates to describe only the directions in which the sys-
tem is allowed to move. For example, consider a particle of
massm attached to the end of amassless rod of length �, which
is free to rotate in a plane about a pivot (Fig. 1.12). The par-
ticle is not allowed to take on any old Cartesian coordinates
(x, y), but is forced to move on a circle of radius �. So the most
convenient (read “correct”) coordinate to use is the angular
coordinate θ . But what is the kinetic energy in terms of θ?
Here is where things get tricky. We’ll now give a recipe for
computing the correct expression for T for any question you’ll
see on the GRE:

● Write down expressions for the Cartesian coordinates in
terms of your chosen coordinates q.

● Differentiate the Cartesian coordinates (x, y, z) with respect
to time to get (ẋ, ẏ, ż), paying careful attention to the chain
rule.

● Form the expression for the Cartesian kinetic energy, T =
1
2m(ẋ2 + ẏ2 + ż2) for a point particle or T = 1

2 Iω
2 for an

extended object, as appropriate. For the latter, you’ll need
to express ω in terms of the velocities q̇, but this is typically
easy because you will have chosen coordinates such that q̇
is ω.
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EXAMPLE 1.11

Applying the Lagrangian recipe to Fig. 1.12, we first define our coordinates carefully: choose the origin of Cartesian
coordinates (x, y) to be the pivot, so that θ = 0 corresponds to the rod hanging straight down, with the mass at
(0,−�). We have

x = � sin θ ,

y = −� cos θ ,

and taking time derivatives, we get

ẋ = � cos θ θ̇ ,

ẏ = � sin θ θ̇ .

Notice how the chain rule gets applied to θ . Finally, we form the kinetic energy:

T = 1
2
m
(
ẋ2 + ẏ2

) = 1
2
m(�2 cos2 θ θ̇2 + �2 sin2 θ θ̇2) = 1

2
m�2θ̇2.

Not surprisingly, we reproduce exactly the expression for the rotational kinetic energy of a point mass, 12 Iω
2.

m

Pivot

Figure 1.12 A massm on the end of a rigid rod of length l that rotates about a pivot.

Example 1.11 is probably a simpler example than you’ll
see on the real exam, so you might have been able to write
down the answer right away, but we can’t emphasize strongly
enough the importance of following this recipe. For example,
if the pivot was sliding with velocity v, the total kinetic energy
would not simply be the sum of the rotational and transla-
tional kinetic energies, but would contain an additional cross
term m�v cos θ θ̇ . You’ll see examples of this in our practice
tests and in those released by ETS.

1.5.2 Euler–Lagrange Equations

The Lagrangian is a useful quantity because one can derive
the equations of motion directly from it. Unlike in New-
tonian mechanics, where the equations of motion are the
vector differential equations F = ma, in Lagrangian mechan-
ics the equations of motion are scalar equations derived
from the scalar quantity L. These equations are known as

the Lagrangian equations of motion, or more commonly, the
Euler–Lagrange equations,

d
dt

∂L
∂ q̇

= ∂L
∂q

, (1.29)

one equation for each coordinate q.
There are several important things to note about the Euler–

Lagrange equations. The first is that signs are very easy to mix
up, so be careful! A good way to check is to make sure that
these equations reduce to F = ma for a particle moving in one
dimension x in a potentialU(x). In that case, the Lagrangian is

L = 1
2
mẋ2 − U(x),

and we have
∂L
∂ ẋ

= mẋ,
∂L
∂x

= −U ′(x),

which gives

mẍ = −U ′(x) = F,
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as expected. (Of course, you still have to remember that
F = −∇U with the correct sign, but you should know
that already!) The second thing to note is that d/dt is a
total time derivative, not a partial derivative, which is why it
gives ẍ when applied to ẋ. There are extra terms where the
kinetic term happens to have an explicit time dependence –
it’s unlikely you’ll run across something like this on the GRE,
but it’s good to be careful in any case.
Writing down the correct Lagrangian is typically the hard-

est part of the problem. Once you have the Lagrangian, the
equations of motion are easy, provided you’re careful about
taking derivatives. Speaking of derivatives, we already know
from classical mechanics that quantities whose time deriva-
tives are zero are important – these are conserved quantities.
Looking at (1.29), we see that if the right-hand side ∂L/∂q is
zero, the quantity ∂L/∂ q̇ is conserved! Whether or not this
quantity is conserved, it is so important it is given its own
name:

pi ≡ ∂L
∂ q̇

: momentum conjugate to q. (1.30)

This name arises because the conjugate momentum is usually
some kind of momentum (linear or angular), but not always.
To reiterate,

Iff the Lagrangian is independent of a coordinate q, the
corresponding conjugate momentum ∂L/∂ q̇ is conserved.

(Here, “iff” means “if and only if,” a shorthand reminder that
the converse of the statement is true as well.) In this case, the
coordinate q is called cyclic. Questions about conserved quan-
tities in Lagrangian mechanics are very common on the GRE,
so we’ve included several representative problems at the end
of this section.

1.5.3 Hamiltonians and Hamilton’s Equations of
Motion

There is an alternative formulation of Lagrangian mechanics,
calledHamiltonianmechanics, which on the surface is nothing
more than a change of variables. As the name implies, the for-
malism depends on a quantity called theHamiltonian, derived
from the Lagrangian as follows:

H(p, q) =
∑
i

piq̇i − L. (1.31)

Here, i runs over all the coordinates qi, and pi is the momen-
tum conjugate to qi, as defined above in equation (1.30). Note
that this relation can be inverted, to give q̇i as a function of pi
and qi. To construct H, we solve for q̇i in this way and plug
back into both terms on the right-hand side of (1.31), so that

the final result is a function of the momenta pi rather than the
velocities q̇i.
OK, that was the textbook definition. On the GRE, if you’re

only asked for the Hamiltonian, you’d prefer not to take the
time to first find the Lagrangian, solve for all the momenta,
and only then construct H. With two slight restrictions, there
is a much simpler definition:

H = T + U (if U does not depend explicitly on velocities or

time). (1.32)

So for all potentials U that only depend on coordinates, the
Hamiltonian is the total energy, albeit expressed in terms of
the funny position and momentum variables. For a simple
example, let’s consider the particle moving in one dimension
again. As we derived above, px = ∂L/∂ ẋ = mẋ, so

ẋ = px
m
.

Assuming the potential is time independent, we have

H = T + U = 1
2
m
(px
m

)2 + U(x) = p2x
2m

+ U(x),

an expression we will meet again in quantum mechanics. The
tricky part about this formalism is once again the kinetic term,
which usually takes the form of a momentum squared over
twice a mass. In the case of angular coordinates, we usually
see a moment of inertia in the denominator: you can work out
for yourself that the Hamiltonian for a free particle moving in
two dimensions in polar coordinates is

H = p2r
2m

+ p2θ
2mr2

,

with the promised moment of inertia mr2 showing up in the
denominator of the angular momentum term. But for com-
plicated examples, you should still go through the first couple
of steps of the Lagrangian construction, carefully identifying
the kinetic terms. As long as the potential is velocity and time
independent, as is true for all ordinary potentials, there is
no need to construct the rest of the Lagrangian in order to
calculate the momenta.
As with the Lagrangian, the Hamiltonian is a single scalar

function encoding the equations of motion. But this time,
we get a system of coupled first-order differential equations,
as opposed to the second-order Euler–Lagrange equations.
These are Hamilton’s equations:

ṗ = −∂H
∂q

, q̇ = ∂H
∂p

. (1.33)

Again, the signs are tricky, but again, the same simple example
of a particle in a one-dimensional potential will fix them for
you. The first equation reduces in that case to
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ṗx = −U ′(x),

once again reproducing Newton’s second law because px is
precisely the linear momentum of the particle.
Finally, one can derive conservation laws from Hamil-

ton’s equations as well. Looking at the first equation, the
momentum p is constant if ∂H/∂q = 0. So we have the result:

Iff the Hamiltonian is independent of a coordinate q, the
corresponding conjugate momentum p is conserved.

Incidentally, this tells you that if the Lagrangian is inde-
pendent of q, so is the Hamiltonian, since the conjugate
momentum is conserved in both cases.

1.5.4 Problems: Lagrangians and Hamiltonians

m
φ

θ

l

The following four questions all refer to a mass m suspended
from a rigid massless rod of length l, but free to rotate oth-
erwise (a spherical pendulum). One can take generalized
coordinates θ and φ as shown in the figure.

1. Which of the following is a possible Lagrangian for the
system?

(A) 1
2ml2

(
φ̇2 + θ̇2

)−mgl cos θ

(B) 1
2ml2

(
φ̇2 + sin2 φθ̇2

)+mgl cos θ

(C) 1
2ml2

(
θ̇2 + sin2 θφ̇2)−mgl sin θ

(D) 1
2ml2

(
θ̇2 + sin2 θφ̇2)+mgl cos θ

(E) 1
2ml2

(
θ̇2 + sin2 θφ̇2)−mgl cos θ

2. Which of the following is a conserved quantity for the
system?

(A) ml2φ̇
(B) ml2 sin2 θφ̇

(C) ml2θ̇
(D) mgl cos θ
(E) mgl sin θ

3. Which of the following is a possible Hamiltonian for the
system?

(A)
p2θ
2ml2

+ p2φ
2ml2 sin2 θ

−mgl cos θ

(B)
p2θ
2ml2

+ p2φ
2ml2

−mgl cos θ

(C)
p2θ
2m

+ p2φ
2ml2

−mgl cos θ

(D)
p2θ

2m sinφ2l2
+ p2φ

2ml2 sin2 θ
−mgl cos θ

(E)
p2θ
2ml2

+ p2φ
2ml2 sin2 θ

4. Suppose the pendulum is confined to the plane φ = 0.
What is the Euler–Lagrange equation for θ?

(A) θ̇ = g
l
sin θ

(B) θ̈ = −g
l
θ

(C) θ̈ = −g
l
sin θ

(D) θ̈ = gl sin θ

(E) θ̈ = −gl cos θ

1.6 Orbits

The two fundamental forces of classical mechanics, gravity
and electromagnetism, are remarkably similar: they both have
1/r2 force laws, but, perhaps more importantly, they are cen-
tral forces, meaning that the force vector points along the
line between the two interacting bodies. Without exception,
these are the forces that appeared on recent GREs in the
context of orbit problems, so we will confine our discussion
of orbits to one where all forces are central and spherically
symmetric. This means that the force can be derived from
a potential function U(r), which only depends on the radial
distance between the two bodies; this is known as a central
potential.
While one can discuss orbits quite straightforwardly using

only the language of forces and Newtonian dynamics, our
discussion will simplify immensely if we throw in a bit of
Lagrangian mechanics. As a result, we strongly urge you to
study Section 1.5 on Lagrangians and Hamiltonians care-
fully before reading this section: the material presented there
should be more than sufficient to understand our treatment
here.

1.6.1 Effective Potential

The fact that our potential has the form U(r) immediately
gives us conservation laws which we can put right to use. First,
let’s write down the Lagrangian for a particle of mass mmov-
ing in the potential U: after writing x, y, and z in spherical
coordinates, we find

L = 1
2
mṙ2 + 1

2
mr2θ̇2 + 1

2
mr2 sin2 θφ̇2 − U(r).
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(The polar angle θ shows up in the kinetic energy roughly
for the same reason that it shows up in the spherical volume
element r2 sin θ .) Reverting to Newtonian reasoning for a bit,
conservation of angular momentum implies the conservation
of a whole vector L (whose magnitude is l), and the fact that
the direction of this vector is constant means that the particle
is confined to a plane. By spherical symmetry, we can choose
this plane to be at θ = π/2; the second term (involving θ̇)
vanishes since θ is constant, and sin(π/2) = 1means the third
term simplifies as well. We are left with the restricted form:

L = 1
2
mṙ2 + 1

2
mr2φ̇2 − U(r), (1.34)

which we will use from now on. Now, since U(r) is indepen-
dent of the azimuthal angle φ, so is the Lagrangian, and that
gives us conservation of the conjugatemomentum to φ, which
we identify as the ordinary angular momentum l:

l = mr2φ̇. (1.35)

The radial behavior of the orbit is of course described by the
Euler–Lagrange equation for the radial coordinate:

d
dt

(mṙ) = mrφ̇2 − U ′(r).

Substituting for φ̇ in terms of l using (1.35), we get

mr̈ = l2

mr3
− U ′(r).

First of all, we have reduced a complex system of partial dif-
ferential equations in three dimensions to a single ordinary
differential equation, which wemay have some hope of under-
standing. And secondly, this looks suspiciously like Newton’s
second law of motion. We can improve the resemblance by
“factoring” the derivative on the right-hand side to find

mr̈ = − d
dr

(
l2

2mr2
+ U

)
.

This is now in exactly the same form as Newton’s second
law, except that the “potential” now has an additional term
depending on l. We call the expression in parentheses the
effective potential:

V(r) = l2

2mr2
+ U(r). (1.36)

Now we can draw potential energy graphs just as we would
with an ordinary one-dimensional problem, remembering in
the back of our minds that we’re really dealing with an entire
orbit, which also has some angular dependence. The effective
potential formalism is most useful for dealing with shapes of

orbits, r(φ), rather than time dependences, r(t) and φ(t). Hap-
pily, the GRE only cares about orbit shapes, with one simple
exception which we’ll discuss when we come to Kepler’s laws.
We should briefly mention a subtlety of the most common

application of this formalism, namely two bodies orbiting
each other under the influence of gravity. In that case, the
bodies orbit about their mutual center of mass, but instead
of dealing with two separate orbits, one can perform a coordi-
nate transformation to describe the relative motion. In doing
so, the massm gets replaced by the reduced mass,

μ = m1m2

m1 +m2
. (1.37)

This is a great one to remember by dimensional analysis and
limiting cases. The numerator has to contain the product in
order for the whole thing to have dimensions of mass, and
in the limit that m2 → ∞, we have μ ≈ m1, correspond-
ing to a center of mass that is very near the heavy body, m2,
which barely moves at all. So in a two-body problem, replace
all instances of m by μ (that is, in both the kinetic energy and
the effective potential), and you’re good to go. The most com-
mon situation is the limit m2 � m1 just noted, so μ ≈ m1 is
usually a good approximation – but not always!

1.6.2 Classification of Orbits

Let’s exploit conservation laws in order to learn something
about possible orbits of objects in a central force. Now that
we have defined the effective potential, we can define the total
energy of the orbit:

E = T + V = 1
2
mṙ2 + l2

2mr2
+ U(r), (1.38)

which is conserved if U(r) is time independent. The most
interesting part of this formula is the l-dependent term in the
effective potential, whose 1/r2 dependence acts as a “centrifu-
gal barrier,” which imposes an infinite energy cost to get to
r = 0 if the body has a nonzero angular momentum. To learn
more, let’s consider a sample shape for V(r), as shown in Fig.
1.13, under the assumptions that U(r) → 0 as r → ∞ and
that the centrifugal term dominates as r → 0 (meaning that
U(r) must have a smaller power of r in the denominator than
1/r2, as is the case for gravity, where U(r) ∼ 1/r).

Three representative orbit energies are marked, E1, E2, and
E3. An orbit with energy E1 > 0 is unbound: the body comes
in from infinity, “strikes” the centrifugal barrier, and “reflects”
back out to infinity. An orbit with energy E2 is bound, and
has two “turning points,” with a minimum distance r1 and a
maximum distance r2; the body is always stuck between them.
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E

V(r)

E1
r1 r2

E2

E3

r

Figure 1.13 Effective potential with some representative orbit
energies.

That is not to say that the orbit must be periodic: all it means is
that, for a general potential, the body’s orbit shape is enclosed
within a ring-shaped region bounded by the circles of radii r1
and r2. The orbit E3 is a special case, where we sit exactly at the
minimum of the effective potential: then, there is not enough
energy to change the value of r, so the minimum of V(r) cor-
responds to circular orbits. To find the radius of these orbits,
just solve V ′(r) = 0 for r. You should also check for stabil-
ity by ensuring that V ′′(r) > 0, otherwise we’d be sitting at an
unstablemaximum. Similarly, for more general orbit energies,
we can read off the distance of closest approach by solving
E = V(r) for r.
We can be much more specific about orbit shapes in the

case U(r) = k/r, as would be the case for a gravitational
potential. Without getting into the details of the derivation,
the results are

● E > 0: hyperbolic orbit
● E = 0: parabolic orbit
● E < 0: elliptical orbit

As in the more general discussion, since U(r) falls off at large
r, E < 0 corresponds to bound orbits, and for a 1/r potential
these happen to take an elliptical shape. For E = Vmin, we
have the special case of a circular orbit, which has the lowest
possible energy.

1.6.3 Kepler’s “Laws”

Yes, those scare quotes are there for a reason – Kepler’s three
“laws” are not really laws at all, in the sense of Newton’s laws,
which are always true (in the context of classical mechanics).
Rather, they’re three completely logically independent rules of
thumb: one of them is almost trivial and totally general, and
two of them are far too specific and only approximately true!
In any case, here they are, in the traditional order:

I. Planets move in elliptical orbits with one focus at the Sun.
II. Planetary orbits sweep out equal areas in equal times.

III. If T is the period of a planetary orbit, and a is the semi-
major axis of the orbit, then T = ka3/2, with k the same
constant for all planets.

Let’s start with the first law. The first part is trivial: planets have
bound orbits by definition, and, as we’ve seen above, a gravi-
tationally bound orbit is either elliptical or circular, where a
circular orbit can be considered a limiting case of an elliptical
orbit where the two foci coincide. The second part is fairly
difficult to derive, and, strictly speaking, it’s not even true!
Remember that two bodies orbit about their mutual center of
mass – the precise statement is that the Sun and planet both
undergo elliptical orbits, with a common focus of both ellipses
located at their mutual center of mass. The Sun only sits still
at the focus under the approximation that it is much heavier
than any of the planets, such that the reduced mass is nearly
equal to the planetary mass. We can even be a little sloppier,
and say that as long as the center of mass of the Sun–planet
system lies inside the Sun, the Sun is “at the focus” through-
out its motion. Unfortunately, the GRE has been known to
ignore this subtlety from time to time, and a question from
a 2008 GRE suggested that the statement “the Sun is at one
focus” is exactly true.
Kepler’s second law is also known as conservation of areal

velocity, and means that if you drew vectors from an orbit-
ing planet to the Sun, at equal time intervals along the planet’s
orbit, the orbit would be sliced up into equal-area segments.
In Fig. 1.14, if the two shown portions of the orbit are tra-
versed in equal times, the regions marked A and B have equal
areas.
In fact, this law is completely general, for any central

potential, not just gravitational force laws, since it follows
immediately from conservation of angularmomentum. Recall
the definition of l:

l = mr2
dφ
dt

=⇒ l
m
dt = r2dφ.

The expression on the right-hand side is precisely the area ele-
ment in polar coordinates (up to a factor of 2), and l/m is
constant, so integrating both sides gives us the second law.

A

B

Figure 1.14 Areal sections illustrating Kepler’s second law.
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The third law is rather tricky to derive, so best to just mem-
orize it. The proportionality between T and a3/2 is exactly true
for a pure 1/r potential. You probably won’t need it, but the
proportionality constant k is

k = 2π√
G(mplanet +mSun)

.

Like the first law, the statement that k is the same for all plan-
ets is only true in the approximation that the Sun is infinitely
massive; otherwise, the mplanet term in the denominator of k
matters, and k then varies from planet to planet.

1.6.4 Problems: Orbits

1. A particle of massm is attached to one end of a spring with
spring constant k in a zero-gravity environment; the other
end of the spring is attached to a fixed pivot. The spring’s
equilibrium position is fully compressed. The spring is
stretched to a length r and the particle is given an initial
angular momentum l. Which of the following is a possible
value of r so that the spring stays at a constant extension r
throughout the entire motion of the particle?

(A) (l2/mk)1/4

(B) (l2/mk)1/2

(C)
√
mkl2

(D) ml2/k
(E) (mk/l)1/3

2. Suppose a new planet were discovered orbiting the Sun,
whose orbital period was exactly twice that of Mars.
Assuming the new planet’s mass is much smaller than the
Sun’s mass, which of the following must be true?

I. The new planet’s mass is exactly twice that of Mars.
II. The major axis of the new planet’s orbit is smaller than

that of Mars.
III. The major axis of the new planet’s orbit is bigger than

that of Mars.

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I and III

3. An asteroid of mass m orbits the Sun (mass M) on a
parabolic trajectory. Which of the following relates its dis-
tance of closest approach d to its orbital velocity v at the
point of closest approach? You may assumem is negligibly
small compared toM.

M m
d

v

(A) d = GM
v2

(B) d = 2GM
v2

(C) d = Gm
v2

(D) d = 2Gm
v2

(E) d = GM
2v2

1.7 Springs and Harmonic Oscillators

Spring problems appear in many different forms, though they
tend to use only a few basic facts. Obviously Hooke’s law is the
starting point for most problems:

F = mẍ = −kx, (1.39)

where x is the displacement of the spring from equilibrium,
and k is the spring constant. This is an ordinary differential
equation describing a harmonic oscillator whose solutions are
of the form x(t) = A cos(ωt + φ). The angular frequency is
given by

ω =
√

k
m
. (1.40)

Note that the amplitude A is not determined by Hooke’s law,
but is instead a constant of integration fixed by the initial con-
ditions. The phase φ is the second constant of integration.
Since complex exponentials

x(t) = Aeiωt , (1.41)

with A allowed to be complex, also satisfy Hooke’s law, it is
often easier to write the solutions in terms of complex num-
bers and take the real part at the end of the problem. This
convenient shorthand will be elaborated in the chapter on
waves, Section 3.1.2.
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The potential energy of a spring of spring constant k at
displacement x is given by

U = 1
2
kx2. (p.7) (1.8)

You can prove this to yourself just by integrating the force
from Hooke’s law over the displacement of the spring to
obtain the potential energy.
In fact, this is all that you really need to know for solving

spring problems! Like much of the rest of mechanics, spring
problems – at worst – just reduce to solving second-order
ordinary differential equations. Simple as it sounds, this can
sometimes be a time-consuming task, so you should use the
potential energy considerations whenever possible. To sum-
marize, the order of operations for spring problems should be:

1. Try limiting cases, dimensional arguments, and symmetry.
2. Try conservation of energy.
3. Try writing down a differential equation and solving it.

Even this last method should not be too bad for problems
on the GRE, but consider it a last resort.

1.7.1 Normal Modes

Now suppose that, instead of having one body attached to
a spring, we have two bodies, and we want to solve for the
motion of both. This is complicated because we have a set of
two coupled differential equations with a large family of solu-
tions. It turns out that all of the solutions, however, are just
superpositions of two basic solutions, called normal modes,
which have the usual sinusoidal form of a harmonic oscilla-
tor. One very common GRE question is to ask for the normal
modes of a system.
The mathematical setup is as follows. Consider the general

case of n masses attached to springs, whose displacements4

are qk. Then the equations of motion for the entire system can
be written ∑

k

(Ajkqk +mjkq̈k) = 0.

This is just the most general linear combination of coordi-
nates that we can form out of acceleration terms and forces
from Hooke’s law.
With great foresight, use the ansatz

qk(t) = akeiωt , (1.42)

4 In this section, by “displacement” we will always mean “displacement
from equilibrium.”

whose form is inspired by (1.41). For this guess, q̈k = −ω2qk,
so the equations of motion reduce to∑

k

(Ajk − ω2mjk)ak = 0.

This is just a matrix equation for the coefficients ak, and lin-
ear algebra teaches us that in order for it to have a nontrivial
solution the determinant must vanish:

det(Ajk − ω2mjk) = 0. (1.43)

This secular equation defines a polynomial whose solutions
give n frequencies ωi, which are called the normal frequencies
of the system. The normal modes alluded to above are just the
solutions at which the entire system oscillates collectively at
a fixed normal frequency, with the motion in time given by
equation (1.42). A linear combination of solutions to an ordi-
nary differential equation is still a solution, so we can build
up more complicated motion by taking linear combinations
of normal mode solutions with various coefficients.
Often, it’s important to determine what kind of motion

normal frequencies correspond to. For Example 1.12, we can
immediately tell that the normal mode with frequency

√
k/m

will correspond to the two blocks moving in sync with fixed
separation. In this case, the middle spring has no effect on
the system, and the motion reduces to a single block–spring
system with total mass 2m and total spring constant 2k, thus
giving ω = √

2k/2m = √
k/m. (This should remind you

of the discussion of blocks stuck together in Section 1.1.3.)
We might guess that the other normal mode corresponds to
motion of the blocks in exactly opposite directions. The fre-
quency of this motion should be higher than

√
k/m because

themiddle spring is now exerting an additional restoring force
on the two blocks. Depending on answer choices given in
the problem, these observations may be sufficient to pick the
correct answer.
Solving for the normal modes of a system is a very common

problem, in both quantitative and qualitative contexts. For a
quantitative solution, the recipe is exactly as above:

● Write down the equations of motion for the system.
● Determine the matrices Ajk and mjk and write down the
secular equation (1.43).

● Solve to find the normal frequencies ωi.

In many cases, this machinery is overkill, especially as most
GRE problems are designed to be solved in about one minute.
For most problems, you should ask yourself:

● What are the simplest ways that the system can oscillate at
a fixed frequency? Drawing a picture is often helpful.
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EXAMPLE 1.12

Two blocks of mass m are coupled to each other and to two walls by springs of spring constant k, as shown in
Fig. 1.15. What are the normal modes of the system?

m m

k kk

x1 x2

Figure 1.15 Two blocks and three springs.

We start by writing the equations of motion. Let x1 and x2 denote the displacements of the left and right blocks,
respectively. The force on the left block is the force due to each of the adjacent springs, giving an equation of motion

mẍ1 = −kx1 − k(x1 − x2).

Similarly, for the right block, we have

mẍ2 = −kx2 − k(x2 − x1).

Using our guess (1.42) for x1 and x2, we find that the equations of motion become

mω2a1 = 2ka1 − ka2,

mω2a2 = 2ka2 − ka1.

Writing this explicitly in matrix form we have(
2k−mω2 −k

−k 2k−mω2

)(
a1
a2

)
= 0.

Notice that we didn’t actually have to plug in the exponential guess solution to find this matrix equation; with
practice, you can determine the matrices Ajk and mjk just by staring at the equations of motion for x1 and x2, and
jump straight to the secular equation (1.43). Taking the determinant of the matrix and setting to zero gives

(2k−mω2)2 − k2 = 0.

Luckily, we don’t even need the quadratic equation to solve this: rearranging and taking square roots gives

2k−mω2 = ±k,
handing us immediately the two solutions

ω =
√

k
m
,

√
3k
m
.

● What is the normal frequency corresponding to the entire
system oscillating together? A general rule of thumb is
that symmetric motion will have lower frequency than
asymmetric motion, with the most symmetric mode (cor-
responding to collective oscillations, as in the case above
of the blocks moving in sync) having the lowest frequency.
This is often

√
K/M, whereK andM are the effective spring

constant and mass of the entire system (2k and 2m in the
example above).

● Can this information be used to eliminate incorrect
answers?

1.7.2 Damping, Driving, and Resonance

What happens when there is an oscillatory system with a
damping force? One example would be a block–spring system
placed underwater, where drag forces act to oppose the block’s
motion. As always in classical mechanics, our strategy is to
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write down the equations of motion of the system and find
solutions. Damping terms such as drag or air resistance usu-
ally appear as a force proportional to the velocity of a particle,
Fdamp = −bẋ, so the general equation of motion for an
oscillator with damping is

mẍ+ bẋ+ kx = 0. (1.44)

There are three qualitative types of solutions: under-
damped, critically damped, and overdamped. These are most
conveniently expressed in terms of a damping parameter
β = b/2m and the natural frequency ω0 = √

k/m. The
underdamped solution, for β2 < ω2

0, corresponds to motion
in which the oscillations follow an exponentially decaying
envelope. The equation of motion takes the convenient form

x(t) = Ae−βt cos(ω1t − δ),

where ω2
1 = ω2

0 − β2. It is not critical to remember all of the
constants in this expression, but it is valuable to remember
that underdamped oscillations are a sinusoid with an expo-
nentially decaying envelope. This shouldmake intuitive sense:
a small amount of damping will produce the same behavior
as free oscillation, but with gradually decreasing energy (and
thus amplitude) because of the damping force.
The overdamped solution, for β2 > ω2

0, corresponds to
motion in which the damping is so strong that no oscilla-
tion occurs. While the solutions to the underdamped case
are sinusoidal functions (i.e. complex exponentials), the solu-
tions to the overdamped oscillator are real exponentials, with
the oscillator returning exponentially to its equilibrium posi-
tion. The intermediate case between these two is called critical
damping, and it corresponds to β2 = ω2

0.
A harmonic system can also be driven by some external

sinusoidal force. In this case, the equation of motion picks up
an additional term due to the driving; in the most general case
including possible damping,

ẍ+ 2βẋ+ ω2
0x = A cosωt.

The solutions to this equation of motion can be found using
elementary methods for solving inhomogeneous ordinary dif-
ferential equations. Without going into details, the important
point is that, unlike the case of the oscillator with no driving
force, the amplitude of the steady-state solution (that is, after
a long time has elapsed) is not a free parameter but instead
depends on the coefficient A and the frequency ω of the driv-
ing force. For a given A, the amplitude is maximized when the
driving frequency equals the so-called resonant frequency:

ωR =
√

ω2
0 − 2β2. (1.45)

It is also possible to calculate the amplitude of oscillation
when the driving frequency is different from resonance. It’s
extremely unlikely that you would ever need the exact expres-
sion for the GRE, but it could be worth remembering the
scaling relation in the absence of damping. The amplitude D
of an undamped oscillator of natural frequency ω0 subject to
a driving force at frequency ω is proportional as follows:

D ∝ 1
|ω2

0 − ω2| .

Note that this expression diverges at a driving frequency ω =
ω0! Of course, we don’t see infinite amplitude in real-life oscil-
lators because of small damping forces such as friction. But
this proportionality should hold well near resonance in the
weak damping limit.
To summarize, we have three different types of motion

with three different characteristic frequencies, in order of
increasing generality:

● Free oscillation: ω2 = k/m
● Damped oscillation:
– overdamping
– critical damping
– underdamping, with characteristic frequency ω2

1 =
ω2
0 − β2

● Driven oscillation: ω2
R = ω2

0 − 2β2

1.7.3 Further Examples

There aremany additional examples of themethods presented
in this section. We show a few common examples. The basic
unifying feature of all the examples in this section is that
the behavior of the system can be described with a system
of second-order linear ordinary differential equations with
constant coefficients.

● Pendulums. In the limit of small displacements, the equa-
tion of motion of a pendulum of length L is described by
simple harmonic motion. The full equation of motion for a
pendulum with angular displacement θ is (see problem 4 in
Section 1.5.4)

mLθ̈ = −mg sin θ .

For small displacements, this becomes

mẍ = −mgx/L, (1.46)

which describes simple harmonic motion of angular fre-
quency

ω =
√
g
L
. (1.47)
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A similar equation holds for an extended object of mass m
swinging on a massless rod of length R, which has moment
of inertia I about the pivot. More precisely, R is the dis-
tance between the center of mass of the object and the pivot.
The oscillation frequency, easily derived using Lagrangian
mechanics, is now

ω =
√
mgR
I

, (1.48)

which is easy to remember using dimensional analysis once
you know equation (1.47).

● Circuits. The structure of the differential equations
describing damped and driven oscillations is identical
to the differential equations describing electrical circuits
under the replacements in Table 1.1. All differential

equations remain perfectly valid for electrical systems after
these substitutions, with the technical caveat that the quan-
tities in the table refer to the effective quantities for the
whole circuit or system, not individual circuit elements or
springs. This shouldn’t be too surprising since, while one
can add resistors in series or in parallel, it doesn’t make
much sense to “add damping resistance in parallel.” In par-
ticular, while it is true that 1/keq = Ceq, one cannot just
replace all individual capacitors by springs, though there is
a simple rule for equivalent spring constants for springs in
series and parallel that mirrors the rule for capacitors. See
below for more details.

● Parallel and series springs. Pursuing the electrical analogy,
we can consider springs attached to a block of mass m in
both parallel and series configurations; see Example 1.13.

EXAMPLE 1.13

When the springs are in parallel (Fig. 1.16, left), the equation of motion is

mẍ = −kx− kx = −2kx,
so the effective spring constant is the sum of the two spring constants k + k = 2k. When the springs are in series
(Fig. 1.16, right), the situation is slightly more complicated. Call the displacement of the (massless) joint between
the springs x1, and call the displacement of the block x2. To determine the equations of motion, we can use a trick:
pretend a very small mass is attached to the joint between the two springs. In this case, we just have a two-mass/two-
spring system, very similar to the one we already solved in Section 1.7.1! Simply copying down the first equation of
motion and sending the small mass to zero gives

0 = −kx1 − k(x1 − x2).

Notice that this is no longer a differential equation, but an algebraic constraint equation, x1 = x2/2. This enforces
the condition that there must be zero force acting on the joint between springs; otherwise, since the joint is massless,
the acceleration would be infinite. The block just experiences a force due to the spring touching it, so its equation of
motion is

mẍ2 = −k(x2 − x1).

Plugging in the constraint, we get

mẍ2 = −k
2
x2,

giving an effective spring constant of k/2.

m

k

k

m

k k

x1 x2

Figure 1.16 Springs in series and parallel.
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Table 1.1 Correspondence of quantities in the analogy between

electrical and mechanical systems.

Mechanical system Circuit system

x displacement q charge

ẋ velocity I current

m mass L inductance

b damping resistance R electrical resistance

1/k spring stiffness C capacitance

F amplitude of driving force V amplitude of driving voltage

If you go through the derivation in Example 1.13 with
two different spring constants k1 and k2, you can prove to
yourself that the rule for computing equivalent spring con-
stants is 1/keq = 1/k1 + 1/k2, the same as the rule for
computing equivalent capacitances for capacitors in series,
1/Ceq = 1/C1 + 1/C2.

This leads to a subtle pitfall: the electrical analogue of our
series spring system above is two capacitors in series. If we
were to replace each spring k by a capacitor C, the rule of
Table 1.1 gives 1/k → C. But the equivalent capacitance
of this system is C/2, and the equivalent spring constant
is k/2, so the rule 1/keq → Ceq becomes 2/k → C/2, or
1/k→ C/4! So the electrical–mechanical analogue is not as
simple as just replacing 1/k by C everywhere in the circuit.
To keep things straight, it’s best to remember the two rules
as logically distinct:

– The rule for adding springs k in series and parallel is the
same as adding capacitors C in series and parallel.

– The electrical analogue to a mechanical system with
equivalent spring stiffness 1/keq is an equivalent capac-
itor Ceq.

1.7.4 Problems: Springs

1. A block of mass M is attached to two springs, both with
spring constants k, in series. Another block of mass m is
attached to three springs, each of spring constant k, in par-
allel. What is the ratio of the oscillation frequency of the
block of massM to the frequency of the block of massm?

(A)
√
3m/(2M)

(B)
√
2M/m

(C)
√
3M/m

(D)
√
m/(6M)

(E)
√
6m/M

2. A ball of mass m is launched at 45◦ from the horizontal
by a spring of spring constant k which is depressed by a
displacement d. What horizontal distance x does the ball
travel before returning to its height at launch?

(A) 2mgd/k
(B) mgd/k
(C) kd2/(gm)
(D) kd2/(2gm)
(E) 2kd2/(gm)

3. Suppose a motor drives a block on a spring at a frequency
ω, and the natural frequency of the spring–block system is
ω0. If damping is negligible, by what factor does the ampli-
tude of oscillation change when the driving frequency is
increased from ω = 2ω0 to ω = 3ω0?

(A) 4/9
(B) 3/8
(C) 2/3
(D) 9/64
(E) 9/4

1.8 Fluid Mechanics

In general physics courses, fluid dynamics problems typically
appear only in two simple forms. The first is in applications
of Bernoulli’s principle – essentially a reformulation of con-
servation of energy. The second uses the concept of buoyant
forces.

1.8.1 Bernoulli’s Principle

Consider a fluid that is traveling through some pipe. The pipe
may go up and down, and it may change diameter. Regardless,
the following quantity is constant along a streamline of the
fluid moving through the pipe:

v2

2
+ gz + p

ρ
= constant, (1.49)

where v is the velocity of the fluid, g is gravitational acceler-
ation, z is the height of a point along the streamline, p is the

z1

z2

v

Figure 1.17 General setup for the Bernoulli equation, describing a
fluid traveling through a pipe of variable size and height. Dashed
lines represent streamlines.
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EXAMPLE 1.14

To see how Bernoulli’s principle works in context, consider a horizontal square pipe with two sections: one of
side length a, and another of side length b (Fig. 1.18). The cross-sectional areas of the two pipes are a2 and b2,
respectively. The amount of fluid flowing past a point in the first section in a time �t must equal the amount
of fluid flowing past a point in the second section, since the fluid can’t appear or disappear. Mathematically, we
require the following fluid conservation equation to hold:

ρv1A1�t = ρv2A2�t,

or just

v1A1 = v2A2, (1.50)

where A1 and A2 are the cross-sectional areas of the two sections of pipe. Note that the density entering into both
sides of the above equation is the same because of our assumption that the fluid is incompressible. It doesn’t matter
what the pressure is – an incompressible fluid will always have the same density. In our specific case, we have

v1a2 = v2b2.

From Bernoulli’s principle, we know that we must have

v21
2
+ gz1 + p1

ρ
= v22

2
+ gz2 + p2

ρ
. (1.51)

Since the pipe is horizontal (except in the region between the two pipe sections), streamlines are horizontal and
z1 = z2. Substituting equation (1.50) into equation (1.51), we find that

v21
2
+ p1

ρ
= v21a

4

2b4
+ p2

ρ
.

If we know the pressure and velocity in the first part of the pipe, we can now calculate the pressure in the second
part of the pipe:

p2 = ρv21
2

(
1− a4

b4

)
+ p1.

a b

v1
v2

Figure 1.18 Fluid flows through two horizontal segments of square pipe, with side lengths a and b.

pressure, and ρ is the density of the fluid. Nearly all common
fluids are incompressible, in the sense that ρ is constant for any
reasonable range of pressures p. You can remember this equa-
tion by noting its relation to conservation of energy. The first
term is a form of kinetic energy, the second term is a form of
gravitational potential energy, and the third term is an energy
associated with pressure. Since the first two terms are just the
usual kinetic and potential energy terms with themass divided

out, the units of the constant on the right-hand side of (1.49)
must be energy per unit mass, a fact that can help you remem-
ber the form of the third term. Problems involving Bernoulli’s
principle typically just require applying this relation to two
different points along a streamline, often in conjunction with
a fluid conservation equation.
From Example 1.14, we can abstract the general strategy for

problems involving Bernoulli’s principle:
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● Write down the Bernoulli equation at all relevant points for
the system.

● Write down the equation for fluid conservation.
● Solve these equations for the desired variables.

Remember that not all problems need both the fluid con-
servation and the Bernoulli equation. If you need to know
something about pressure, for example, you’ll certainly need
Bernoulli, but maybe not the conservation equation. If you
need to know something about the velocity of the fluid, the
reverse could be true.

1.8.2 Buoyant Forces

Consider a block that floats in water (Fig. 1.19). Obviously the
force of gravity pushes down on it, yet it does not sink. This
is, of course, because of the buoyant force of the water that the
block displaces. If the block displaces a volume of V of water
when it is floating, then the buoyant force pushing back up on
it will be

F = ρVg, (1.52)

where ρ is the density of water (or whatever fluid the block
is floating in). You can think of this as the weight of the dis-
placed water pushing up on the submerged object. The mass
of the displaced water is ρV , and so its weight is ρVg. Prob-
lems involving floating and submerged blocks can usually be
solved by simply assigning all forces as usual, and then adding
in the buoyant force which pushes upward on the object.
For example, suppose you blow all the air out of your lungs

and sink to the bottom of a pool. How much do you weigh
underwater? Suppose you weigh 60 kg and your volume is
50 L. You are displacing 50 kg of water, so there is about 500 N
of buoyant force pushing up on you. But your weight is 600 N,
so your net weight is only 100N. Quite an effective weight-loss
program!

m

mg

ρVg

ρ

Figure 1.19 Example of buoyant forces. A block floating in water
displaces a mass ρV of water, whose gravitational force pushes up
against the weight of the block.

1.8.3 Problems: Fluid Mechanics

1. A diver in water picks up a lead cube of side length 10 cm.
How much force is needed to lift the cube? The density of
lead is approximately 11 g/cm3.

(A) 10 N
(B) 11 N
(C) 50 N
(D) 100 N
(E) 110 N

2. A vertical cylindrical tube has radius 1 cm. The tube is
plugged with a stopper at the bottom end and filled with
water so that the top of the water is 1 m above the bottom
stopper. What is the frictional force required to hold the
stopper in the tube?

(A) 3.1 N
(B) 2.4 N
(C) 1.0 N
(D) 0.62 N
(E) 0 N

3. An aqueduct consisting of a pipe filled completely with
water passes up a hill that is 10 m high. At the bottom of
the hill, a flowmeter measures the speed of the fluid to be
2.0 m/s. At the top of the hill, a flowmeter measures the
speed of the fluid to be 1.0 m/s. Which is closest to the dif-
ference in the fluid pressure between the bottom and top
of the hill?

(A) 1.50× 103 Pa
(B) 9.85× 104 Pa
(C) 1.00× 105 Pa
(D) 1.02× 105 Pa
(E) 9.85× 107 Pa

1.9 Solutions: Classical Mechanics

Blocks

1. B – The happy fact that the plane is at a 45◦ angle, and
sin 45◦ = cos 45◦, means that we don’t have to be espe-
cially careful about decomposing forces since the sines and
cosines will always be equal. We know that the applied
force contributes a normal force of 5

√
2 N and a force up

the ramp of 5
√
2 N, and, similarly, gravity (approximating

g ≈ 10 m/s2) contributes a normal force of 25
√
2 N and

a force down the ramp of 25
√
2 N. So before considering
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friction, the net force is 20
√
2 N down the ramp. Now, fric-

tion contributes a force (0.5)(30
√
2) = 15

√
2 N opposing

the block’s motion, which means up the ramp in this case.
The total net force is then 5

√
2 N down the ramp. Divid-

ing by the mass to find the acceleration, we have
√
2 m/s2

down the ramp, choice B.
2. E – As explained in the text, we could either do separate

free-body diagrams for each of the three blocks and solve
for the tensions one by one, or we could use some physical
intuition and realize that each rope segment must support
the full weight of all the blocks below it. So, as long as the
blocks have nonzero masses, T1 > T2 > T3, always.

3. D – As always, we begin by separating the two blocks
and drawing free-body diagrams as above. Here, Fbb is the
block-on-block force, which is equal in magnitude for the
two blocks by Newton’s third law. Note that the normal
force, which provides the friction keeping the mass m sta-
tionary, is the block-on-block force, not its weight! The
plan is to solve for Fbb using the second block, then plug
that in and solve for F using the first block. For the vertical
forces to balance, we need μ2Fbb = mg, so Fbb = mg/μ2.
The acceleration of the second block is a = Fbb/m =
g/μ2. This must equal the acceleration of the first block
for the two to move together. Now, the normal force on
the first block is Mg + μ2Fbb = (M + m)g, where the
μ2Fbb term is from the action–reaction pair of the fric-
tional force on m. The net force on the first block is then
F − Fbb − μ1(m+M)g = F −mg/μ2 − μ1(m+M)g, so
we set its acceleration equal to g/μ2 and solve:

F −mg/μ2 − μ1(m+M)g
M

= g
μ2

=⇒ F =
(

μ1 + 1
μ2

)
(m+M)g.

The limiting cases check out: if μ2 → 0, F → ∞ since
a vanishing frictional force between the two blocks means
that they slip no matter what, and if μ1 → ∞, F → ∞

M m

mg(M + m)g

Fbb

(M + m)g µ2Fbb

Fbb

µ1(M + m)g

F

Figure 1.20 Solution for block problem 3.

since the strong kinetic friction prevents block M from
accelerating enough and providing a large enough Fbb.
Alternatively, by the reasoning of Section 1.1.3, the fact

that the two blocks don’t slip means that they move as a
composite system with massm+M, and so the total force
required to make them move together should depend on
the combination m +M, which singles out choice D. The
GRE may not always be this kind to you, but if you see
a major simplification that allows you to solve a problem
without drawing free-body diagrams, take it! If you have
time at the end of the test, of course, come back to the prob-
lem and do it the long way to make sure that you didn’t
oversimplify.

Kinematics

1. D – The projectile will land on the ground at a time given
by the solution to

0 = −1
2
gt2 + vt sin θ .

The solution is

t = 2v sin θ

g
.

The distance away at time t is given by

vt cos θ = d.

Substituting the result above, we find that

cos θ sin θ = gd
2v2

.

Using the double angle formula, we conclude that

θ = 1
2
arcsin

gd
v2

.

2. C – In a geosynchronous orbit, the satellite will orbit with
the same angular velocity as the Earth, which is constant,
so its orbital speed is constant and we can use the uniform
circular motion formulas. Just equate the centripetal force
to the gravitational force to obtain

GMEm
r2

= mv2

r
.

The velocity of the satellite at radius r is v = rω. Thus, we
have

GMEm
r2

= mrω2.

Solving for r, we find that

r =
(
GME

ω2

)1/3
.

 



1.9 Solutions: Classical Mechanics 31

Energy

1. B – From the 30 − 60 − 90 triangle, the ramp has height
L/2. Setting the zero of gravitational potential at the bot-
tom of the ramp, the initial energy is all potential energy of
the spring, 1

2kx
2. At the top of the ramp, we have poten-

tial mgh = mgL/2 and that’s it: if it just barely reaches
the top of the ramp, its kinetic energy (translational and
rotational) must be zero there. So we have simply

1
2
kx2 = mgL

2
=⇒ x =

√
mgL
k

.

2. C – Now there is no change in potential energy immedi-
ately after being launched, so the ball’s energy is all kinetic.
Because it rolls without slipping, we have to take into
account translational and rotational energies, using the
appropriate moment of inertia for a sphere:

T = 1
2
mv2 + 1

2
Iω2 = 7

10
mv2.

(See the calculation at the end of Section 1.3.3 for more
details.) We may be tempted to set this equal to the
potential energy of the spring, but that’s more work than
necessary: since energy is conserved everywhere, we can
feel free to use the simpler expressionmgL/2 for the energy
at the top. This gives

7
10

mv2 = mgL
2

=⇒ v =
√
5
7
gL.

3. B – Without doing any work, we know the answer here
must be the same as the answer to problem 1. While it’s
true that, during the trip up the ramp, the ball’s kinetic
energy will no longer be shared between rotational and
translational, this is irrelevant once it gets to the top of
the ramp, when all the energy is potential. So the spring
is compressed by precisely the same distance. Once again,
the time it takes the ball to get up the ramp will be different
than in the case with friction, but the problem doesn’t ask
about that, so we need not worry about it.

Momentum

1. B – It is important to keep the notation straight in this
problem. The r in the mass density ρ(r) refers to the dis-
tance between the origin and a point in the sphere, but
when we compute the moment of inertia, the argument
of the integral is the square distance from a point in the
sphere to the axis of rotation – in this case, we can choose

coordinates to make it the z-axis. If we use s = r sin θ to
denote this distance, then the moment of inertia is

I =
∫

s2dm

=
∫

r2 sin2θ ρ(r) dV

=
∫ 2π

0

∫ π

0

∫ R

0
Ar3 sin2θ r2 sin θ dr dθ dφ

= 1
6
AR6

∫ 2π

0

∫ π

0
sin3θ dθ dφ

= π

3
AR6

∫ π

0
sin3θ dθ

= 4π
9
AR6.

As usual, we get rid of A by expressing it in terms of the
total mass of the sphere. Since the density depends only on
radius, we can integrate spherical shells of thickness dr and
mass 4πr2 drρ(r), so the only integral is the radial one:

M = 4π
∫ R

0
Ar(r2 dr) = πAR4 =⇒ A = M

πR4
.

Plugging this in, we get I = 4
9MR2, which has the correct

units for a moment of inertia.
2. D – Since the momentum must sum to zero, and since all

the masses of the pieces are equal, the velocity vectors must
also sum to zero. This means that the velocity vectors can
be arranged as the sides of an isosceles triangle. Solving
the rest of the problem is just basic geometry. The angle
between the long and short sides of the isosceles triangle is
given by cos θ = (v/2)/(2v) = 1/4, so θ = arccos(1/4).
The angle between the outward-going velocity vectors of
the exploding fragments is then π − arccos(1/4).

3. B – Straightforward conservation of angular momentum.
The initial angular momentum is Li = 1

2MR2ω0. The final
angular momentum is Lf = 1

2M(R2 + r2)ω. Solving for ω,
we find choice B.

4. A – Call the initial angular velocityω0 and the final angular
velocity ω. Angular momentum is conserved because ten-
sion acts radially and hence provides no torque, so we have
the constraint

MR2ω0 = Mr2ω,

so

ω = R2

r2
ω0.

The initial tension must be equal to the centripetal force,
so

T = MRω2
0.
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The change in energy is just

�E = 1
2
M
(
r2ω2 − R2ω2

0
)

= 1
2
M
(
TR3

Mr2
− TR

M

)

= 1
2
TR
(
R2

r2
− 1
)
.

Note that this is a case in which energy is not conserved,
but angular momentum is. Work is required to pull the
string downwards and change the radius of the rotation,
hence the energy increases.

Lagrangians and Hamiltonians

1. D – Following the recipe outlined in Section 1.5.1, we
define the origin of coordinates to be at the pivot, giving

x = l sin θ cosφ,

y = l sin θ sinφ,

z = −l cos θ .
Note the minus sign in front of the z-coordinate! These
are not quite spherical coordinates because of the way the
angle θ was defined by the problem. This is conventional
for pendulums though, so it’s good to get used to it. Now,
taking time derivatives, we have

ẋ = l cos θ cosφ θ̇ − l sin θ sinφ φ̇,

ẏ = l cos θ sinφ θ̇ + l sin θ cosφ φ̇,

ż = l sin θ θ̇ .

We now form the kinetic energy:

T = 1
2
m(ẋ2 + ẏ2 + ż2) = 1

2
ml2

(
θ̇2 + sin2 θφ̇2) .

The algebra really isn’t all that bad once you realize that the
cross term cancels in ẋ2+ ẏ2, and all the rest collapse using
the trig identity sin2 α + cos2 α = 1. The potential energy
is all gravitational,

U = mgz = −mgl cos θ ,

so we have

L = T − U = 1
2
ml2

(
θ̇2 + sin2 θφ̇2)+mgl cos θ .

Note that this is not the unique Lagrangian, since we can
always add a constant toU, and hence to L, without chang-
ing the physics. But it matches one of the answer choices,
so we can move on.

2. B – We notice that the Lagrangian is independent of the
coordinate φ, which means the conjugate momentum pφ

is conserved:

pφ = ∂L
∂φ̇

= ml2 sin2 θφ̇.

Happily, this matches answer choice B. When looking for
conserved quantities in problems like this, it’s a much bet-
ter idea to find them yourself and check them against the
answer choices, rather than trying to ascertain whether
each of the answer choices individually is conserved. Inci-
dentally, the only other conserved quantity in this problem
is the total energy, since L is independent of time.

3. A –Here we can apply the trickmentioned in Section 1.5.3:
rather than compute the Hamiltonian using the Legendre
transform, just use the fact thatH = T+U since there is no
time dependence. We’ve already computed one canonical
momentum, so we need the other:

pθ = ml2θ̇ .

This gives us

θ̇ = pθ

ml2
,

φ̇ = pφ

ml2 sin2 θ
,

and plugging into T gives

T = p2θ
2ml2

+ p2φ
2ml2 sin2 θ

.

Adding, rather than subtracting, the potential energy this
time gives us the Hamiltonian:

H = T + U = p2θ
2ml2

+ p2φ
2ml2 sin2 θ

−mgl cos θ .

4. C – Restricting to a constant value of φ means that we can
drop the φ̇ term from the Lagrangian:

Lφ=0 = 1
2
ml2θ̇2 +mgl cos θ .

Nowwe compute the two quantities we need for the Euler–
Lagrange equations:

∂L
∂θ̇

= ml2θ̇ ,

∂L
∂θ

= −mgl sin θ .

Applying the Euler–Lagrange equation (1.29), we have

ml2θ̈ = −mgl sin θ ,

or cancelingml from both sides and rearranging,

θ̈ = −g
l
sin θ .
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Expanding sin θ ≈ θ for small θ , you should recognize
this as the simple harmonic oscillator equation. Indeed,
this is just an ordinary pendulum, with the correct angular
frequency

√
g/l.

Orbits

1. A – Don’t let the complicated-seeming problem statement
fool you: this is just an application of the orbit formal-
ism to the central potential U(r) = 1

2kr
2 for a spring.

We’re looking for the radius of a circular orbit, so we solve
V ′(r) = 0:

−l2
mr3

+ kr = 0 =⇒ r = (l2/mk)1/4.

We can check that V ′′(r) = k + 3l2/mr4 > 0, so this is
indeed a stable circular orbit. Incidentally, since all of the
answer choices have different units, this would have been a
perfect chance to practice using dimensional analysis.

2. C – This is a straightforward application of Kepler’s third
law. In the limit where planetary masses are small com-
pared to that of the Sun, we have

Tnew

TMars
=
(
anew
aMars

)3/2
=⇒ anew = aMars × 22/3.

22/3 > 1, so only III is true. In this limit the planet masses
don’t show up explicitly in Kepler’s third law, so I is not
necessarily true.

3. B – A parabolic orbit means that the total energy of the
orbit is zero. Becausem is negligibly small compared toM,
we can use m instead of the reduced mass μ in the formu-
las for angular momentum and effective potential. Right at
the point of closest approach, ṙ = 0, so all the motion is
tangential and we can write l = mvd. Substituting into the
expression for orbital energy (1.38), we have

E = (mvd)2

2md2
− GMm

d
= 1

2
mv2 − GMm

d
.

Setting this equal to zero and solving for d, we find
choice B.

Springs and Harmonic Oscillators

1. D – Computing equivalent spring constants is discussed in
Section 1.7.3. The equivalent spring constant for the block
of massM attached to the series springs is

keq =
(
1
k
+ 1

k

)−1
= k

2
.

The equivalent spring constant for the block of mass m
attached to the three parallel springs is

keq = k+ k+ k = 3k.

The ratio of the frequencies is therefore√
k/(2M)√
3k/m

=
√

m
6M

.

2. C – The kinetic energy of the ball at launch is equal to the
potential energy stored in the spring, so

1
2
mv2 = 1

2
kd2,

and

v =
√

k
m
d.

The velocity in both the vertical and horizontal directions
is therefore

v0 =
√
2
2

√
k
m
d.

The horizontal displacement is x = v0t, and the vertical
displacement is y = −(1/2)gt2 + v0t. Solving the latter
equation for t at y = 0, we find

t = 2v0
g

.

Substituting this into the equation for the horizontal dis-
placement, we find

x = 2v20
g

= kd2

gm
.

3. B – Recall that the amplitude of oscillation of an undamped
driven oscillator scales as

A ∼ 1
|ω2

0 − ω2| .

Thus, as we increase ω from 2ω0 to 3ω0, the amplitude is
multiplied by a factor of 3/8.

Fluid Mechanics

1. D – The mass of the lead cube is 11 kg, so the weight of
the cube is 110 N. The volume of the cube is 103 cm3, so
the mass of the displaced water is 1 kg, since the density
of water is 1 g/cm3. The force required to lift the cube is
just the weight minus the buoyant force from the displaced
water: Flift = 110 N− 10 N = 100 N.

2. A – By the Bernoulli equation, the pressure exerted by the
fluid on the bottom stopper must be p = ρgy, where y
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is the level of the water line. (Atmospheric pressure acts
equally at the top and at the bottom, so it cancels out.) The
frictional force is therefore F = pA = πρgyr2. Plugging
numbers we have

F = π(103 kg/m3)(10 m/s2)(1 m)(10−2 m)2 ≈ 3.1 N.

3. B – By Bernoulli’s principle, we have

1
2
ρv2t + ρgyt + pt = 1

2
ρv2b + ρgyb + pb,

where the left-hand side contains quantities measured at
the top of the hill, and the right-hand side contains quan-
tities measured at the bottom of the hill. We can rearrange
and solve for the difference between the pressures at the
top and bottom:

pb − pt = ρg(yt − yb)+ 1
2
ρ(v2t − v2b).

Plugging in yt−yb = 10 m, ρ = 1000 kg/m3, g = 10 m/s2,
vt = 1m/s, and vb = 2m/s, we find the result 9.85×104 Pa.

 



2 Electricity and Magnetism

According to ETS, approximately 18% of the exam covers
electromagnetism. Given the format of the exam, the ques-
tions tend to emphasize a broad set of topics in electricity
and magnetism rather than deep theoretical issues or analysis
of complicated charge configurations. You will, for example,
find plenty of AC and DC circuits in addition to the more
traditional topics of electro- and magnetostatics, induction,
Maxwell’s equations, and electromagnetic waves.
The general philosophy that you should take away from

this chapter is that electromagnetism is conceptually simple.
There are only a few key concepts, such as symmetry and
boundary conditions, most of which are buried somewhere
in Maxwell’s equations. The vast majority of the work lies in
figuring out how to apply these basic ideas to specific configu-
rations. The key to success on the electromagnetism problems
on the GRE is to develop enough intuition with a few specific
classes of problems that you can quickly deploy the neces-
sary equations to solve them. We’ll try to outline the general
ideas concisely and try to illustrate how to choose the fastest
methods for the common classes of problems.

2.1 Electrostatics

Electrostatics refers to problems where charges and fields are
not moving or changing in time. If you have a configuration
of charges that does not change in time, electrostatics lets you
calculate resulting electric fields and forces. We’ll generalize
this to include time dependence in Section 2.3.

2.1.1 Maxwell’s Equations for Electrostatics

The tools needed for analyzing electrostatics problems are
very simple. In fact, it just boils down to the first two of

Maxwell’s equations in free space in the absence of magnetic
fields:

∇ · E = ρ

ε0
, (2.1)

∇ × E = 0 (electrostatics). (2.2)

The first equation actually holds true regardless of whether a
magnetic field or time dependence is present, but the second
is only true in electrostatics. These two equations tell you how
to build the electric field E from a charge distribution ρ. To
figure out how a test charge qmoves in response to an electric
field,1 you need one more equation,

FE = qE. (2.3)

That’s it! In principle, you can solve for any static electric
field with these equations and then compute the motion of a
particle in the field, given knowledge of a charge distribution.
As you’re probably well aware, however, partial differential
equations are almost always quite nasty to solve, so we use
a few additional tools to calculate the electric field in practice.

2.1.2 Electric Potential

The first tool is the scalar electric potential. Under some fairly
general conditions, the fact that ∇ × E = 0 implies that there
is a scalar potential field V(r), which we also call the electric
potential such that

E = −∇V . (2.4)

1 This is still electrostatics, since the field isn’t moving, only the test charge,
whose own field we don’t care about in this context.
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This can be integrated to give V in terms of E,

V(b) = −
∫ b

a
E · dl, (2.5)

which hopefully looks familiar from potential energy in
mechanics. Here the point a has been defined as the zero of
potential; as is the case with the potential energy in classical
mechanics, electric potential must always be defined relative
to some reference location. For electrostatics problems, unless
otherwise specified, the reference point is often taken to be
infinitely far from the location of interest. As with poten-
tial energy in mechanics: mind the sign! There is a relative
minus sign between the electric field and the electric poten-
tial, which is easy to forget. Also note that V is not a potential
energy; rather, it’s a potential energy per unit charge, and the
real potential energy of a particle of charge q in a region
with electric potential V is U = qV . Because it is propor-
tional to the true potential energy, the electric potential is also
only defined up to a constant, so changing V by a constant
value does not change the value of the electric field. Thus it
is only differences in potential that we measure. Finally, since
the potential V(r) is a scalar quantity, not a vector like the
electric field, it is sometimes easier to calculate the potential
for a particular charge configuration and then convert to the
electric field. For practical purposes, both contain equivalent
information.
At this point we should mention the fact that both E and V

are additive: Maxwell’s equations are linear differential equa-
tions, so to find E or V of several charges, you just add up
(using vector addition in the first case, and ordinary addition
in the second) the corresponding E and V of the individual
charges.
The second tool for solving electrostatics problems is the

direct solution of Maxwell’s equations. If we plug (2.4) into
(2.1), we obtain the single scalar equation

∇2V = − ρ

ε0
, (2.6)

known as Poisson’s equation. Often we are asked to solve this
equation in a region where the charge density ρ is zero, in
which case it reduces to Laplace’s equation,

∇2V = 0 (empty space). (2.7)

We can write the general solution to Poisson’s equation as an
integral over the charge distribution ρ(r):

V(r) = 1
4πε0

∫
ρ(r′)
|r− r′|d

3r′. (2.8)

Note the variables carefully: r labels the point where you’re
measuring the potential, but r′ labels the position of the

charge distribution, and is integrated over so the final answer
depends only on r. We should mention that (2.8) is rarely
used in practice, since the integral is so nasty, unless the
charge density ρ is particularly simple. It is worth remember-
ing mostly as a sanity check for the case of a point charge,
where ρ(r) ∝ δ3(r). We’ll come back to this case below.

2.1.3 Integral Form of Maxwell’s Equations

The third useful tool is Maxwell’s equations themselves,
though in a slightly different form. Using Gauss’s theorem
and Stokes’s theorem, we can rewrite Maxwell’s equations in
integral form: ∮

S
E(r) · dS = Qenc

ε0
, (2.9)∮

C
E(r) · dl = 0 (electrostatics), (2.10)

where Qenc is the charge enclosed by the closed surface S, and
C is some closed curve. The first equation is known as Gauss’s
law, and the left-hand side is defined as the electric flux. The
important implication of Gauss’s law is that regions that have
no net flux in or out can enclose no net charge. Problems
on the GRE that involve actually solving for realistic charge
configurations always require the integral forms of Maxwell’s
equations. The differential forms, if they are ever needed, are
mainly involved in conceptual questions or questions that just
require you to evaluate the divergence or curl, given some
electric field.
There are always problems on the GRE that involve simply

solving for the electric field or electric potential of a charge
configuration. If a problem has a high degree of symme-
try (e.g. spherical, cylindrical, or planar), the fastest route is
to use the integral form of Gauss’s law (2.9). The recipe to
calculate the field is simple and probably familiar from an
electromagnetism course.

1. Figure out the “symmetry” of the problem: Should the
electric field point radially outward from a single point
(spherical symmetry), radially outward from a central axis
(cylindrical symmetry), or away from a plane (planar sym-
metry)? This can usually be deduced from the shape of the
charge configuration.

2. Find a Gaussian surface: Visualize a “Gaussian” surface S
such that the electric field E is always either (a) perpen-
dicular to S with constant magnitude, or (b) parallel to S
– this is where the symmetry is important, as you usually
guess where this surface is, based on the symmetry of the
problem.
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E

λ

Figure 2.1 Example of a Gaussian surface over which the electric
field from the charged line λ is both constant and perpendicular.

3. Solve for the field: The dot product E · dS then vanishes
whenever E is parallel to S, and is equal to |E|dS over the
rest of S. The constant magnitude |E| can be pulled out of
the integral, and (2.9) reduces to

|E|
∮
S⊥

dS = Qenc

ε0
,

|E|A = Qenc

ε0
,

where A is the area of the Gaussian surface S⊥ over which
E is perpendicular to the surface.

We’ll treat several more standard applications of Gauss’s
law in the following Section 2.1.4.

2.1.4 Standard Electrostatics Configurations

As we discussed at the beginning of this chapter, the hard
part about electromagnetism is applying the ideas, not under-
standing them. In this section, we’ll therefore summarize the
important charge configurations that frequently appear on the
exam.

● Point charges. The force, electric field, and potential due
to a collection of point charges can always be found by
summing up the Coulomb terms for each charge in the sys-
tem. Problems generally fall into two types. In the first type,
you are given an arbitrary arrangement of charges and you
need to find the force, electric field, or potential due to the
charges at some nearby point in space. It is always best to
start with symmetry considerations to limit the calculations
needed. For example, if the point charges are at the vertices
of a regular polygon, then the field and force at the center
will be zero because all components will cancel. Only after
using as much symmetry as possible should you start writ-
ing down terms. If possible, you want to find the potential
first and only then calculate the field by taking a derivative,
since scalar addition is much simpler than vector addition.

EXAMPLE 2.1

The simplest possible application of all these ideas is to “derive” Coulomb’s law. Hopefully you do not need a
reminder about Coulomb’s law, but this is still a nice simple setting to see how these ideas work without the compli-
cations of strange charge configurations. Let’s say that we have a point charge q; that is, a charge distribution that is
just proportional to a delta function,

ρ(r) = qδ3(r).

We know that the electric field due to a point charge is directed radially outward. What surface has a normal vector
that points radially outward? A sphere, of course. So we integrate over a sphere of radius r: the enclosed charge is
just q since the delta function will integrate to 1 over any region containing the origin, and we get

|E| (4πr2) = q
ε0
,

from which we deduce Coulomb’s law,

E(r) = q
4πε0r2

r̂. (2.11)

We can deduce the potential from a similar procedure starting with equation (2.8). Or we can simply obtain the
potential by integrating the electric field from some reference point, where we set V equal to zero. Here, we pick
r = ∞ to be our reference point, so we obtain a potential

V(r) = q
4πε0r

, (2.12)

known as the Coulomb potential.

 



38 Electricity and Magnetism
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+q–q

Figure 2.2 Electric dipole.

A

n

Figure 2.3 Gaussian pillbox for calculating the field of an infinite
charged sheet.

In a second common class of problems, you are asked
to find the electric field or force of some configuration at a
point very far from the origin. A standard example (which
we’ll treat in a different context in Section 2.4) is two point
charges separated by some distance. Suppose we have a
charge q and a charge −q separated by a distance 2d, and
choose coordinates such that q is at (d, 0, 0) and −q is at
(−d, 0, 0) (Fig. 2.2).
The potential at some point (x, 0, 0) on the x-axis is

V(x) = 1
4πε0

(
q

|x− d| −
q

|x+ d|
)
.

Taylor expanding this expression for x � d tells you
approximately how the field behaves far away. Note that the
lowest-order terms in the Taylor expansion cancel, but the
next nonzero term in the Taylor series does not vanish and
gives a much better approximation.

● Planes. The classic example here is an infinite flat sheet of
charge with surface charge σ . By symmetry, the field must
be constant in magnitude: the sheet is infinite, so there is no
local measurement you can do to tell you how close you are
to it, and it looks the same from every distance. Again by
symmetry, the field must point perpendicularly away from
the sheet, since that is the only preferred direction in the
problem. Now we draw a Gaussian “pillbox” surrounding
part of the sheet, which cuts out an area A (Fig. 2.3).
The thickness of the pillbox doesn’t matter, because,

as we argued, E has constant magnitude. The integral in
Gauss’s law is

∮
E · dS = 2|E|A (one from each of the

two opposite faces of the pillbox), the charge enclosed is
Q = σA, and solving for E we find

E = σ

2ε0
n̂, (2.13)

where n̂ is a unit normal pointing away from the plane. This
particular result shows up so often that it’s best tomemorize
it, so we’ve given it an equation number. You’ll see below in

r

l

λ

Figure 2.4 Cylindrical Gaussian surface for calculating the field of
an infinite line charge.

Section 2.1.5 how precisely this same argument can be used
to get the boundary conditions for E at a surface.

● Line charges and cylinders. Problems involving infinite
line charges and cylinders are usually solved with cylindri-
cal Gaussian surfaces. For example, consider the electric
field due to an infinite line of charge with charge per unit
length λ (Fig. 2.4).
The field of a point charge points radially outward, but

here we have an infinite line charge; by symmetry, the field
can’t have a component along the line, and by the Maxwell
equation ∇ × E = 0, the only option is for it to point in
the r̂ direction in cylindrical coordinates. From Gauss’s law
applied to a cylinder of height l and radius r surrounding
the line, we have

|E|2πrl = λl
ε0
,

|E| = λ

2πε0r
,

E = λ

2πε0r
r̂.

Notice that the height l of the cylinder cancels out when
we express the result in terms of the linear charge density λ.

● Spherical surfaces. Concentric spherical surfaces are
another common geometry in electrostatics problems. Sim-
ilar to the case of the cylinder, solutions can usually be
obtained by using a sphere as the Gaussian surface to com-
pute the electric field at each radius. See Examples 2.1
and 2.2.

2.1.5 Boundary Conditions

In the previous section, we learned everything needed to cal-
culate electric fields and potentials in the bulk of regions –
such as inside or outside of a sphere. But what about on the
boundary between regions? Figuring out how fields behave on
boundaries between regions of space is so important that it
deserves its own section. Luckily, like everything else, it too
follows fromMaxwell’s equations.
Let’s say that we have a continuous surface surrounded by

vacuum, and we zoom in so close that the surface appears flat.
We now have a plane, which we can use to define E‖, the two
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EXAMPLE 2.2

Find the electric field created by a solid sphere of radius a with charge density ρ(r) = αr and a spherical cavity of
radius b at its center (Fig. 2.5).

a

b

ρ(r) = αr

Figure 2.5 A spherically symmetric charge distribution with a cavity at the center.

For r < b, there is no electric field because a spherical Gaussian surface lying entirely inside the cavity contains
no charge. This is an important result in its own right: the electric field inside an empty spherically symmetric cavity
is always zero. In the solid region b < r < a, we need to use Gauss’s law with a sphere as our Gaussian surface, so
we can use the usual trick of pulling out |E| from the surface integral. The electric field is given by∮

S
E · dS = 1

ε0

∫ r

b
ρ(r′)d3r′,

|E| (4πr2) = 4π
ε0

∫ r

b
αr′3dr′,

|E| (r2) = α

4ε0
(r4 − b4),

E = α

4ε0
r4 − b4

r2
r̂.

In the outermost region r > a, the electric field is just given by Coulomb’s law for the total charge in the sphere.
The total charge in the sphere is just the integral of the charge density:

Q =
∫ a

b
ρ(r′)d3r′

= 4π
∫ a

b
αr′3dr′

= πα(a4 − b4),

so the electric field is given by

E = α(a4 − b4)
4ε0r2

r̂.

Notice that the electric field is everywhere continuous: at r = b our expression for the field in the region b <

r < a gives 0, as did our argument for the field in the region r < b. Similarly, at r = a, both expressions give
α(a4 − b4)/(4ε0a2) for the magnitude of the field. As we will see in Section 2.1.5, the continuity of E is due to the
fact that there are no surface charges in this problem, only volume charge densities.
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E

E⊥n

E||

Figure 2.6 Parallel and perpendicular components of E at a
boundary.

components of the three-component vector E that are parallel
to this plane, and E⊥, the third component perpendicular to
the plane. Mind the notation: E‖ is bold because it’s a (two-
component) vector, but E⊥ is a one-component scalar. Next,
let’s integrate over a narrow rectangular path with long edges
parallel to the surface and short edges perpendicular to the
surface. Using the second of Maxwell’s equations in integral
form, equation (2.10), the line integral implies that

E‖out − E‖in = 0, (2.14)

where Eout is the electric field just outside the surface, and
Ein is the field just inside the surface. This is true since the
lengths of the paths perpendicular to the surface can be taken
to be arbitrarily small, and the other two opposite sides of the
rectangle contribute equally and opposite in the integral.
Next, let’s consider the same surface, but integrate over the

surface of a Gaussian pillbox and use Gauss’s law, equation
(2.9). If we take the height of the box to be extremely small,
then, using the same arguments as in the plane symmetry dis-
cussion in the previous section, we end up with the condition
that

E⊥out − E⊥in =
σ

ε0
, (2.15)

where σ is the surface charge density. Equations (2.14) and
(2.15) let you patch together electric fields in different regions
of space across surfaces, where strange things may be happen-
ing. A simple, classic example of why this is useful is the case
of conductors, which we discuss below in Section 2.1.6.
Before we do that, however, we should talk about how

the potential behaves at boundaries, since working with the
potential is almost always easier than working with the elec-
tric field. It’s not difficult to show that equations (2.14) and
(2.15) and the fact that E = −∇V imply that

V is always continuous.

Similarly, the first derivative of V is constrained so that

Derivatives of V are continuous, except at charged surfaces.

These rules for the potential and electric field boundary con-
ditions will allow you to match solutions across any type of
boundaries.

2.1.6 Conductors

While the GRE might throw a question or two your way
that relies on knowing formal aspects of boundary condi-
tions, you are most likely to use these ideas when solving
problems involving conductors. An ideal conductor is a mate-
rial where charge can flow freely without resistance: usually
“metal” and “conductor” are synonymous for the purposes of
the GRE. There is only one fact you really need to know about
conductors:

V is constant throughout a conductor.

From this fact, you can derive four important corollaries:

● The electric field inside a conductor is zero.
● The net charge density inside a conductor is zero.
● Any net charge on a conductor is confined to the surface.
● The electric field just outside a conductor is perpendicular
to the surface.

These properties are a direct consequence of the fact that an
ideal conductor has no resistance to the movement of charges.
If there were any bulk electric fields, free charges would expe-
rience a force until they had arranged themselves to cancel out
any electric fields.
On theGRE, youwill occasionally work with grounded con-

ductors. Usually a conductor is said to be grounded if it is
connected to the reference for the electric potential. In other
words, something is grounded if it is connected toV = 0. You
can think of this as setting the constant reference scale for
the potential. The other important property of the idealized
ground in electrostatics problems is that it is an infinite sink
and source of charge. So, if you put a charge near a grounded
conductor, some charge will be induced on the grounded
conductor with no cost in energy. See Example 2.3.

2.1.7 Method of Images

The examples that we have discussed so far have been sim-
plified by totally spherical, cylindrical, or planar geometry
which allowed us to use simple arguments with Gauss’s law.
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EXAMPLE 2.3

As an example of a problem involving conductors, consider the simple example of a thick, uncharged, conducting
shell of inner radius r1 and outer radius r2, with a point charge q in the center, shown in Fig. 2.7. Further suppose
that the potential at infinity is zero, V(r = ∞) = 0. What is the potential everywhere in space?

r1

r2

q

Figure 2.7 Conducting shell with point charge q at center.

From Coulomb’s law, the field in the region 0 < r < r1 is simply

E(r) = q
4πε0r2

r̂.

Inside the conductor, the electric field must be zero for r1 < r < r2:

E(r) = 0.

Outside of the conductor (r > r2), we can use Gauss’s law to find the electric field. The conductor is uncharged, so
the enclosed charge is just q. Thus, the electric field is

E(r) = q
4πε0r2

r̂.

If we specify that the potential at infinity is 0, then the potential outside the conductor is

V(r) = q
4πε0r

, r > r2.

Inside the conductor, we demand that V be constant. By continuity at r = r2, we must have

V(r) = q
4πε0r2

, r1 < r < r2.

Finally, inside the shell (r < r1), the potential is of the form

V(r) = q
4πε0r

+ const.

Requiring continuity at r = r1, we determine the value of the constant and find that the potential is

V(r) = q
4πε0r

+ q
4πε0

(
1
r2
− 1

r1

)
, r < r1.

Since the electric field is zero inside the conductor, we conclude from Gauss’s law, after integrating over a sphere
of radius r1 < r < r2, that

Qenc = 0.

Since there is a charge q at the center, the charge on the inner surface of the conductor must be −q. This charge is
said to be induced by the charge at the center. Since the conductor has zero net charge, theremust be a corresponding
charge of +q uniformly distributed on the outer surface of the conductor. This gives us exactly the field structure
we have shown.
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(a) Charge and grounded conducting plate (b) Image charge

+q +q

–q

d 2d

Figure 2.8 Setup for the method of images.

As you might imagine, solving for the potential and induced
charges of a configuration without this kind of total symme-
try can be extremely complicated. In general, this is certainly
true, but there are many tricks for systematically dealing
with more complex geometries, particularly involving con-
ductors. The only one of these methods that you are likely
to need for the GRE is the so-called “method of images,”
which relies on a property of Laplace’s equation (2.7), the
uniqueness of solutions: if you can guess the potential V and
it satisfies the boundary conditions, it must be the correct
answer.
Consider the case of a point charge a distance d above

an infinite, grounded conducting plane (Fig. 2.8(a)). Naïvely,
this looks complicated! The point charge induces some com-
plicated surface density of charge on the conductor. The
arrangement does not have spherical or planar symmetry so
we cannot rely on Gauss’s law easily. But note that the poten-
tial on the surface must be constant because the surface is
a conductor, and it must be zero because the conductor is
grounded. Now switch gears for a moment and imagine a
totally different charge distribution, that of the original charge
q and a so-called “image” charge −q at z = −d (Fig. 2.8(b)).
The potential on the plane z = 0 is exactly the same (namely
V = 0) for these two charges as in the case of the conduc-
tor! Furthermore, if we restrict ourselves to the region z ≥ 0,
the sources for Poisson’s equation are also the same, namely
a single point charge q at z = d in both cases. Therefore,
by uniqueness, the potential V produced by the charge and
the image charge must be the solution to the original prob-
lem with the conductor, since it satisfies the same boundary
conditions at z = 0 with the same sources.
The essence of the method of images is this: whenever we

have a conductor, if we can find an arrangement of point
charges that exactly reproduces the potential on the surface,
then the potential everywhere will be the same as if there
were no conductor. But you must beware to place image

charges only below the conductor, in the region that would
be inaccessible in the original setup; if you placed them in
the same region as the original charge, you would be adding
different sources to Poisson’s equation and solving a differ-
ent problem. The only example you are likely to encounter on
the GRE is the case of a grounded, conducting, infinite plane
with some charges on one side. In this case, for each charge,
just put an opposite mirror charge on the other side of the
plane at the same distance away and you will have the poten-
tial immediately. While it is good to know this prescription,
understanding why it works more generally is important and
might come in handy for other problems.
There is one very important subtlety about the method of

images. When calculating anything involving work or energy,
remember that

There is no energy cost to moving an image charge.

The image charge is just a fake construct, a trick to get the
correct potential; in reality, there is no field below the con-
ductor, and so no work can be done on anything below the
conductor. This can get confusing because the position of the
image charge depends on the position of the real charge. If
you move the real charge in towards the conducting plate,
the image charge moves with it, but work is only done on
the real charge. A useful mnemonic that lets you forget about
this subtlety is to calculate the electric field directly from the
image configuration. In other words, do not calculate the elec-
tric field by taking the derivative of V , because doing so will
implicitly count the motion of the image charges as contribut-
ing to the energy. A more detailed discussion of this subtlety
can be found in Griffiths, Section 3.2.3.

2.1.8 Work and Energy in Electrostatics

As in classical mechanics, using work and energy considera-
tions wherever possible often saves time and energy (no pun
intended) when problem solving. The same is true in elec-
trostatics. Let’s start with point charges and then generalize
to other configurations. The work required to put together n
point charges is

W = 1
2

n∑
i=1

qiV(ri), (2.16)

where qi is the charge of each point charge and V(ri) is the
potential due to all of the charges, but evaluated at the loca-
tion of the ith point charge. The intuition for this formula is
that each of the qiV(ri) terms gives us the potential energy
between one charge and every other charge. When we sum up
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EXAMPLE 2.4

Consider a point charge at the center of a thin, grounded, conducting, spherical shell of radius a (Fig. 2.9(a)). The
shell is removed and taken to infinity (Fig. 2.9(b)). How much work is done during this process?

(a) Charge with shell

q

a

q

(b) Charge alone

Figure 2.9 Change in energy due to a conducting shell.

We can just compute the change in energy for the two configurations. When the shell is in place, there is no field
outside the shell, so the energy is just

U1 = ε0

2

∫ a

0
|E|2 4πr2dr.

After the shell is gone, the energy is

U2 = ε0

2

∫ ∞

0
|E|2 4πr2dr.

The work done must be

W = U2 − U1 = ε0

2

∫ ∞

a
|E|2 4πr2dr.

Using Coulomb’s law, this quantity is easy to evaluate. But beware! If we had actually tried to evaluate U1 or U2
explicitly before taking the difference, we would have found them to be infinite! This is an important point: the
total energy due to a point charge is infinite. The reasons for this are rather complicated and deep, so we will avoid
discussing them. Nevertheless, this example shows that the difference between formally infinite quantities still has
meaning in electromagnetism.

all of these contributions, we double count the energy so we
need to divide by 2 to get the actual work. It should not be
too mysterious to see that when we’re not dealing with point
charges, the work becomes an integral:

W = 1
2

∫
ρ(r)V(r)d3r. (2.17)

We showed that it takes work to move charge around, but
there’s also energy stored in the fields themselves. The energy
is just

UE = ε0

2

∫
|E|2 d3r. (2.18)

This simple formula can be extremely useful, as shown in
Example 2.4.

2.1.9 Capacitors

Suppose you have two conductors with different net charges
– for concreteness, give one +Q and the other −Q. This
gives rise to an electric field between the conductors, which
in turn puts them at different potentials, say 0 and V . (This is
a well-defined concept because potential is constant through-
out a conductor.) This arrangement is known as a capacitor.
In many practical cases, Q and V are proportional, and the
constant of proportionality is called the capacitance C:

Q = CV . (2.19)

You’ll often hear the statement “C only depends on the geom-
etry of the problem.” All this means is that the proportionality
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d

A+Q

–Q

Figure 2.10 Parallel-plate capacitor.

betweenQ andV holds with the same constantC independent
of how the charge got there; it depends only on the shapes and
relative orientation of the two conductors.2

Finding the capacitance is usually straightforward: given
some conductors, imagine putting charges ±Q on them, find
the potential between them, and extract C. The standard
example is two parallel plates of area A a distance d apart.
We’ll assume that A � d2 such that the plates are effec-
tively infinite and the field between them is constant. Placing
charges ±Q on the plates gives them surface charge densi-
ties σ = ±Q/A. A straightforward application of Gauss’s law
in a plane geometry gives the electric field of each plate as
E = σ

2ε0 n̂, where n̂ is a unit vector pointing away from the
surface. The fields of the two plates cancel each other outside,
but reinforce each other between the plates, such that the total
field is |E| = Q

Aε0
pointing from the positive to the negative

plate. Doing the line integral along a straight line between the
two plates to get V gives V = Qd

Aε0
, or rearranging,

Q = V × Aε0

d
.

As promised, Q is proportional to V , so we extract the capac-
itance:

C = ε0A
d

(parallel-plate capacitor). (2.20)

This result is common enough and important enough that
we give it an equation number. Note that it only depends on
the geometric constants A and d, along with ε0, which comes
along for the ride in any electrostatics problem. By the way,
you should reach the point where every step of the derivation
is intimately familiar and obvious: the application of Gauss’s
law to an infinite sheet of charge, integrating E to find the
potential, and checking that the boundary conditions for E
are satisfied at the surfaces of the conductors are all part of
classic GRE problems.
The device we have just described is called a parallel-plate

capacitor. Along with the resistor and the inductor, it is one
of the three building blocks of elementary circuits. It has the
interesting property that it produces a strong, uniform electric
field in a limited region of space: the field is Q/Aε0 between

2 Note that C is an intrinsically positive quantity, so you often don’t have to
worry too much about sign conventions for V .

the plates, and zero everywhere else. This lets it store electrical
energy; indeed, using (2.18), we find that the energy stored in
the field of a charged capacitor is

UC = ε0

2

(
Q2

A2ε20

)
(Ad) = 1

2
Q2d
Aε0

= 1
2
Q2

C
.

This can be interpreted as the energy it takes to remove a
charge Q from one (initially neutral) plate and put it on the
other plate. Using the relation Q = CV this can be expressed
in a couple of useful ways:

UC = 1
2
Q2

C
= 1

2
CV2. (2.21)

You should become intimately familiar with capacitors: they
are completely defined by (2.19)–(2.21), so learn those equa-
tions well. There are other arrangements of conductors that
act as capacitors: in such cases, both (2.19) and (2.21) still
hold, but you have to derive the analogue of (2.20). One exam-
ple is two concentric spherical conducting shells, and another
example is treated in the problems below.

2.1.10 Problems: Electrostatics

1. A point charge q is brought to a distance d from a grounded
conducting plane. What is the magnitude of the force on
the plane from the point charge?

(A) q2/(16πε0d2)
(B) q2/(8πε0d2)
(C) q2/(4πε0d2)
(D) q2/(ε0d2)
(E) 0

b

a
λ

2. A cylindrical wire of charge of radius a and charge per unit
length λ is at the center of a thin cylindrical conducting
shell of radius b. What is the capacitance per unit length of
this configuration?

(A) ∞
(B) 2πε0ab/(b2 − a2)
(C) 2πε0λ/ ln(b/a)
(D) 2πε0/ ln(b/a)
(E) 0
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3. A capacitor is formed from two square plates of edge length
a and separation d, with d � a. If all linear dimen-
sions of the capacitor are tripled, by what factor does the
capacitance change?

(A) 1/3
(B) 1
(C) 3
(D) 9
(E) 27

4. What is the work needed to assemble four point charges q
into a regular tetrahedron of side length a?

(A) q2/(4πε0a)
(B) q2/(2πε0a)
(C) q2/(πε0a)
(D) 3q2/(2πε0a)
(E) 3q2/(πε0a)

5. The electric field inside a sphere of radius R is given by
E = E0z2ẑ. What is the total charge of the sphere?

(A) π
2 ε0E0R4

(B) πε0E0R3

(C) 2πε0E0R4

(D) 4πε0E0R3

(E) 0

2.2 Magnetostatics

So far, we have discussed configurations with static electric
fields. There is a very similar story for static magnetic fields,
which are produced by constant currents of charge. This is a
slight abuse of terminology, since moving charges (not static
ones) are what create currents, but we’re assuming that there
are enough individual charges all moving together that the net
current they create is constant in time; this is known as the
steady-current approximation.

2.2.1 Basic Tools

The fundamental equations for these problems are the other
two ofMaxwell’s equations, in the absence of changing electric
fields:

∇ · B = 0, (2.22)

∇ × B = μ0J (magnetostatics). (2.23)

The first equation is simply the statement that there are
no magnetic monopoles, which is true in general, not just

Ienc

C

Figure 2.11 Example of a curve enclosing a current as in Ampère’s
law.

in magnetostatics. The second equation describes how cur-
rents act as sources for magnetic fields. As with Maxwell’s
equations for electrostatics, we can write these equations in
integral form:∮

S
B · dS = 0, (2.24)∮

C
B · dl = μ0Ienc (magnetostatics), (2.25)

where S is a closed surface and C is a closed curve, just as
in equations (2.9)–(2.10), and Ienc is the current piercing the
surface defined by C. Equation (2.24) is sometimes referred
to as Gauss’s law for magnetism, and, just like the electric
case, the left-hand side is known as the magnetic flux. We
should emphasize that S is a closed surface, which means that
it doesn’t have any boundary: just picture a floppy ball. This
distinction will be important when we discuss magnetic flux
through surfaces that are not closed in Section 2.3.2. Equation
(2.25) is known as Ampère’s law and will be discussed in more
detail in the following Section 2.2.2.
Similarly to the case of electrostatics, we can construct a

potential for B. However, since ∇ × B �= 0, we cannot
use a scalar potential. We are instead forced to use a vector
potential, which has the defining property that

∇ × A = B. (2.26)

Since the vector potential has three components (just like B),
it isn’t as useful as the scalar potential V for calculations.
The vector potential shows up so rarely on the GRE that
it’s not even worth discussing further apart from its defining
equation.
In addition to Maxwell’s equations, we can completely

determine the effects of fields on test charges with the Lorentz
force law. This gives the force on a test charge q due to a
magnetic field:
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FB = qv× B. (2.27)

Generalizing this to the force on a wire carrying current I, we
have

dFB = Idl× B. (2.28)

The direction of the force is often more important than the
magnitude on the GRE, so now is a good time to mention
the famed right-hand rule: to evaluate the cross product, put
the fingers of your right hand in the direction of the wire,
curl them around toward the direction of B, and your thumb
will point in the direction of FB. Alternatively, you can use
the rules appropriate to right-handed coordinate systems:
ẑ × r̂ = φ̂ in cylindrical coordinates, θ̂ × φ̂ = r̂ in spherical
coordinates, and so on.
Problems in magnetostatics almost always fall into three

general classes:

● Finding the field due to a configuration of currents
● Finding forces on wires or charges due to fields
● Finding energies of fields

The first class can generally be tackled with Ampère’s law or
the Biot–Savart law (discussed below). The second class can
usually be solved with some variant of the Lorentz force law.
The final class can be solved by integrating to find the energy
in a field configuration. Obviously, these are just general
guidelines, but they help to put these topics in perspective.

2.2.2 Ampère’s Law and the Biot–Savart Law

Suppose that we have some collection of wires carrying cur-
rents. What is the magnetic field produced by the wire config-
uration? This question can be answered by Ampère’s law and
the Biot–Savart law.
Ampère’s law is generally only useful for configurations that

possess a high degree of symmetry, and can be thought of as
analogous to Gauss’s law for electrostatics. Referring back to
equation (2.25), we want to pick the closed curve C such that
the magnetic field is parallel to the path and constant. This
allows us deduce the magnetic field by

|B|
∮
C
dl = μ0Ienc,

|B| = μ0Ienc
L

,

where L is the length of the curve C (for example, 2πr for an
Amperian loop at a distance r from a current-carrying wire).
This method relies crucially on being able to choose a path
along which the magnetic field is constant, which is why it

I
dl

Origin

r

r′

Figure 2.12 Calculating magnetic field from the Biot–Savart law.

only works in highly symmetric problems. When we can use
it, however, it dramatically simplifies our work.
In cases that are not so symmetric, we can use the Biot–

Savart law instead, integrating over all of the current elements
in a configuration. The Biot–Savart law reads3

B(r) = μ0I
4π

∫
dl× r̂′
r′2

. (2.29)

The notation in this expression can be a bit cryptic and
deserves some explanation. Referring to Fig. 2.12, r is the
point where the field is evaluated, the integration is over the
entire wire producing the magnetic field, dl is the line element
along the wire, r′ is the vector pointing from the line element
to r, and I is the current carried in the wire. This is similar
to (2.8), which gives the potential sourced by a charge distri-
bution; there is an analogous expression for the electric field
as an integral over a charge configuration, but it’s rarely used
since we have the advantage of the scalar potential in the elec-
trostatics case. The Biot–Savart law is clearly a good deal more
complicated than Ampère’s law, so avoid it unless you have
no choice. Chances are good that it will arise at least once in
a simple form on the GRE; if it does, the line element dl will
likely take some simple form such as a square or a circle. You’ll
see an example in the problems at the end of this section.

2.2.3 Standard Magnetostatics Configurations

As in the case of electrostatics, there are a few magnetostatic
configurations that seem to come up over and over again. This
tends to occur because there just are not very many configu-
rations that one can solve analytically in a reasonable amount
of time. This is lucky for you! If you can master the following
configurations, you should have a good general intuition for
most problems that the GREwill throw at you. Our discussion
will be extremely brief, because you probably covered these
examples at least twice: once in your freshman physics course,

3 This form of the equation assumes that the current is confined to a wire
and has constant magnitude I, which can be pulled outside the integral.
As far as we know this will always be the case for GRE problems.
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I

r

B

Figure 2.13 Circular Amperian loop for calculating the magnetic
field of an infinite wire.

and then again in an advanced electromagnetism course. We
recommend going back and reviewing this material in detail,
just to convince yourself that the symmetry arguments make
sense; but once you do this, you can forget them and just
remember the problem-solving techniques for the GRE.

● Wires. Since there are no point charges in magnetostatics,
the wire is the simplest example. Consider an infinite wire
along the z-axis carrying a current I in the positive ẑ direc-
tion (Fig. 2.13). Draw an Amperian loop of radius r around
the wire, so the current enclosed is I. By (cylindrical) sym-
metry, the B-field must only be a function of the distance
r from the wire. Since we know B has a curl, we can guess
that it “curls” around the wire in a direction dictated by the
right-hand rule; in this case, the φ̂ direction.
This means that it is always parallel to the Amperian

loop, so we can use the trick described above and pull out B
from the integral in Ampère’s law:

|B|(2πr) = μ0I =⇒ B = μ0I
2πr

φ̂. (2.30)

This result shows up very often and should be memo-
rized.
A common generalization is a thick wire with a volume

current density that changes with radius, such that the cur-
rent enclosed changes with radius inside the wire. Note that
the wire has to be infinite for these symmetry arguments to
work: to find the field of a finite wire, you have to go all the
way back to the Biot–Savart law.

● Solenoids. The previous example had a straight line of cur-
rent and a circular Amperian loop surrounding it. Now
imagine the opposite scenario: take a bunch of tightly
wound circular coils (“turns”) of wire carrying current in
the φ̂ direction, stack the coils in a cylinder, and draw a
rectangular Amperian loop with one vertical side of length
L inside the cylinder and the other outside (Fig. 2.14).
Various symmetry arguments, which you can find in

Griffiths, tell you that the field must point along the axis
of the cylinder and be constant inside. If there are n turns

B

L

Figure 2.14 Rectangular Amperian loop for calculating the
magnetic field of a solenoid.

r

Figure 2.15 Example of a toroid. The dashed circle inside the toroid
is a typical Amperian curve which can be used to solve for the
magnetic field inside the toroid.

per unit length, then the only nonzero term in Ampère’s law
is from the one inside the cylinder, which gives you BL. The
current enclosed is InL, so setting these equal gives

B = μ0nI (solenoid). (2.31)

The direction of the field can be found, as usual, with the
right-hand rule: curl your fingers in the direction of the
current going around the coils, and your thumb points in
the direction of B. This device, with the coils stacked in a
cylinder, is called a solenoid, and we will discuss it in much
more detail in Section 2.3.3. By the way, applying the same
arguments to an Amperian loop outside the cylinder tells
you that the field is identically zero outside, so, just like a
capacitor, the solenoid confines a strong uniform field to a
limited volume.

● Toroids. If you bend the solenoid cylinder around into a
circle like a donut, you get a toroid (Fig. 2.15). Once again,
symmetry arguments tell you that the field still points along
the axis of a cylinder, which has now been bent around into
the φ̂ direction. Drawing a circular Amperian loop in the
plane of the tube, just as in the wire example above, gives
you

B = μ0NI
2πr

(toroid), (2.32)

where N is the total number of turns. Note that the field is
no longer constant, but depends on r, the distance from the
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center of the toroid to the point inside where we are mea-
suring the field. Notice also that this result is independent
of the cross-sectional shape of the toroid, so long as it is
constant. Just as with a solenoid, the field vanishes outside
the volume enclosed by the loops of wire.

2.2.4 Boundary Conditions

We can also study the boundary conditions for magneto-
statics, in complete analogy to the boundary conditions for
electrostatics. They are slightly more complicated, but luck-
ily they’re not needed as frequently. As in Section 2.1.5, let’s
zoom into the surface of a boundary so that it can be taken to
be flat, and define B‖ as the two-component vector parallel to
the surface, and B⊥ as the component normal to the surface
(Fig. 2.16). If we put a cylinder across the surface and evaluate
using equation (2.24), we find that the normal component of
the magnetic field must be continuous:

B⊥out − B⊥in = 0. (2.33)

Using equation (2.25), we can integrate over a narrow
rectangle around the surface. To be completely general, let’s
suppose that there is some current density K on the surface,
and let’s orient the plane of our loop to be perpendicular to
this surface current. If we take the sides of the rectangle per-
pendicular to the surface to be arbitrarily small, then we can
neglect its contribution to the integral, and we are left with
the boundary condition for the parallel component of the
magnetic field:

B‖out − B‖in = μ0K× n̂, (2.34)

where K is the surface current density and n̂ is a unit vector
pointing perpendicular to the surface, from “in” to “out.”
A goodmnemonic to remember these equations is to notice

that they’re sort of the reverse of the analogous electrostatic

B

B⊥n

B||

K

Figure 2.16 Parallel and perpendicular components of B at a
boundary where surface current K flows along the boundary.

boundary conditions (2.14) and (2.15): normal B becomes
parallel E and vice versa, and ε0 goes in the denominator
while μ0 goes in the numerator. Also, note that σ (the sur-
face charge density) is a scalar, while K (the surface current
density) is a vector; this means that σ must be related to the
scalar E⊥, and K is related to the vector B‖.

2.2.5 Work and Energy in Magnetostatics

Unlike electric fields, magnetic fields do no work. This can be
seen immediately from the Lorentz force law (2.27): the cross
product v×Bmeans that the force is always perpendicular to
the velocity, the speed of a particle cannot increase and B does
no work. This is the cause of much conceptual confusion, as
there are many standard problems where work is being done
by something (usually, an external source or gravity), but it’s
not the magnetic field. However, magnetic fields store energy
just like electric fields:

UB = 1
2μ0

∫
|B|2 d3r. (2.35)

This is identical to the analogous expression (2.18) for electric
fields except for the prefactor.

2.2.6 Cyclotron Motion

Even though magnetic fields do no work, they can still change
the direction of a charged particle’s motion. The most com-
mon situation is the motion of a charge q with mass m in a
uniform magnetic field B = Bẑ. Suppose the particle moves
with velocity v = vŷ. Then evaluating the cross product,

F = qvB(ŷ× ẑ) = qvBx̂.

The force is constant and in the x̂-direction, which is per-
pendicular to the particle’s motion. As the particle begins to
accelerate in the x̂-direction, the force will remain perpendic-
ular thanks to the cross product, so what we have is uniform
circular motion: a charged particle in a constant magnetic field
will move in a circle confined to the plane with normal parallel
to the B field. Actually, if the particle has some initial veloc-
ity parallel to the magnetic field, this velocity component will
be unchanged because of the cross product. Thus the most
general motion in a constant magnetic field is a helix, with
the velocity perpendicular to the magnetic field v⊥ playing the
role of v above.
By using the uniform circular motion formula from Section

1.2.1, you can easily work out the radius of the circle:

R = mv
qB

, (2.36)
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and the angular frequency, known as the cyclotron frequency:

ω = qB
m

. (2.37)

Amusingly, the formula for the cyclotron radius remains
the same even at relativistic velocities, provided we replace
the numerator mv with the relativistic momentum p (see
Chapter 6).

2.2.7 Problems: Magnetostatics

a

1. A wire consists of a half circle whose ends extend per-
pendicular to the circle as shown above. If current I flows
downward through the wire, what is the magnitude of the
magnetic field at the center of the circle?

(A) μ0I/(4a2)
(B) μ0I/(4a)
(C) μ0I/a
(D) 0
(E) μ0I/(4πa)

x
y

z
a

d

I

I

2. Two circular loops of wire, both with radius a, are oriented
parallel to the xy-plane with their centers at (0, 0,−d) and
(0, 0, d), where d � a. If both wires carry clockwise cur-
rents, which best describes the direction of the force from
the loop at z = d on electrons in the loop at z = −d?
(A) Radially inward
(B) Radially outward
(C) In the+ẑ direction
(D) In the−ẑ direction
(E) There is no force.

3. What is the magnetic force per unit length between two
parallel wires, separated by a distance d, each carrying
current I in the same direction?

(A) μ0I/(2πd), attractive
(B) μ0I/(2πd), repulsive
(C) μ0I2/(2πd), attractive
(D) μ0I2/(2πd), repulsive
(E) μ0I2/(2πd2), attractive

I
R

a

4. What is the magnetic energy stored in a toroid of wire with
a square cross section of side length a, N total winds, inner
radius R, and current I?

(A)
μ0N2I2a

4π
ln
(
R+ a
R

)

(B)
μ0N2I2R

4π
ln
(
R+ a
R

)

(C)
μ0N2I2a

2π

(D)
μ0N2I2a

4π

(E)
μ0N2I2R

4π

2.3 Electrodynamics

So far we have given a treatment of how static electric fields
and magnetic fields behave. The story becomes more com-
plicated as we fill in the final piece of the puzzle and ask
what happens when charges and currents – the sources of
electromagnetic fields – move and change in time.

2.3.1 Maxwell’s Equations

This story is summarized by the complete Maxwell’s equa-
tions:

∇ · E = ρ

ε0
, (2.38)

∇ · B = 0, (2.39)
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∇ × E = −∂B
∂t

, (2.40)

∇ × B = μ0J+ μ0ε0
∂E
∂t

. (2.41)

The only changes from the static case are the time derivative
terms in equations (2.40) and (2.41) which describe how a
changing magnetic field produces an electric field, and how a
changing electric field produces a magnetic field. The former
is called inductance, and the latter is called the displacement
current, also known as Maxwell’s correction to Ampère’s law.
These are the main new effects that we must account for
when we deal with electrodynamics. As it turns out, the dis-
placement current is almost always too small an effect to be
measured, so we will focus our attention on induction, which
is much more practically important.

2.3.2 Faraday’s Law

Integrating both sides of equation (2.40) over a surface S
and using Stokes’s theorem, we find the integral form of the
equation: ∫

(∇ × E) · dS =
∮
C
E · dl = −d�B

dt
,

where �B = ∫
S B · dS is the magnetic flux through the (not

closed!) surface S with boundary C (a closed curve). In most
cases of interest, the curve C is a loop of current such as a
wire. The surface S can be any surface with C as the bound-
ary; see Fig. 2.17 for an example. The middle term of this
expression is just the electric potential around the loop (up
to a sign), and the right-hand side is the change in magnetic
flux. This expression is telling us that a changing magnetic
flux through a loop of wire sets up a potential (and therefore
a current) through the wire, much like a battery would. The
electric potential in this context is often called by the unfortu-
nate name electromotive force (emf) and denoted by E . Most

C

S

ΦB E

Figure 2.17 Example geometry described by Faraday’s law. A wire
along a curve C encloses a surface S, through which a changing
magnetic flux �B penetrates. A segment of the wire contains a
resistor, across which there is a voltage or emf E in response to a
changing magnetic flux. Note that the sign of the voltage must obey
Lenz’s law: the current induced by the emf must generate a magnetic
field that opposes the external change in flux.

often, it is only the emf E that matters, so you can stick to the
easier-to-remember form,

E = −d�B

dt
, (2.42)

provided you remember that (despite the notation) E is the
potential, not the electric field.
Equations (2.40) and (2.42) are collectively referred to as

Faraday’s law. There is, however, one critical additional twist
concerning the minus sign on the right-hand side of equa-
tion (2.42). This minus sign is often referred to as Lenz’s law.
The subtlety arises from the following problem. Imagine a
wire loop with an increasing magnetic flux from some exter-
nal source; Faraday’s law implies there is a current induced
in this wire. But the induced current in the wire also sets up a
magnetic field itself. If both the external magnetic field and the
magnetic field from the wire point in the same direction then
there will be a runaway increase in magnetic field and current,
violating conservation of energy! Clearly, energy conservation
requires that these two fields point in opposite directions. This
is the origin of the minus sign and the essential content of
Lenz’s law:

Induced currents always oppose changes inmagnetic flux.

If you calculate everything correctly and use a minus sign
in equations (2.40) and (2.42), then you should obtain the cor-
rect answer. But always check to make sure that the direction
of current in your final solution does not end up violating
conservation of energy.

2.3.3 Inductors

When two current loops are positioned close to each other,
a changing current in one produces a time-varying magnetic
field that can influence the other and vice versa. The flux �21

through loop 2 is proportional to the current I1 in loop 1 via

�21 = M12I1, (2.43)

where M12 is a constant entirely dependent on geometry and
known as themutual inductance. It turns out thatM12 = M21,
so this relationship is symmetric: �12 = M21I2 = M12I2.
While mutual inductance rarely appears on the GRE, it

is related to a much more common quantity that almost
certainly will appear in some form on every exam: self-
inductance. The self-inductance (or simply inductance) is
generally defined to be the constant L in the expression

�B = LI, (2.44)
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in which the magnetic flux through an arrangement of wires,
where the field is produced by the wires themselves, is propor-
tional to the current carried by the wires. This immediately
implies that

E = −LdI
dt
, (2.45)

where I is the current. The self-inductance of an arrange-
ment of wires is the magnetic analogy of the capacitance of
an arrangement of conductors, and, as with capacitance, the
self-inductance is purely determined by the geometry of the
arrangement. If you ever need to calculate it directly, there is
a set of simple guidelines:

● Calculate the magnetic field through the current loop and
integrate it to obtain the magnetic flux. This can be done
with either the Biot–Savart law or Ampère’s law, but obvi-
ously Ampère’s law is always preferable when the geometry
permits.

● Plug the result into Faraday’s law, and identify the coeffi-
cient L.

In the same way that “capacitor” usually refers to the partic-
ular parallel-plate model, “inductor” usually means a solenoid
with a large number of turns carrying a current. Just like
a capacitor, it produces a strong uniform field in a limited
spatial region, and therefore is able to store energy. The
inductance of this solenoid is

L = μ0N2A
l

(solenoid), (2.46)

where N is the total number of turns, l is the length, and A
is the cross-sectional area. Rather than derive this for you,
we will leave the derivation as an exercise. The factor of N2

is peculiar, so we recommend memorizing this expression so
you don’t get tripped up on the exam.
Solenoids store magnetic field energy just as capacitors

store electric field energy. From equations (2.32) and (2.35),
we can compute the total stored energy in terms of the
inductance (2.46) and the current, which works out to

UL = 1
2
LI2. (2.47)

2.3.4 Problems: Electrodynamics

1. A circular loop of wire of radius a and resistance R is
oriented in the xy-plane. A uniformmagnetic field of mag-
nitude B points in the +ẑ-direction. If the loop of wire
is rotated about the x-axis with an angular frequency ω,

what is the average power dissipated by Joule heating in
the loop?

(A) π2a4B2ω2/2R
(B) π2a4B2ω2/R
(C) π2a4B2/2R
(D) 0
(E) πaBω/R

2. What is the inductance of a toroid with N winds, circu-
lar cross section of radius a, and overall radius R (from
the center of the torus to the center of the circular cross
section)? You may assume that a� R.

(A) μ0a2N/(2R)
(B) μ0aN2/2
(C) μ0a2N2/(2R)
(D) μ0aN/2
(E) μ0R2N/(8a)

B

xx = 0

Ry

3. A rod of mass m and resistance R is attached to friction-
less rails in the presence of a magnetic field of magnitude
B pointing out of the page, as shown in the diagram above.
The rod and rails form a closed electrical circuit. If the rod
is launched from x = 0 with velocity v0 to the right, at what
time t is the velocity of the rod v0/e? Assume that the rails
have negligible resistance and neglect the self-inductance
of the circuit.

(A) my/(R2B2)
(B) my/(2R2B2)
(C) mR/(y2B2)
(D) mR/(2y2B2)
(E) The rod never reaches this speed because it travels at

constant velocity v0.

4. A capacitor made from two circular parallel plates of area
A and separation d is connected in series to a voltage sup-
ply which maintains a constant current I in the circuit,
charging the capacitor. What is the magnitude of the mag-
netic field between the parallel plates, as a function of r,
the distance from the central axis of the plates? Assume r is
smaller than the radius of the plates.

(A) μ0rI/(2A)
(B) μ0I/(2πr)
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(C) μ0I/(2d)
(D) μ0Id/(2πr2)
(E) 0

2.4 Dipoles

There is one final parallel between electricity and magnetism
that is worth exploring. There are many cases when we are
confronted with a situation in which two opposite charges
are located very close to each other and we want to find the
field far away. (If you remember your chemistry from high
school, then you should know that a salt is a good exam-
ple of a dipole.) Since there are no magnetic monopoles,
most configurations of magnetic fields are dipoles. Although
the mathematical formalism is identical in both cases, we’ll
examine them one by one.

2.4.1 Electric Dipoles

If we have two opposite charges q and−q located at positions
r1 and r2 respectively (Fig. 2.18), then we can define the dipole
moment as

p = qr1 − qr2 = qd, (2.48)

where d is the vector from the negative to the positive charge.4

The dipole moment is a vector, so the dipole moment for
several dipoles is the vector sum of the individual dipole
moments. This leads to a trick for finding the dipole moments
of funny charge configurations: pair them up into dipoles, and
add up the vectors. More generally, for an arbitrary collection
of point charges we have

p =
∑
i

qidi.

r1

r2

d

q

–q

Figure 2.18 Two charges of opposite sign have a dipole moment
proportional to their charge and the displacement d between them.
The direction of the dipole moment points from the negative charge
to the positive charge.
4 Watch this sign convention! This is the opposite of the more familiar case
where electric fields point from positive to negative charges.

Or, most generally, for a charge density ρ(r), we have a dipole
moment

p =
∫

rρ(r)d3r. (2.49)

You can recover the expression for the dipole moment of two
opposite point charges±q by just substituting delta functions
for the charge density (try it yourself!). Dipoles have a nonzero
electric field, which we will not dwell on here because know-
ing the precise form doesn’t seem to be important for actually
doing GRE problems. The potential is much easier to work
with, and is simply

V(r) = 1
4πε0

p · r̂
r2

. (2.50)

Notice that the potential of a dipole goes as 1/r2, which is not
the same as the 1/r potential of a point charge! This comes
from the Taylor expansion mentioned in Section 2.1.4, but it’s
an important enough fact that it’s worth remembering on its
own. Since E is related to V by a derivative, this means that
the electric field of a dipole goes as 1/r3, rather than 1/r2.

Electric dipoles tend to align themselves with electric fields
because the negative part gets pulled in one direction and the
positive part gets pulled in the opposite direction. But since
pure dipoles have net charge zero, they are not accelerated by
electric fields – they just experience a torque. This torque is
given by

N = p× E. (2.51)

Since there is a torque, there is also a potential energy for a
dipole in an electric field:

U = −p · E. (2.52)

2.4.2 Magnetic Dipoles

Magnetic dipoles behave quite similarly to electric ones, with
one key conceptual difference. Magnetic dipoles are not com-
posed of two opposite charges because there are no magnetic
monopoles. Magnetic dipoles are pure and irreducible: if you
chop a magnetic dipole in half, you only get two magnetic
dipoles, not two monopoles.
Since we cannot build magnetic dipoles from monopoles

like the electric case, we typically build them out of current
loops. The magnetic dipole moment associated with a current
loop carrying current I is given by

m = IA, (2.53)

where A is a vector pointing normal to the surface subtended
by the current loop, with magnitude equal to the area of the
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surface. As always in this business, the direction of the nor-
mal is fixed by the right-hand rule, the direction your right
thumb points when your fingers curl around the direction of
the current. The torques and potential fields due to a dipole in
a magnetic field are analogous to the electric case:

N = m× B, (2.54)

U = −m · B. (2.55)

And, just as with electric dipoles, the magnetic field of a
magnetic dipole falls off as 1/r3.

2.4.3 Multipole Expansion

The idea of a dipole can be generalized with a tool known
as the multipole expansion, a series that gives a quantitative
measure to how “lumpy” a charge distribution is. If it has
a net charge, the first term in the series is nonzero; if it is
neutral but has a separation of charge within it, the second
term is nonzero; and so on. While it is unlikely that you will
have to compute anything with a multipole expansion, under-
standing it will help you guess correct answers. The potential
due to an arbitrary charge configuration is given by equation
(2.8). By expanding the fraction inside the integral in terms of
Legendre polynomials, we arrive at a general series expression:

V(r) = 1
4πε0

∞∑
n=0

1
rn+1

∫
(r′)nPn(cos θ ′)ρ(r′)d3r′.

This looks complicated, but the idea is that the first few Legen-
dre polynomials are quite simple, so it will be easy to evaluate
the first few terms of this series. Since the first few terms dom-
inate, this will often be a good enough approximation for the
problem we wish to solve. In addition, all the dependence on
r is now contained in the power series 1/rn+1, so the integral
that remains is “easy” in the sense that it only depends on the
coordinates r′ of the charge distribution.
The first two terms are very simple, in fact. The first term is

the monopole term, which is just given by the total charge of
the configuration:

V0(r) = 1
4πε0

Q
r
.

As promised, the second term is the dipole term:

V1(r) = 1
4πε0

p · r̂
r2

,

where p is defined by (2.49). While this discussion only dealt
with the scalar potential V , you could play the same game
with the vector potential A; in that case, by Gauss’s law for
magnetism, you would find that the monopole moment of a

current distribution automatically vanishes, and the first term
would be the dipole term (2.53).

2.4.4 Problems: Dipoles

1. Consider a pure electric dipole of moment p = pẑ. A small
test particle is located at (0, 0, z) and experiences an electric
field of magnitude E. What is the magnitude of the electric
field experienced by a test particle at (0, 0, 2z) from a dipole
of moment 2p?

(A) E/4
(B) E/2
(C) E
(D) 2E
(E) 4E

B

a

Iθ

2. Suppose that a current loop of area a carrying current i,
with moment of inertia I is placed in a uniform magnetic
field of magnitude B. The normal to the loop is initially
misaligned from the direction of the magnetic field by a
small angle θ . When the loop is released, what is the period
of oscillation?

(A) 2π
√
I/(iaB)

(B) 2π
√
i/(IaB)

(C)
√
IaB

(D) 2π/(IaB)
(E) 1/(IaB)

2.5 Matter Effects

In everything that we have done so far with electric and mag-
netic fields, we have implicitly assumed that we are working
in vacuum. This is rarely the case in the real world. Mat-
ter, for example, is often full of microscopic dipoles that can
align themselves to slightly cancel out electric fields. Simi-
lar effects occur with magnetic fields in many materials. The
behavior of electric and magnetic fields in matter used to be
muchmore important on the GRE ten or twenty years ago, but
these questions have gradually fallen out of fashion, parallel-
ing a similar development in undergraduate physics curricula.

 



54 Electricity and Magnetism

You are unlikely to see more than one question on your exam
related to matter effects, so our treatment here will be even
briefer than usual. In fact, the three most recently released
exams from ETS had only one question about matter effects
each, both times about capacitors and/or dielectrics.

2.5.1 Polarization

The primary effect of electric fields in matter is the dielectric
effect: small dipoles in a material become slightly polarized by
the presence of an external electric field. This can be described
by a quantity called the polarization P, which is the electric
dipole moment per unit volume. On the GRE, themost you will
be asked to do is calculate the electric field, given the polariza-
tion. This is straightforward: P gives rise to effective surface
and volume charge densities, known as bound charges:

σb = P · n̂, (2.56)

ρb = −∇ · P. (2.57)

Here, n̂ is the outward-pointing normal to the surface of
the polarized object. To calculate the electric field, just apply
Gauss’s law as usual to the bound charges σb and ρb, exploiting
whatever symmetry is appropriate to the problem.
The situation becomes considerably more complicated in

the presence of external electric fields, which will back-react
on the polarization. There are also analogous bound cur-
rents for magnetized materials. These scenarios are treated
in any advanced electrodynamics textbook, but are likely too
advanced for the GRE.

2.5.2 Dielectrics

Dielectrics are materials, such as insulators, that can be polar-
ized in an applied field, and thus slightly cancel the applied
electric field. This effect can be parameterized by making the
substitution

ε0 �→ ε = κε0 (2.58)

in all formulas (potential, electric field, etc.), where κ is known
as the dielectric constant. The most common situation is when
a dielectric is placed between the two plates of a parallel-plate
capacitor, and the capacitance becomes

C = εA
d
= κ

ε0A
d

. (2.59)

This is a common way to increase the capacitance of a capac-
itor.

2.5.3 Problems: Matter Effects

1. What is the work needed to insert a dielectric with dielec-
tric constant κ = 2 into a parallel-plate capacitor with
capacitance C that is maintained at a constant voltage V?

(A) 1
2CV

2

(B) CV2

(C) 2CV2

(D) 1
2

C
V2

(E) C
V2

A

d

P

2. A thin slab of material of area A and thickness d carries
uniform polarization P, as shown in the diagram. What
is the magnitude of the electric field just above the slab,
assuming d2 � A?

(A) |P|/(2ε0)
(B) |P|/ε0
(C) 2|P|ε0
(D) |P|ε0
(E) 0

2.6 Electromagnetic Waves

Back in the early twentieth century, there was a famous con-
flict in physics between experiments such as diffraction, which
indicated that light was a wave, and other experiments such
as the photoelectric effect, which indicated that light was a
particle. Now, of course, we know that light is both a particle
and a wave in some sense. Here we will see the argument for
light being a wave by showing how classical electrodynamics
implies the existence of waves that travel at the speed of light.

2.6.1 Wave Equation and Poynting Vector

Start by taking the curl of equation (2.40). Using the identity
from vector calculus that∇× (∇×E) = ∇(∇ ·E)−∇2E, and
assuming that we are in vacuum where ρ = 0 and J = 0 we
have

∇(∇ · E)−∇2E = − ∂

∂t
(∇ × B),

∇2E = μ0ε0
∂2E
∂t2

.
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By a similar argument,

∇2B = μ0ε0
∂2B
∂t2

.

As we will see in Chapter 3, these are just wave equations with
velocity

c = 1/
√

ε0μ0. (2.60)

If you plug in the numbers, you really do find that 1/√ε0μ0

gives the correct speed of light. So, in vacuum, the electric and
magnetic fields have wavelike solutions that travel at the speed
of light. The wave solutions have the explicit form

Ẽ(r) = Ẽ0ei(k·r−ωt)n̂, (2.61)

B̃(r) = 1
c
Ẽ0ei(k·r−ωt)(k̂× n̂). (2.62)

Here, k̂ is the propagation vector, describing the direction
the wave travels in, and n̂ is the polarization vector. Note
that when discussing electromagnetic waves, the polarization
refers to the direction of the electric field only; the magnetic
field is polarized in a perpendicular direction, as you can see
from the cross product in equation (2.62). The three vectors k̂,
n̂, and k̂× n̂ form a right-handed coordinate system; the fact
that the electric and magnetic field vectors are both perpen-
dicular to the propagation vector means that electromagnetic
waves in vacuum are transverse.
We are using some extremely convenient, but potentially

confusing, notation here, where we are representing the elec-
tric and magnetic fields as complex exponentials. The mag-
nitude Ẽ0 may also be complex. There is nothing imaginary
about the fields, but it simplifies the algebra considerably. The
physical part of the fields is just the real part: E = Re(Ẽ), and
similarly for B. So the rule for working in this notation is to
calculate everything in the complex formalism as normal, and
then take the real part at the end. This is straightforward when
dealing with superpositions of waves, since the real part of a
sum is the sum of the real parts, but for products it requires
some care in definitions, as we’ll see below. For a slightly more
in-depth treatment of this material, see the following chapter,
Section 3.1.
Since electromagnetic fields have energy, it should be per-

fectly natural to expect the wave solutions to transport energy.
This is described by the Poynting vector:

S = 1
μ0

(E× B), (2.63)

which gives the flux of energy of the wave (energy per unit
area per unit time, or power per unit area). This expression

k

n

k × n

Figure 2.19 Vectors describing propagation and component fields
for an electromagnetic wave. The wave propagates in the direction
k, the electric field E is proportional to the vector n, and the
magnetic field B is proportional to the vector k× n.

is in terms of the physical (real) fields: if you prefer to use
complex notation, use the definition

S = 1
2μ0

Re(Ẽ× B̃∗) (2.64)

instead. Since electromagnetic waves have extremely high fre-
quencies, it’s often more useful to average the magnitude of
the Poynting vector over one complete cycle in time, which
gives the intensity 〈S〉, the average power per unit area. Using
the helpful fact that the average of sin2 or cos2 over one cycle
is 1/2, we obtain

I = 〈S〉 = 1
2
cε0E20. (2.65)

When we are analyzing electromagnetic waves, we often
want to know what happens when we pass across an interface
of different materials. This is the case in optics, for exam-
ple, where it is possible to use electrodynamics to derive all
of the formulas in geometric optics. We won’t do this, but if
you want a little practice, it’s a nice way to check whether you
truly understand all of this material. Snell’s law is a good place
to begin. The crucial trick when analyzing electromagnetic
waves at boundaries is to use the boundary conditions that
we described in detail earlier in this chapter. The schematic
approach is:

● Figure out the generic form of the field on either side of the
interface.

● Write the boundary conditions for the fields at the inter-
face.

● Match the fields using the boundary conditions.

Conductors are good example of this process. The fields
inside a perfect conductor must be zero. We also have the
boundary condition that E‖out = E‖in = 0. So, if an electromag-
netic wave is normally incident on a conductor, the electric
component of the reflected wave points in the opposite direc-
tion to the incident wave so as to cancel off the parallel electric
field just outside the conductor. Working through the cross
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products, the magnetic fields of the incident and reflected
waves therefore point in the same direction.

2.6.2 Radiation

Since moving electric charges can create electromagnetic
waves and these electromagnetic waves carry energy, it is pos-
sible to produce electromagnetic radiation far away from the
charges. Indeed, an accelerating point charge radiates a total
power

P = q2a2

6πε0c3
= μ0q2a2

6πc
, (2.66)

where q is the charge of the oscillating particle, and a is its
acceleration. The two forms are related to each other by equa-
tion (2.60). This formula, known as the Larmor formula, only
holds when the charge is moving at small velocities, v � c.
The prefactors are not so important, what really matters is the
q2 and a2 dependence.

An oscillating dipole will also radiate, and in fact this situa-
tion is more common because most molecules in nature are
dipoles rather than free charges. Let the dipole have dipole
moment p(t) = p0 cos(ωt)ẑ. There are two useful formulas
here. The first is the intensity:

〈S〉 =
(

μ0p20ω
4

32π2c

)
sin2 θ

r2
, (2.67)

where θ has its usual meaning in spherical coordinates. As
usual, don’t worry about the numerical factors, but what is
important is the p20 dependence (the same as the q2 depen-
dence in the Larmor formula), the frequency dependence
ω4, the fact that 〈S〉 falls off as 1/r2, and the sin2 θ term
which means that no radiation occurs along the dipole axis.
Integrating (2.67) over a sphere of radius r gives the total
power

〈P〉E = μ0p20ω
4

12πc
, (2.68)

which has the same p20 and ω4 dependence. By the way, the
reason we deal with dipole radiation rather than monopole
radiation (for example, a sphere of charge with an oscillating
radius) is the curious fact that monopoles do not radiate. This
actually follows from Gauss’s law, which says the field outside
a spherically symmetric charge distribution is independent of
the size of the sphere.
The above formulas applied to electric dipoles only. There

is an analogous formula formagnetic dipole radiation:

〈P〉B = μ0m2
0ω

4

12πc3
, (2.69)

where m0 is the average magnetic dipole moment. The only
other change is the additional factor of 1/c2, which repre-
sents an enormous suppression compared to the electric case
because c is so large. This means that electric dipole radiation
will dominate unless the system is contrived to eliminate an
electric dipole moment: for example, when current is driven
around a wire loop.

2.6.3 Problems: Electromagnetic Waves

1. AnAC current is driven around a loop of wire. Suppose the
amplitude and frequency of the current are both doubled.
By what factor does the power radiated by the antenna
increase?

(A) 4
(B) 8
(C) 16
(D) 32
(E) 64

2. A perfectly conductive plate is placed in the yz-plane. An
electromagnetic wave with electric field E = E0 cos(kx −
ωt)ŷ is incident on the conductor. If the wave strikes the
plate at t = 0, what are the directions of the electric
and magnetic fields of the reflected wave immediately after
reflection?

(A) E ∝ −x̂, B ∝ −ŷ
(B) E ∝ ŷ, B ∝ ẑ
(C) E ∝ −ŷ, B ∝ −ẑ
(D) E ∝ −ŷ, B ∝ ẑ
(E) There is no reflected wave.

3. What is the speed of light in a medium with a permeability
of 2μ0 and a permittivity of 3ε0?

(A) c
(B) c/

√
3

(C) c/2
(D) c/

√
6

(E) c/6

2.7 Circuits

Depending on the flavor of your undergraduate education,
your knowledge of circuits might be a little rusty. One of us
actually never learned circuits in an undergraduate course,
possibly because they were deemed too practical and not
of fundamental importance! Apparently the GRE does not
share this opinion, so it behooves you learn this material
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(a) Resistor (b) Capacitor (c) Inductor

Figure 2.20 Symbols for three fundamental circuit elements.

well. Thankfully it is not too difficult at the level the GRE
tests it.

2.7.1 Basic Elements

There are three fundamental circuit elements: resistors, capac-
itors, and inductors. Their icons in circuit diagrams are shown
in Fig. 2.20. The voltages across each element are given by

VR = IR, (2.70)

VC = Q
C
, (2.71)

VL = L
dI
dt
, (2.72)

where R is the resistance (units of ohms), C is the capac-
itance (units of farads), and L is the inductance (units of
henries). When confronted with a circuit to analyze, one typi-
cally wants to find the current or voltage across some element.
For simple circuits, this is done by subdividing the circuit into
“equivalent” blocks and computing the total resistance, capac-
itance, or inductance of each section. The practical formulas
for adding elements in series are

Req =
∑
i

Ri (series), (2.73)

1
Ceq

=
∑
i

1
Ci

(series), (2.74)

Leq =
∑
i

Li (series). (2.75)

In parallel, we have the rules

1
Req

=
∑
i

1
Ri

(parallel), (2.76)

Ceq =
∑
i

Ci (parallel), (2.77)

1
Leq

=
∑
i

1
Li

(parallel). (2.78)

These rules come from the fact that circuit elements in series
see the same current, while circuit elements in parallel see the
same voltage.
While capacitors and inductors are created by very par-

ticular geometries of conductors and wires, resistance is a
property of all materials. More precisely, we define a material-
dependent, intrinsic property called resistivity. The resistance

is the impedance to electrical current for a particular geo-
metrical configuration of that material. The general relation
between the resistivity ρ of a material and the resistance of a
geometry is given by

R = ρ�

A
, (2.79)

where A is the cross-sectional area of the resistor, and � is the
length.

2.7.2 Kirchhoff’s Rules

A more general method for solving for currents and volt-
ages in a circuit is to use Kirchhoff’s rules. This method is
more systematic for larger circuits, but it leads to a system of
linear equations which can be cumbersome to solve quickly
on the GRE. There are two rules, which are consequences of
conservation of charge and energy, respectively:

1. The sum of currents flowing into every node must be zero:
∑
k

Ik = 0. (2.80)

2. The sum of the voltages across elements around any closed
loop must be zero:

∑
k

Vk = 0. (2.81)

The strategy is then to write an equation for every node and
loop in a circuit, and then solve them all simultaneously for
the desired current or voltage. Since they are so systematic,
Kirchhoff’s rules are good to use when you are uncertain how
to solve a problem using the series and parallel circuit rules
above.

2.7.3 Energy in Circuits

An important distinction between the three circuit elements
is between dissipative elements and elements that conserve
energy. Resistors dissipate energy according to the famous rule

P = IV = V2

R
= I2R, (2.82)

and this power usually shows up as heat, which raises the tem-
perature of circuit elements (which is why the back of your
computer gets hot). In contrast, capacitors and inductors do
not dissipate energy, but store it in electric andmagnetic fields,
as we have previously discussed. We’ll repeat the formulas
here for convenience:
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UC = 1
2
CV2, (p. 44) (2.21)

UL = 1
2
LI2. (p. 51) (2.47)

2.7.4 Standard Circuit Types

Circuits generally have two kinds of behavior: transient, which
describes charges and currents that die off quickly with time,
and steady-state, which describes the state of the circuit after a
sufficiently long time has passed.When analyzing circuits that
contain a combination of different elements, the transient (as
opposed to steady-state) behavior of the circuit is very impor-
tant. The general approach for analyzing such circuits is to
write down the voltage around some section of the loop (e.g.
using Kirchhoff’s rules), and then use the relations in equa-
tions (2.70)–(2.72) to produce a differential equation in I or
Q. You can then solve the ODE with exponentials to extract
the time dependence. For a more qualitative, but very useful,
discussion of the time behavior of circuit elements, see Section
7.3.1.

● RL circuits. Consider the example of a circuit with a resis-
tor and inductor in series with a voltage source. The circuit
satisfies the equation

V = IR+ L
dI
dt
.

If the voltage source is suddenly switched on, the current is

I = V
R
(
1− e−t/τRL

)
.

The time constant

τRL = L/R (2.83)

is the characteristic response time of an RL circuit. All
transient behavior of RL circuits with DC voltages is expo-
nential with this characteristic time.

● RC circuits. The situation with RC circuits is very similar
to RL circuits. An RC circuit is a circuit containing a resis-
tor and a capacitor in series, and possibly a voltage source
as well. The equation of current of an RC circuit with no
voltage source is

0 = R
dQ
dt

+ 1
C
Q.

The discharging of a capacitor in such a circuit (or the
charging of a capacitor in a circuit with a voltage supply)
is again exponential with characteristic time constant

τRC = RC. (2.84)

● RLC circuits. Combining all three basic circuit elements
gives the most interesting elementary circuit, the RLC cir-
cuit. Happily, the mathematics of this situation are identical
to a problem we’ve already treated, namely masses and
springs with friction. Just refer to Table 1.1 in Section 1.7.3
and make the appropriate substitutions. Note that an LC
circuit can be considered a special case where the resistance
R goes to zero. In that case, the resonant frequency of the
circuit is

ω0 = 1√
LC

. (2.85)

2.7.5 Problems: Circuits

1. What is the equivalent resistance of the network above, if
all resistors have resistance R?
(A) R
(B) R/4
(C) R/2
(D) 3R/4
(E) 4R/3

2. A capacitor C is in series with a resistor R. The capacitor
is initially charged, and a switch is closed at time t = 0
to complete the circuit. After what time t has the resis-
tor dissipated half of the energy originally stored in the
capacitor?

(A) RC
(B) (RC ln 2)
(C) (RC ln 2)/2
(D) (RC)/2
(E) (RC ln 2)/4
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2.8 Solutions: Electricity and Magnetism

Electrostatics

1. A – By the method of images, the configuration is equiv-
alent to two point charges, each a distance d from the
putative conducting plane. The force on the image charge,
and thus the magnitude of the force on the conducting
plane is just given by the Coulomb force law:

F = q2

16πε0d2
.

2. D – As we have calculated previously, the electric field due
to a line of charge is given by

E = λ

2πε0r
r̂.

The potential between the line and the cylindrical shell is
given by

V =
∫ b

a

λ

2πε0r
dr

= λ

2πε0
ln

b
a
.

The capacitance per unit length is consequently

C
�
= λ

V

= 2πε0

ln(b/a)
.

3. C – The factor of 3 just comes by scaling the equation for
the capacitance of a parallel-plate capacitor:

C = ε0A
d

= ε0a2

d
.

4. D – The work needed to assemble the configuration is just
given by the potential between each pairwise combination
of vertices of the tetrahedron, i.e. the number of edges of a
tetrahedron times the potential between two point charges.
Each point charge is separated by a distance a and there are
six edges on a tetrahedron, so the work needed is

W = 3q2

2πε0a
.

5. E – To find the total charge enclosed, we can use the
first of Maxwell’s equations to find the charge density and
then integrate it over the sphere. From the first Maxwell
equation, we have

ρ = ε0∇ · E
= ε0

∂

∂z
(
E0z2

)
= 2ε0E0z.

The total enclosed charge is therefore (recalling z = r cos θ
in spherical coordinates)

Q =
∫

ρ(r)d3r

= 2ε0E0
∫ R

0

∫ π

0

∫ 2π

0
(r cos θ)r2 sin θdr dθ dφ

= 0.

In hindsight, this makes sense: the electric field always
points in the same direction throughout the sphere, so,
thinking in terms of field lines, there is no net charge for
the field lines to start or end on. This is equally apparent
from the charge distribution ρ = 2ε0E0z, which is positive
for z > 0 and negative for z < 0, with the same magnitude
on both sides of the plane z = 0.

Magnetostatics

1. B – We can use the Biot–Savart law to find the field.
Note that there is no force from either straight portion of
the wire, since dl and r̂′ are parallel and the cross prod-
uct vanishes. Applying Biot–Savart to the semicircle, we
have

|B| = μ0

4π

∫ π

0

Iadφ
∣∣∣φ̂ × (−r̂)

∣∣∣
a2

= μ0I
4a

.

2. B – The clockwise current of the upper loop produces a
magnetic field in the −ẑ-direction. The electrons moving
in the lower wire are moving in the +φ̂-direction, and
therefore feel a force

F = qv× B ∝ −eφ̂ × (−ẑ) ∝ r̂,

in the outward radial direction in cylindrical coordinates.
Beware: by convention current is the flow of positive
charges, so negative charges move in the direction oppo-
site to the “direction of current.” So a clockwise current is
a counterclockwise flow of electrons!

3. C – This is a classic problem and well worth remembering.
The field from one wire is B = μ0I

2πr φ̂. Letting the z-axis run
along that wire, the force on a length dl of the other wire is
then

dF = (Idl ẑ)× μ0I
2πd

φ̂ = μ0I2

2πd
(−r̂)dl.

Thus, the force per unit length dF/dl isμ0I2/2πd, towards
the first wire. This can easily be remembered as “like
currents attract.”
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4. A – Recall that the energy stored in a magnetic field B is
given by equation (2.35),

UB = 1
2μ0

∫
|B|2d3r.

Using the expression for the magnetic field of a toroid, we
have (using cylindrical coordinates)

U = 1
2μ0

∫ a

0

∫ 2π

0

∫ R+a

R

μ2
0N

2I2

4π2r2
r dr dφ dz

= μ0N2I2a
4π

∫ R+a

R

dr
r

= μ0N2I2a
4π

ln
R+ a
R

.

Electrodynamics

1. A – The magnetic flux through the loop of wire is given by

�B = πa2B cosωt.

By Faraday’s law, we have

E = πa2Bω sinωt.

The power dissipated by Joule heating is therefore

P = E2

R
= π2a4B2ω2 sin2 ωt

R
,

or on average (using the fact that 〈sin2〉 = 1/2),

〈P〉 = π2a4B2ω2

2R
.

2. C – To calculate the inductance we just calculate the mag-
netic field and flux through the toroid and then identify
the coefficient of the current term. From Ampère’s law, the
magnetic field is simply

B = μ0NI
2πr

φ̂.

Since the field is approximately constant inside the toroid
(because a � R), we can just multiply by the cross-
sectional area and the number of turns to obtain the
magnetic flux:

�B = Nπa2
μ0NI
2πR

= μ0a2N2I
2R

.

In this problem it is easy to miss the factor of N that
must multiply the magnetic flux through one of the turns.
Remember that, at a fixed magnetic field in the toroid, as
the number of turns grows, the total flux must increase.

The self-inductance is then just the coefficient of the cur-
rent term:

L = μ0a2N2

2R
.

3. C – The magnetic flux through the loop formed by the rod
and rails is �B(t) = x(t)yB. The emf is given by

E = −ẋ(t)yB.
Note that we have neglected the “back emf” from the mag-
netic field of the induced current. The power dissipated is

P = E2

R
.

Using the work–energy theorem, the work performed on
the rod, as a function of the velocity, is given by

W = 1
2
mv20 −

1
2
mẋ2.

Setting power equal to the time derivative of the work, we
find that

dv
dt

= −vy2B2

mR
.

The solution to this differential equation is just

v(t) = v0 exp
(
−y2B2t

mR

)
,

So the time needed to reach a velocity of v0/e is given by

t0 = mR
y2B2

.

If this problem seems rather involved, note that E can be
eliminated by common sense because the problem clearly
involves induction, and A and B can be eliminated by
dimensional analysis. It’s a tough call between C and D, but
one could plausibly guess that a factor of 2 should not enter
into the solution.

4. A – While 0 is a tempting answer because there is no cur-
rent flowing across the capacitor, it is not correct. In fact,
a charging capacitor is about the only time you’ll have to
invoke the concept of displacement current. To find the
answer carefully, note that the electric field between the
two plates is approximately constant with magnitude

E = Q
ε0A

,

where Q is the charge on the plates. The charge on the
plates is equal to the constant current times the time since
the beginning of charging, so

E = It
ε0A

.
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From the integral form of Ampère’s law with Maxwell’s
correction, we have∮

B · dl = μ0ε0
d�E

dt
.

Pick a circular loop between the parallel plates, centered at
the axis of the plates, of radius r. The electric flux through
this loop is

�E = πr2It
ε0A

.

The magnitude of the magnetic field is therefore

B = μ0rI
2A

,

which you can think of as the field sourced by the ficti-
tious “displacement current” between the capacitor plates.
Note that without Maxwell’s correction to Ampère’s law,
the answer would be zero!

Dipoles

1. A – Recall that the potential of a pure dipole scales as V ∼
r̂ · p/r2. The electric field along the z-direction is simply
the z-derivative of the potential V , so the electric field will
scale as p/z3 and will be reduced by a factor of 4 when p
and z are both doubled.

2. A – The torque on the dipole is given by

N = m× B.

For small oscillations, we have (using Newton’s second law
in the form N = Iθ̈)

θ̈ = − iaB
I

θ .

The angular frequency is therefore

ω =
√
iaB
I
,

and the period is

T = 2π
√

I
iaB

.

Matter Effects

1. A – The potential energy stored in the capacitor before the
dielectric is

Ui = 1
2
CV2.

After the dielectric is introduced, the effective capacitance
doubles, since C′ = κC. So the new energy stored is

Uf = CV2,

and the total work done must be

W = 1
2
CV2.

2. E – Since the polarization is uniform, the bound volume
charge vanishes. The polarization is normal to the area
A, so the bound surface charge is σb = ±|P| on the
upper and lower surfaces, respectively, and zero on the
sides. Just above the surface, then, the slab looks like an
infinite parallel-plate capacitor, where the fields from the
two plates reinforce each other between the plates (here,
inside the slab), but cancel outside. Thus, the field just
above the slab is zero. This picture makes sense if we
think of the polarized slab as a bunch of dipoles collected
in a rectangular area, which will create an effective sheet
of positive charge at the top and negative charge at the
bottom.

Electromagnetic Waves

1. E - The total power radiated is proportional to ω4m2
0.

Doubling the amplitude of the current doubles m0, and
doubling the frequency doubles ω, so overall the power
changes by a factor of 26 = 64.

2. D – Since the plate is a perfect conductor the electric field
inside must be identically zero:

Einc + Erefl = Etransmitted = 0.

Since E‖out = E‖in by the EM boundary conditions, the par-
allel component of the incident and reflected waves must
cancel. At t = 0 the electric field vector of the incident
wave is E = E0ŷ, so the reflected wave must be polar-
ized in the −ŷ-direction. Since the propagation vector of
the reflected wave is−x̂, the magnetic field of the reflected
wave is in the (−x̂)× (−ŷ) = ẑ-direction.

3. D – The speed of an electromagnetic wave in vacuum is

c = 1√
μ0ε0

.

Making the substitutions μ0 �→ 2μ0 and ε0 �→ 3ε0, we
find answer D.
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Circuits

1. B – The rightmost parallel section has a resistance of R/2.
Adding the next branch to the left we find a resistance
(1/R + 2/R)−1 = R/3. Finally, adding the final section,
we get a total resistance of R/4.

2. C – After the switch is closed, the charge on the capacitor
decreases as

Q(t) = Q0 exp
(−t/(RC)) .

The energy initially stored in the capacitor is

U = Q2
0

2C
,

so we want to solve for the time such that

Q(t)2

2C
= 1

2
Q2
0

2C
,

exp
(
− 2t
RC

)
= 1

2
,

t = RC ln 2
2

.

 



3 Optics and Waves

The Optics and Waves part of the GRE weighs in at 9%
of the test, and contains a mix of some very basic mate-
rial and some rather advanced material. Optics is a part of
any standard freshman physics course, while waves appear in
all areas of physics, and their treatment can vary greatly in
difficulty and sophistication. For the purposes of the GRE,
“optics” refers to geometric optics (lenses, mirrors, and so
on), while “waves” refers to properties such as interference
and diffraction as well as some more advanced topics such
as Rayleigh scattering. We’ll first discuss general properties
of waves, including behavior such as diffraction and interfer-
ence that can occur with any type of general wave, then we’ll
go over specific examples involving light waves, finishing with
geometric optics. Many of the equations required for solving
optics problems arise from fairly technical calculations that
are outside the scope of the exam. It is therefore worth mem-
orizing the key equations in this chapter and knowing the
situations where they can be applied.

3.1 Properties of Waves

3.1.1 Wave Equation

Roughly speaking, a wave is a disturbance that propagates
in time. More precisely, a wave (in one dimension) is any
solution to the wave equation,

∂2f
∂t2

= v2
∂2f
∂x2

. (3.1)

It turns out that, for any function f (x), the related func-
tions f (x ± vt) solve the wave equation. We interpret these
as disturbances of fixed shape, given by the function f (x),
which propagate either to the left or to the right with constant
speed v. Now, the crucial property of the wave equation is

its linearity in the function f , which leads to the principle
of superposition: for any two solutions f (x, t) and g(x, t) that
solve the wave equation, the function f+g also solves the wave
equation. This makes analyzing wave behavior quite easy,
since we can always break up any complicated wave profile
into a sum of simpler pieces.
The waves described above, f (x±vt), are known as traveling

waves: just as f (x − a) represents the graph of f (x) translated
to the right by a units, so does f (x − vt) represent the shape
f (x) translated to the right by �x = vt units after time t. In
other words, the wave travels to the right. If, instead, a solu-
tion to the wave equation looks like f (x, t) = A(x)B(t), we say
that it represents a standing wave. Indeed, there is no longer
any translation in time, and the shape at t = 0, given by A(x)
(up to a constant factor B(0)), is modulated in time by the
function B(t). See Example 3.1.

3.1.2 Nomenclature and Complex Notation

Often, instead of being given the wave equation (and the
associated constant v, which represents the speed of the wave),
we are simply given the functional form of the wave: for
example,

f (x, t) = A cos(kx− ωt + δ). (3.2)

It turns out that all solutions to the wave equation can be writ-
ten as sums of functions of this form, with different values
of the constants A, k, ω, and δ; so without loss of generality,
whenever we say “wave” we will often mean (3.2). Let’s now
give the constants names:

A: amplitude

k: wavenumber
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EXAMPLE 3.1

Consider the standing wave

f (x, t) = cos x cos vt

for various values of t. At t = 0, the wave has a shape given by cos x, but at time t = π/2v, it disappears entirely
since the second term cos vt vanishes. At t = π/v, it now has the shape− cos x, and so on. But the essential point is
that, while the shape oscillates in time, it doesn’t go anywhere, hence the term “standing wave.” However, using the
product-to-sum formula for cosines, we can write

f (x, t) = 1
2
(
cos(x+ vt)+ cos(x− vt)

)
,

so in fact the standing wave is secretly the sum of a left-moving wave and a right-moving wave, with equal ampli-
tudes. In fact, we can decompose any solution of the wave equation into the sum of a left-moving and a right-moving
wave, possibly of different shapes and different amplitudes.

ω: angular frequency

δ: phase

The amplitudeA is themaximum value of the function f (x, t),
and represents the “size” of the wave. It is a general fact that
the energy carried by waves is proportional to the square of
the amplitude, A2. In the very common case of light waves,
the energy (up to some constants) is called the intensity.
The wavenumber k is related to the period of cos x as a

function of x: since cosine has period 2π , cos kx has period
2π/k. In other words, the wave starts repeating after a dis-
tance λ = 2π/k, called the wavelength. Up to a factor
of 2π , the wavenumber counts the number of wave crests
contained within a distance x, but the more useful quan-
tity is often the wavelength. Similarly, ω is related to the
period T by T = 2π/ω, and to the (ordinary, not angu-
lar) frequency1 f by ω = 2π f . Summarizing these defini-
tions,

λ = 2π
k
, T = 2π

ω
, ω = 2π f . (3.3)

Finally, the phase represents the “offset” of the shape of the
cosine function from the usual one centered at x = 0. You’ve
likely seen all these names before, since, with the exception

1 In many physics texts, the frequency is denoted by ν, the Greek letter
“nu.” But this looks too much like v, which we’ve used for wave velocity,
so to avoid any notational confusion we’ll use f for frequency wherever
possible, which is the standard convention in engineering. Also, be
careful not to confuse f and ω! The first quantity f is the frequency in of
units of Hz or cycles per second. The second quantity is the rate at which
the argument of the sine or cosine functions change, in units of radians
per second. When working with waves, it’s easy to forget the factors of 2π
that connect these quantities.

of wavenumber, the notation and nomenclature are identi-
cal to those of the classical simple harmonic oscillator. These
same concepts also show up in quantum mechanics, with k
related to momentum by the de Broglie relation p = �k and
frequency related to energy by the Einstein relation E = �ω.
The above information is conveniently represented in

terms of complex numbers: we can write

f (x, t) = Re(Aei(kx−ωt)),

where the amplitude A is now allowed to be complex, A =
|A|eiδ . This allows the phase to be absorbed in the amplitude,
and by working with complex numbers through the whole
calculation and taking the real part at the end, we can avoid
using some of the more annoying trig identities.2

The generalization to waves traveling in three dimensions
is quite simple. We just replace kx with k·r, and call k the
wavevector. Its magnitude |k| is the wavenumber, and its
direction is the direction in which the wave propagates. Such
a wave solves the wave equation in three dimensions in Carte-
sian coordinates, and is called a plane wave. This is in contrast
to a spherical wave, whose oscillations take the form ei(kr−ωt),
where r is the distance from the origin in spherical coordi-
nates. Note the distinction from the case of plane waves: a
spherical wave has a wavevector that is always parallel to the
position vector r, which is not constant.

2 Caveat: expressing quantities that are products of waves in complex
notation requires tweaking some definitions, since the real part of a
product of complex numbers is not the product of the real parts. See the
discussion of the Poynting vector in Section 2.6.1. However, complex
notation is entirely straightforward for linear superpositions of waves.
You probably won’t need complex notation for the GRE, but it’s good to
be aware of it in case it helps you solve a problem faster.
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3.1.3 Dispersion Relations

For waves satisfying the wave equation (3.1), the relation

ω = vk (3.4)

holds: you can check this by simply plugging (3.2) into (3.1).
If we modify the wave equation, for example to incorporate
phenomena such as frictional dissipation or changes in the
density of the medium, we lose this property, but we can still
specify the behavior of the wave by a relation betweenω and k,
known as a dispersion relation. The special case ω(k) = vk is
known as linear dispersion, and is the one obeyed by light in
vacuum, with v = c the speed of light. You may have seen it
written in the more familiar form λf = c. From the dispersion
relation, we can calculate two quantities with the dimensions
of velocity:

Phase velocity:
ω

k
, (3.5)

Group velocity:
dω
dk

. (3.6)

For linear dispersion, these quantities turn out to be the same,
but this is a special case.
In general, phase velocity measures the velocity of an indi-

vidual wave crest, while group velocity measures the velocity
with which a whole bunch of waves (for example, a wave
packet of various wavelengths centered around a certain
wavelength λ0) move together. For light waves traveling in
a medium (for example, radio waves carrying an FM signal
or light signals in a fiberoptic pipe), the group velocity is the
speed at which information is transmitted. In fact, there are
cases where the phase velocity can be greater than the group
velocity! If the phase velocity turns out to be greater than the
speed of light c, you shouldn’t be worried, since information
is only transmitted at the group velocity and there is no con-
flict with special relativity. The fact that the phase velocity can
in general be a function of k implies that waves of different
wavelengths travel at different speeds; in other words, a wave
packet is dispersed. This is exactly what happens when white
light is passed through a prism.

3.1.4 Examples of Waves

We can see some of these general considerations in action
by looking at a few common instances of waves. The ampli-
tude y of waves on a uniform vibrating string, for example, is
described by the equation

∂2y
∂t2

= T
μ

∂2y
∂x2

,

where μ is the mass density per unit length and T is the ten-
sion in the string. This is exactly the same as equation (3.1),
with the replacement

v =
√
T
μ

(3.7)

for the velocity of the wave. Memorizing the wave equations
for every possible type of wave would obviously be a bit of
a nuisance. Thankfully this is unnecessary, since you should
usually be able to reconstruct velocities such as equation (3.7)
from other physical constants by dimensional analysis. This
expression also makes physical sense: increasing the tension
in the string makes the restoring force on a displaced segment
of string greater, and so the oscillationwill occurmore rapidly.
Similarly, increasing the mass density of the string means
a displaced segment of string will accelerate more slowly,
reducing the speed of propagation.
Another example is sound waves. By analogy with the

string, we might suspect that the parameters that would deter-
mine the speed of sound waves in air would be some measure
of inertia, such as the density ρ (units of kg/m3), and some
measure of “stiffness,” such as the bulk modulus K (units of
pressure, Pa or N/m2). The only combination of these factors
with the units of speed is

cs =
√
K
ρ
.

Using numbers appropriate for air at STP, this is approxi-
mately 340 m/s, as expected.

3.1.5 Index of Refraction

The optical properties of a medium can be roughly summa-
rized by a single number n called the index of refraction, which
is the factor by which the speed of light is reduced in that
medium. In the language of dispersion relations

ω/k = c/n (for light waves). (3.8)

Consider a beam of light with frequency ω and wavenumber
k in vacuum, incident on a medium with index of refrac-
tion n. Inside the medium, the speed of light changes to c/n,
so clearly either ω or k (or both) must change to satisfy (3.8).
An analysis of Maxwell’s equations at the boundary of the
medium shows that the frequency of the light in the medium
does not change. Rather, the wavelength λ is modified to

λ → λ

n
(3.9)
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so that (3.8) holds. By the way, real materials, such as glass,
do not have a constant index of refraction; rather, n = n(k)
is a function of wavenumber, hence dispersion of white light.
But in nearly every application on the GRE you can consider
n to be a constant that represents the reduction of the speed
of light in that medium, or, equivalently, the factor by which
the wavelength is reduced.

3.1.6 Polarization

So far we have written waves as real-valued (or sometimes
complex-valued) functions. But electromagnetic waves are
vector-valued because E and B are both vectors. The only
new ingredient in the mathematical description of the wave
is the polarization unit vector n̂. For example, we can write
the electric field component of an EM wave as

E(x, t) = E0 cos(k · r− ωt + δ)n̂,

so while the amplitude is E0, the vectorial information is
contained in n̂. If a source of light emits EM waves with con-
stant n̂, we say the light is polarized in the direction n̂, as we
have already discussed in Section 2.6.1. If the oscillating vec-
tor is polarized perpendicular to the wavevector (as is the case
for EM waves in vacuum), the wave is called transverse; if the
vector is parallel to the wavevector (as can occur for EMwaves
in waveguides), the wave is longitudinal.
There are two very common types of applications of polar-

ization that show up on the GRE:

● Malus’s law. Suppose we have a device, called a polarization
filter or polarizer, for which all light exiting the device is
polarized in a certain direction n̂0 (Fig. 3.1). Then for inci-
dent light of intensity I0, which is polarized at an angle θ

Polarizer axis

Intensity I0

Intensity I0 cos2θ 

θ

n̂0

Figure 3.1 Polarized light of intensity I0 is incident on a polarizer. If
the light is polarized at an angle θ with respect to the polarizer axis
n̂0, then the light emerging from the polarizer will have an intensity
I0 cos2 θ according to Malus’s law, and it will be polarized in the
direction n̂0.

with respect to n̂0 (i.e. n̂ · n̂0 = cos θ), the intensity I of the
transmitted light is given by Malus’s law:

I = I0 cos2 θ . (3.10)

This implies some curious properties of polarizers. For
example, if we have an arrangement of two polarizers
oriented at 90 degrees with respect to one another, the
intensity of transmitted light will be zero, independent of
the initial polarization: light will hit the first filter, emerge
polarized with some reduced intensity, then be promptly
absorbed by the second filter, since cos(90◦) = 0. However,
if we place a third filter in between the first two, oriented
at 45 degrees with respect to the filters on either side, the
emitted intensity of incident light polarized parallel to the
first filter is I0 cos4(45◦) = I0/4, where I0 is the intensity
of light emerging from the first filter. So in this case, plac-
ing an extra filter increases the intensity of transmitted light,
despite the usual intuition that a filter removes light rather
than augments it. Another important application is when
unpolarized light is shined on a polarizer: the transmitted
intensity is then the average of I0 cos2 θ over all angles θ ,
which works out to be I0/2. So unpolarized light incident
on a polarizer of arbitrary orientation comes out parallel to
the polarizer axis, with intensity reduced by half.

● Brewster’s angle. Suppose we have two media with indices
of refraction n1 and n2, joined at an interface. Some
formidable manipulation of Maxwell’s equations implies
that there exists an angle θB at which incident unpolar-
ized light going from n1 to n2 will reflect off the interface
and emerge completely polarized perpendicular to the plane
formed by the incident ray and the normal to the surface
(the incident plane) (Fig. 3.2). θB is known as Brewster’s
angle, and is given by

θB = arctan
(
n2
n1

)
. (3.11)

By the same reasoning, light polarized parallel to the inci-
dent plane incident at θB will not be reflected at all. The
polarization properties of reflected light are what make
Polaroid sunglasses useful: even if the incident angle is not
exactly θB, the reflected light will still be mostly polarized
in one direction, so sunglasses whose polarization filters
are perpendicular to this direction will block most of the
reflected light, reducing glare off a road or offwater. Indeed,
picturing this scenario helps to make concrete the rather
abstract and confusing term “incident plane.” If the surface
is a flat road, the normal will be a vertical line pointing
towards the sky, and if the light beam is coming right
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n1

n2

Unpolarized
Polarized

θB

Figure 3.2 Unpolarized light travels in a medium with index n1 and
reflects off an interface with a medium of index n2. If the angle of
incidence (relative to normal incidence) is Brewster’s angle θB, then
the reflected light will emerge linearly polarized in a direction
perpendicular to the page.

at you, the polarization of the reflected beam is perfectly
horizontal.

3.2 Interference and Diffraction

One of the more striking consequences of the superposition
principle for waves is interference. Consider two waves:

f (x, t) = A cos(kx− ωt),

g(x, t) = A cos(kx− ωt + π).

Both f and g are perfectly acceptable solutions to the wave
equation, differing only by their phase δ, but their sum, f +
g, is identically zero! The phase of g is δ = π , so at every
(x, t), g(x, t) = −f (x, t), and the two waves cancel identically
at every spatial point and time. This is known as destructive
interference, and occurs whenever the phase difference is an
odd multiple of π . Adding 2π to the phase changes nothing
because 2π is the period of cosine, so the same destructive
interference argument works for π , 3π , etc. Similarly, if the
phase difference were δ = 0, the two waves would be identical
and would simply add to give a wave of amplitude 2A; this is
known as constructive interference. Once again, this argument
also holds for phase differences of 2π , 4π , etc. To summarize:

Constructive interference ⇐⇒ phase difference of 2mπ ,
(3.12)

Destructive interference ⇐⇒ phase difference of (2m+ 1)π ,

(3.13)

where m can be any integer. The classic examples of interfer-
ence are when a phase difference arises from a difference in
path length, or from traveling between media with different
indices of refraction. The former is exemplified by double-slit
interference and single-slit diffraction, while the latter arises
in situations involving thin films.

3.2.1 Double-Slit Interference

The setup for Young’s classic double-slit experiment is a point
source of monochromatic light (wavelength λ), shining on a
barrier with two narrow slits cut in it a distance d apart, with
a screen at a distance L behind the slits (Fig. 3.3).
The waves from the two slits interfere because, at a given

point on the screen, light from the two slits will have traveled a
different distance; let’s call that path difference �x. This leads
to a phase shift

δ = k�x. (3.14)

To see why, note that one wave will arrive at the screen with
functional form A cos(kx−ωt), but the other wave will arrive
asA cos(k(x+�x)−ωt) = A cos(kx−ωt+k�x), where the last
term in the cosine can be interpreted as a phase. For construc-
tive interference, we need δ = 2mπ , so �x = 2mπ/k = mλ,
and for destructive interference, we need δ = (2m + 1)π , so
�x = (2m+ 1)π/k = (m+ 1/2)λ. In words,

Constructive interference occurs when the path difference is an
integral multiple of the wavelength, and destructive

interference occurs when the path difference is a half-integral
multiple of the wavelength.

On the screen, we will see bright bands at the locations of
constructive interference, and dark bands at the locations of
destructive interference. The bright bands and the dark bands
are called interference maxima and minima, respectively.
If the screen distance L is much larger than the distance

between the slits d, we can find the positions of the inter-
ference maxima and minima using a little geometry. When
L � d, the paths of the two light rays to a fixed point on
the screen are very nearly parallel, so the path difference to a
point at an angle θ from the center is shown from Fig. 3.4 to
be d sin θ .3

The maxima and minima then satisfy:

Maxima: d sin θ = mλ, (3.15)

Minima: d sin θ = (m+ 1/2)λ. (3.16)

Here,m is any integer, positive, negative or zero. Conventions
differ, but the problem statement will always be unambiguous
with regards to counting maxima and minima. Rather than
having to draw the diagram over and over, it’s best to just
memorize these relations. An easy way to remember which
3 In Fig. 3.3, θ is measured from the top slit, but in the limit L� d, θ is the
same whether it is measured from the top slit, the bottom slit, or between
the two slits. This is always the approximation that will be used in
double-slit interference, and is known as the Fraunhofer or far-field
regime.
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(a) Geometry of double-slit interference

d sinθ

–λ

2λ

0

–2λ

(1/2)λ

(3/2)λ

–(1/2)λ

–(3/2)λ
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(b) Double-slit interference pattern

θ
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L

λ

Figure 3.3 The interference pattern produced behind a double slit has a maximum when d sin θ is an integer multiple of the wavelength λ and
a minimum when d sin θ is a half-integer multiple of the wavelength.

d

Δ x  = d sinθ

θ

Figure 3.4 Double-slit interference arises because of the difference
in path lengths d sin θ between light passing through each slit. The
path-length differences produce interference maxima and minima
as a function of the angle θ relative to the horizontal.

formula applies to maxima is to note that θ = 0 must be
a maximum since both waves travel the same distance: this
means the right-hand side must be an integer rather than a
half-integer, giving (3.15).

3.2.2 Single-Slit Diffraction

We now consider a modification of the above setup, replacing
the two thin slits with a single slit of width a (Fig. 3.5).
Once again, light that passes through different parts of the

slit travels different lengths on the way to the screen, but the
derivation of the path difference involves a lot of handwaving
and is totally useless for the GRE. Instead we will just write
down the answer: interferenceminima occur when

a sin θ = mλ, m = 1, 2, . . . (3.17)

Fortunately this is easy to remember because of the similarity
with the double-slit formula, but don’t confuse the two equa-
tions! The minima for single-slit diffraction occur at nearly
the same condition as the maxima for double-slit diffraction.
There is no simple formula for the position of the diffraction

maxima for the single slit, although there is clearly a maxi-
mum right in the center of the slit; hence we have explicitly
specified that m = 0 is not a minimum. The first minima
mark the width of this central maximum. We also see from
the diffraction equation why we need a ∼ λ to see any diffrac-
tion effects at all. If a < λ, then the equation (3.17) has no
solution for θ : there are no minima, and the central maxi-
mum fills the entire screen. On the other hand, if a � λ,
the diffraction minima are so closely spaced that they blur
together.

3.2.3 Optical Path Length

Consider the following situation: a monochromatic beam of
light of wavelength λ in a vacuum passes through amedium of
index of refraction n, while a nearby beammisses the medium
and continues traveling through the vacuum. When the two
beams are recombined, will there be interference? At first
glance, it seems like there won’t be any interference as long
as both beams travel the same distance, since there is no path
difference like the k�x of the double-slit setup.
But take a look back at equation (3.9): in the medium with

index n, the wavelength of light is reduced by a factor of n
while its frequency remains the same. If the wave in vacuum
travels a distance d, the total phase (i.e. the argument of the
sine or cosine) of the wave increases by

δ1 = kd = 2πd
λ

,

but the total phase of the wave in the medium increases by

δ2 = 2πd
λ/n

= 2πnd
λ

.
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(a) Geometry of single-slit diffraction
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(b) Single-slit diffraction pattern
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Figure 3.5 The diffraction pattern produced behind a single slit has a minimum when a sin θ is an integer multiple of the wavelength λ.

Notice that δ1 �= δ2! This means that, in general, there will
be interference when the beams are recombined. In fact, the
interference pattern will behave precisely as if the wave in the
medium has traveled a distance nd while the wave in vacuum
traveled a distance d. This suggests that we define the optical
path length by

�x = nd (optical path length), (3.18)

where d is the actual distance traveled in the medium. Now
that we have this definition, you can feel free to forget all the
explanation that came before it: just remember that when you
see a situation where a wave passes through a distance d of
a medium of index of refraction n, assign it a path length of
nd and not just d. An easy way of remembering whether the
factor of n goes in the numerator or denominator is to con-
sider the limiting case of a medium with n → ∞: there, the
wave will be slowed down so much that, as it passes through
the medium, it undergoes infinitely many cycles, sending the
phase difference to infinity.

3.2.4 Thin Films and Phase Shifts

An additional source of phase shifts is reflection off a bound-
ary between two media. If light is traveling from a medium
with index of refraction n1 toward a medium with index of
refraction n2 and reflects back off the boundary, Maxwell’s
equations imply

n2 > n1 : phase shift of π , (3.19)

n2 < n1 : no phase shift. (3.20)

To actually derive these from Maxwell’s equations takes an
unwieldy amount of algebra, so just memorize them. In a typ-
ical thin-film setup, one considers light traveling through air
(n ≈ 1) and striking the boundary of a thin film of soap, oil,
or some other material with n > 1 and thickness d. The film
may be surrounded by air on both sides, or may be placed on
another surface with yet another index of refraction. At nor-
mal incidence (that is, when the light is shining perpendicular
to the surface), light that reflects off the front boundary of the
film can interfere with light that passes through the film and
reflects off the back boundary. Figure 3.6 shows an example
with a film of index of refraction n2 surrounded by air (n = 1)
on both sides. Note that the incident wave is supposed to be
at normal incidence, and is only shown angled for clarity.
There are now two sources of phase shift: a geometric one,

due to the difference in optical path length 2dn2 from travers-
ing the thickness of the film twice (the dashed segment in the
diagram), and a possible additional phase shift depending on
the arrangement of indices of refraction according to rules
(3.19) and (3.20). When there are additional phase shifts like

d

Air

Film

Air

n1 = 1

n1 = 1

n2

Figure 3.6 Example of reflection off a thin film. If n2 > 1, the light
reflecting off the first interface will experience a phase shift of π , but
light reflecting off the second interface will have no phase shift. The
light reflecting off each interface can interfere either constructively
or destructively depending on the thickness d of the film.
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this, you can compute the conditions for interference using
δ = k�x, tack on an additional phase shift of π , and set
this equal to an odd or even multiple of π as appropriate. Or,
you can remember that the additional phase shift of π essen-
tially reverses the conditions for constructive and destructive
interference. Use whichever method you find conceptually
and computationally simplest; the end-of-chapter problems
explore the various standard cases.

3.2.5 Miscellaneous Diffraction

A few other types of diffraction scenarios appear on the GRE,
mostly because they involve the application of simple for-
mulas. Unfortunately these formulas are rather difficult to
derive, and remembering how to do so is frankly a waste of
time for the GRE: just memorize them, carefully noting their
similarities and differences to the usual diffraction formulas.

● Circular aperture. A circular hole will also diffract light,
but the angular positions of the diffraction minima now
require solving some complicated differential equation. The
answer is given numerically, as the Rayleigh criterion:

First circular diffraction minimum: D sin θ = 1.22λ,
(3.21)

where D is the diameter of the hole, the circular analogue
to the slit width a in single-slit diffraction. The Rayleigh
criterion tells us that the angular separation of two point
sources observed through a circular aperture (for example,
a telescope) must be greater than sin−1(1.22λ/D) for the
two sources to be resolved as two different objects, so that
the diffractionmaxima of the two sources don’t overlap and
blur together as one big blob. Equation (3.21) is the limiting
case where the first minimum of one source lies exactly at
the central maximum of the other source.

● Bragg diffraction. This technically belongs to Specialized
Topics but is conceptually closely related to the other clas-
sic diffraction problems. When x-rays4 shine on a crystal
lattice, they bounce off the atoms forming the lattice and
interfere by path-length difference just as in double-slit
interference. By modeling the crystal as a set of parallel
planes a distance d apart, we get

Maxima: d sin θ = nλ/2, (3.22)

where θ is the angle of the incident x-rays with respect to
the plane of the crystal. The only new things to remem-
ber in this formula are the factor of 2, which has the
same origin as the path-length difference 2dn2 in thin-film

4 Why x-rays, as opposed to some other kind of light? Simply because the
plane spacing d for most crystals of interest is comparable to the
wavelength of x-rays.

Dθ

Figure 3.7 Light diffracting through a circular aperture of diameter
D will exhibit an interference minimum at D sin θ = 1.22λ. If two
objects are separated by an angle θ , this provides a condition, called
the Rayleigh criterion, for whether the objects can be resolved
through the aperture. At the Rayleigh criterion, the diffraction
minimum of the first object coincides with the central maximum for
the second object, as shown by the dashed lines on the right. The
observed pattern is the sum of the two diffraction patterns, shown
by the solid line on the right, which shows that two objects are just
barely distinguishable.

d d sinθθ

Figure 3.8 X-rays incident on a crystal with interatomic spacing d,
at an angle θ relative to the horizontal will experience constructive
and destructive interference, known as Bragg diffraction. The x-rays
that scatter off the second layer of atoms will travel a total distance
2d sin θ longer than x-rays that scatter off the first layer. This path
difference produces interference in the outgoing x-rays.

interference because the light must traverse the distance
between adjacent layers twice, and the fact that θ has a
different interpretation than in double-slit interference.

3.3 Geometric Optics

Geometric optics is a long-distance approximation to every-
thing discussed in Section 3.2. If the dimensions of the objects
in the problem are orders of magnitude larger than the wave-
length of light involved, all interference and diffraction effects
disappear, and light can be treated as if it travels in straight
lines, just like a beam of particles.

3.3.1 Reflection and Refraction

The basic instruments of geometric optics are lenses, which
bend (refract) light, and mirrors, which reflect it. The wave
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(a) Reflection (b) Refraction

n1

n2

θ2

θ1

θr
θi

Figure 3.9 Definition of angles used in reflection and refraction
problems.

properties of light imply the following laws, which you prob-
ably know already:

Reflection: θi = θr (angle of incidence equals

angle of reflection), (3.23)

Refraction: n1 sin θ1 = n2 sin θ2 (Snell’s law). (3.24)

As with thin-film phase shifts, the derivations of these equa-
tions are long and complicated so the equations must be
memorized. Two points are worth mentioning here:

● These laws apply to any wave phenomena, not just light:
sound, water waves, and so on. In Snell’s law, n1 and n2
are the indices of refraction of the two media through
which the light passes. But by remembering the inter-
pretation of n as the factor by which the speed of light
is reduced in the medium, you can easily translate to
the relevant equation in terms of the speed of a general
wave:

c2 sin θ1 = c1 sin θ2. (3.25)

● Because the equations of electromagnetism are invariant
under time reversal, so are geometric optics diagrams: light
rays are reversible. For a real-world example, if you can see
someone’s eyes in a mirror, they can see your eyes as well.

3.3.2 Lenses and Mirrors

Suitably interpreted, there is only one equation you need to
remember to solve all geometric optics problems:

1
s
+ 1

s′
= 1

f
. (3.26)

The trick lies in remembering the meanings and sign conven-
tions of the various terms in this equation. Starting from the
right-hand side, f represents a focal length, the distance from
the surface of the optical instrument to a special point called
the focus (denoted by F in Fig. 3.10). In geometric optics,
all mirrors and lenses are idealized so that all incident light
rays parallel to the axis (dotted lines in Fig. 3.10) are reflected

or refracted through the focus, respectively. Conversely, by
reversibility all light rays passing through the focus are either
reflected or refracted so that they come out parallel to the
axis. The approximation that rays passing through the cen-
ter of the lens (dashed lines) travel straight through without
refraction, combined with some geometry involving similar
triangles, leads to (3.26) for lenses.
For the idealized spherical mirrors used in geometric

optics,

f = R/2, (3.27)

where R is the radius of curvature of the mirror. By conven-
tion, f is positive if the center of curvature is on the same side
of the mirror as the incoming light, which occurs if the mir-
ror is concave. Convex mirrors have the center of curvature
on the opposite side, and f is negative. This time, (3.26) comes
from the law of reflection, since rays passing through the exact
center of the mirror are reflected back at the same angle.
For lenses, f is positive for converging lenses, which have

two convex surfaces, and negative for diverging lenses, with
two concave surfaces. The lensmaker’s equation gives the focal
length of a thin lens in terms of the radii of curvature of the
two surfaces:

1
f
= (n− 1)

(
1
R1

− 1
R2

)
. (3.28)

The sign conventions are very confusing here because a con-
vex surface viewed from the left becomes a concave surface
viewed from the right, so the best way to remember the signs
is to imagine the simple case of a converging lens. There, the
focal length is positive no matter what the radii of curvature,
so R1 is positive and R2 is negative.
Moving on to the left-hand side of (3.26), s represents the

position of an object, and s′ represents the position of the
image of that object formed from the single lens or mirror.
Typically (3.26) is used to solve for the image position s′ in
terms of s and f . The sign conventions for s and s′ are as
follows:

Positive distances ⇐⇒ same side as light rays

(incoming for s, outgoing for s′),
(3.29)

Negative distances ⇐⇒ opposite side as light rays

(incoming for s, outgoing for s′).
(3.30)

Both s and s′ can be positive or negative depending on the
situation. The image distance s′ is positive if the image is real
(formed by the intersection of actual light rays), but negative if
the image is virtual (formed on the opposite side of the optical
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Object

ImageF

s

s'
(a) Converging lens

s

s'

R F

Object

Image

(b) Concave mirror

Figure 3.10 Geometry of typical lens and mirror problems, showing raytracing and definitions of common variables. The location of the
image of a converging lens in (a) is given by finding the intersection of two lines: (1) draw a line from the top of the object through the center
of the lens, and (2) draw a line intersecting the focal point and the point on the lens directly in front the object. The point where these lines
intersects is the top of the image. The image of a spherical concave mirror in (b) is given by an analogous procedure, except that the rays
reflect off the mirror rather than pass through as they did in the case of the lens. For a spherical concave mirror, the focal length is given by
f = R/2.

instrument from the outgoing light rays). Typically s is posi-
tive, but it can be negative in a configuration ofmultiple lenses
if an image formed by one lens acts as an object for a second
lens. If the first image is on the opposite side of the second lens
from the incoming light rays, its object distance is negative.
Once we have solved for s′, we can obtain the magnifica-

tion m = −s′/s. The absolute value |m| is the ratio of the
size of the image to the size of the object, and the sign deter-
mines the orientation of the image: positive if the image is
upright, and negative if inverted. To solve problems involving
several lenses and/or mirrors, simply solve (3.26) successively
for each instrument. The image formed by the first instru-
ment becomes the object for the second instrument, and so
on, with magnifications multiplying at each step. A couple
of practice problems are provided at the end of this chapter,
but for tons of standard practice problems, just refer to any
freshman physics textbook.

3.4 Assorted Extra Topics

3.4.1 Rayleigh Scattering

Why is the sky blue? To answer this, we have to look at how
light scatters off small particles. For a given wavelength of
light λ there are three regimes depending on the size of the
particle a: λ � a, λ ∼ a, or λ � a. The first regime is
covered by geometric optics, the second by a theory called
Mie scattering, and the last by Rayleigh scattering. We’ve
already discussed geometric optics at length, and Mie scatter-
ing is quite complicated because of the coincidence of scales
between the wavelength and the scatterer. For the purposes
of the GRE you should be familiar with Rayleigh scattering,
mostly because the formula takes a rather simple form:

I ∝ I0 λ−4 a6. (3.31)

As with most of the equations in this section, the derivation
of this formula is complicated, the prefactors are irrelevant,
and all that matters is the λ−4 dependence. (You may be
asked about the a6 dependence of the particle size, but such
a question hasn’t shown up on any of the recent tests.)
The most common physical application of this formula

is the scattering of solar light by air and water molecules
in the upper atmosphere. The light hitting the atmosphere
approaches from only one direction, but is scattered in all
directions, and what we observe on Earth is the scattered light.
The λ−4 dependence means that shorter wavelengths are scat-
teredmuchmore strongly than longer wavelengths, and hence
we observe a blue color (the reason we don’t see purple has
to do with the photoreceptors in our eyes and not with any
underlying physics per se). On the other hand, at sunset when
we look directly at the Sun, we are receiving light that has not
been scattered away, and so we see what’s left of the spectrum,
which has a red color.
If you look back at Section 2.6.2, you’ll notice the λ−4

dependence in Rayleigh scattering is the same as the ω4

dependence from dipole radiation: in fact these are equivalent
descriptions of the same process, by which light from the Sun
causes the molecules to radiate as dipoles. So we can deduce
that the blue light from the Sun is polarized, accounting for the
effectiveness of Polaroid sunglasses in yet another context.

3.4.2 Doppler Effect

To conclude our review of optics and waves, we shift gears
a bit from light waves to sound waves. You’re undoubtedly
familiar with the fact that an ambulance driving by at high
speed with its siren blaring has a characteristic sound, where
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the frequency appears to drop as the ambulance drives past.
This is an example of the Doppler effect, which arises any time
a source of waves (sound waves, in our example) is moving
relative to the observer. If the source is moving towards the
observer, the wave crests get squished together, resulting in
an apparent increase in the frequency; if the source is moving
away, the wave crests get spread out, resulting in a decrease.
The precise relationship between the emitted frequency f0 and
the received frequency f is

f =
(
v+ vr
v− vs

)
f0, (3.32)

where v is the velocity of the waves in the medium, vr is the
velocity of the receiver relative to the medium in which the
waves propagate, and vs is the velocity of the source with
respect to the medium. The sign conventions for the veloc-
ities have vr and vs positive if the source and receiver are
approaching each other, and negative if they are moving away
from each other. This equation is rather tricky to derive, and
should be memorized. One shortcut to remember the signs:
as vs approaches v, the observed frequency f should blow up
to infinity, accounting for the minus sign in the denominator.
Also note that f goes negative if vs > v: this equation simply
does not apply when the source or receiver is moving faster
than the wave velocity (instead, we need a theory of shock
waves and sonic booms). To add a further caveat, (3.32) only
applies when all velocities are small compared to the speed
of light. There is a corresponding formula for the relativis-
tic Doppler shift of light due to the motion of the source; see
Section 6.4.1.
Note that (3.32) only applies if the receiver and source are

moving directly toward or away from each other; otherwise,
there is an additional factor of cos θ , where θ is the angle
between the source velocity and the receiver’s position. In
fact, note that for vr and vs constant, f is constant in (3.32).
The falling-frequency sound characteristic of an approaching
and receding ambulance is due entirely to the varying fac-
tor of cos θ as the ambulance drives by, since the ambulance
does not directly approach the receiver but rather has some
nonzero distance of closest approach.

3.4.3 Standing Sound Waves

Like any other kind of wave, sound waves involve oscilla-
tions. Unlike light waves, which involve oscillating electric
and magnetic fields, sound waves involve pressure oscillations
in a gaseous medium (usually air). Additionally, they are lon-
gitudinal waves, which means that the pressure oscillations

(a) Open pipe (b) Half-open pipe

Figure 3.11 Snapshot at a single point in time of a pressure standing
wave in a pipe with two ends open (a) or one end open (b). The
point at the open end always must have a fixed pressure because it is
open to the outside, which has constant pressure. Note that,
confusingly, some references will draw similar figures to represent a
snapshot of particle displacement in the wave. In that case, closed
ends look like nodes, because the end of the pipe is fixed, and open
ends look like antinodes. In either case, however, the wavelengths of
the fundamental and its harmonics are the same.

take place along the same direction that the wave is traveling.
Thus there is no concept of polarization for ordinary sound
waves. However, all the other considerations of Sections 3.1.1
and 3.1.2 apply. One of the most common situations involves
standing sound waves in an open or half-open pipe. A pipe of
length L will support standing sound waves: an example is an
empty bottle, which when you blow across the opening cre-
ates a definite pitch. But the longest-wavelength oscillation is
not simply of length L. Indeed, for an idealized pipe, the open
end must always be a pressure node, where the difference in
average pressure compared to atmospheric pressure is zero
because the air in the pipe can equilibrate with the air out-
side.5 Similarly, a closed end is a pressure antinode, where the
pressure difference is maximal because air is pushing against
the fixed endcap of the pipe. These physical considerations
serve as boundary conditions for figuring out the possible
wavelengths of fully open and half-open pipes. When solv-
ing these problems, it’s useful to depict the pressure waves by
drawing parts of sine and cosine curves inside the pipe, as
in the cartoons in Fig. 3.11, which show the longest allowed
wavelengths.
The vertical axis in these cartoons represents the devia-

tion from average pressure, so both ends of the open pipe are
pressure nodes, while the left (closed) end of the half-open
pipe is an antinode. We see that the open pipe contains half
a wavelength, so the longest-wavelength standing wave has
wavelength 2L, while the half-open pipe contains a quarter
wavelength, giving wavelength 4L for the lowest mode. The
same method will allow you to figure out the other allowed
wavelengths, a favorite GRE question.

5 You can also think of sound waves as displacement waves, where actual
chunks of air are moving back and forth, in which case the open end
would be a displacement antinode rather than a node since the air is free
to slosh back and forth. But in this situation it’s often simpler to think in
terms of pressure.
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3.5 Problems: Optics and Waves

1. Sound waves in air can be described by the equation

∂2ρ

∂x2
= κ2 ∂2ρ

∂t2
,

where ρ is the deviation from average pressure, and κ is a
constant. The speed of sound is
(A) 1/κ2

(B) 1/κ
(C)

√
κ

(D) κ

(E) κ2

2. Polarized light with polarization vector n = 2x̂ + 3ŷ is
incident on a polarizer oriented at v = x̂+2ŷ. The ratio of
the intensity of the transmitted light to the initial intensity
is
(A) 1/

√
8

(B)
√
8/65

(C)
√
64/65

(D) 64/65
(E) 1

3. Let f (x, t) and g(x, t) be two traveling wave solutions to
the homogeneous wave equation

∂2f
∂t2

= v2
∂2f
∂x2

.

Which of the following statements are true?
I. f + g solves the wave equation.
II. fg solves the wave equation.
III. 2f − 3g solves the wave equation.
(A) I only
(B) II only
(C) III only
(D) I and III
(E) II and III

4. What is the correct relationship between phase veloc-
ity, vphase, and group velocity, vgroup, for a quantum-
mechanical wave packet?
(A) vphase = vgroup
(B) vphase = 2vgroup
(C) vphase = 1

2vgroup
(D) vphasevgroup = c2

(E) none of these
5. What is the absolute value of the relative phase between

two waves described by sin(x−vt+π/6) and cos(x−vt)?
(A) 0
(B) π/6
(C) π/3

(D) 2π/3
(E) π

6. A person standing in the middle of a long straight road
sees a truck with its headlights on approaching in the dis-
tance. The truck’s headlights are 3 m apart. Assuming the
headlights are point sources emitting yellow light of wave-
length 600 nm and the diameter of the human pupil is
5 mm, approximately how far is the truck from the person
when he can first resolve the two headlights as separate
sources?
(A) 2 m
(B) 20 m
(C) 200 m
(D) 2 km
(E) 20 km

7. Blue light of wavelength 400 nm and green light of wave-
length 500 nm are incident on a slit of width 20 µm, and
the light passing through the slit hits a screen 2 m away
from the slit. What is the distance on the screen between
the first diffraction minimum for blue light and the first
minimum for green light?
(A) 1 mm
(B) 5 mm
(C) 1 cm
(D) 4 cm
(E) 5 cm

8. Monochromatic light of wavelength λ is directed at a
double-slit arrangement with slit separation d. If the same
light is directed at a different double-slit arrangement
with slit separation d′, the position of the third interfer-
ence minimum corresponds to the position of the old sec-
ond interference maximum after the central maximum.
What is d′ in terms of d and λ?
(A) 4d/5
(B) 4λ2/5d
(C) d
(D) 5d/4
(E) 5d2/4λ

9. A soap bubble is formed by a thin film of soap (index of
refraction 1.5) surrounded on both sides by air. For soap
of thickness 1 µm, which of the following wavelengths of
light will exhibit constructive interference when reflecting
off the bubble at normal incidence?
(A) 400 nm
(B) 500 nm
(C) 600 nm
(D) 800 nm
(E) 900 nm
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10. A glass window (index of refraction 1.3) is coated with an
antireflective film of thickness 2 µm. Which of the fol-
lowing indices of refraction of the film would cause the
intensity of reflected light of wavelength 800 nm from a
normally incident beam to be suppressed?

I. 1.1
II. 1.4
III. 1.7

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I, II, and III

11. A person at the bottom of a swimming pool looking up at
the sky observes the Sun at an angle θ from the horizon.
What is the true angle of the Sun, in terms of the index of
refraction n of the water? (You may assume the index of
refraction of air is 1.)

(A) cos−1(n cos θ)
(B) sin−1(n cos θ)
(C) sin−1(n sin θ)
(D) cos−1(cos θ/n)
(E) sin−1(sin θ/n)

12. A sound wave propagates through a region filled with
an ideal gas at constant temperature T. It approaches
an acoustically permeable but thermally insulating mem-
brane such that the angle between the wave and the plane
of the membrane is 30 degrees. On the other side of the
membrane is the same gas at a different temperature T′.
What is the minimum value of T′/T such that no sound
passes across the barrier? (You may find it useful to know
that the speed of sound in an ideal gas is proportional to√
T.)

(A) 1/2
(B) 3/4
(C) 1
(D) 4/3
(E) 2

13. Which of the following MUST be true of the image of an
object formed by a general configuration of ideal lenses
and mirrors, where m denotes the absolute value of the
magnification of the object?

(A) A real image must havem > 1.
(B) A virtual image must havem > 1.
(C) A real image must be inverted.
(D) A virtual image must be inverted.
(E) None of the above.

12 cm

3 cm

6 cm

14. A converging lens of focal length 6 cm is placed 12 cm to
the left of a concave spherical mirror of radius of curva-
ture 6 cm, as shown in the diagram. An object is placed
3 cm to the right of the lens, in between the mirror and
the lens. Which of the following describes the image(s) of
the object formed by the lens in this configuration?
(A) One real image
(B) One virtual image
(C) Two real images
(D) Two virtual images
(E) One real image and one virtual image

15. A trumpeter on a horse, riding directly towards you, plays
a note at 200 Hz. You, standing still, hear a note at 210 Hz.
Assuming the speed of sound is 350 m/s, how fast is the
horse traveling?
(A) 8.5 m/s
(B) 16.7 m/s
(C) 17.5 m/s
(D) 333.3 m/s
(E) 367.5 m/s

3.6 Solutions: Optics and Waves

1. B – This is pure dimensional analysis. κ2 has units of
time2/length2, and so 1/κ has units of velocity.

2. D – Recall that given two vectors v and w, the cosine of
the angle between them is given by

cos θ = v · w
|v||w| ,

so using Malus’s law,

I
I0
= cos2 θ = (n · v)2

(n)2 (v)2
= (2 · 1+ 3 · 2)2

(22 + 32)(12 + 22)
= 64

65
,

choice D.
3. D – I and III are true by the principle of superposition,

but II is not: any linear combinations of f and g are also
solutions, but products are not linear combinations.

4. C – You need the Einstein relation E = �ω and the
de Broglie relation p = �k, which we discuss further in
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Chapter 5. Combined with the classical relation for a par-
ticle of mass m, E = p2/2m, this gives the dispersion
relation ω = �k2

2m . The phase velocity is vphase = ω
k = �k

2m ,
while the group velocity is vgroup = dω

dk = �k
m , so we see

that vphase = 1
2vgroup, choice C.

5. C – Note that the answer is not choice B because there
is an inherent phase difference of π/2 between sine and
cosine. To figure out whether the answer should be π/2+
π/6 or π/2 − π/6, ignore the phase shift of π/6 for now
and remember that cosine is shifted to the left from sine
by π/2. So cos x = sin(x+π/2), and the phase difference
is π/2− π/6 = π/3, choice C.

6. E – Although probably a little too involved for a real GRE
problem, this is a classic example of the Rayleigh crite-
rion. Let d be the distance of the truck from the person
in meters. The angular separation θ of the two sources is
given by tan(θ/2) = 1.5/d; since θ is likely small, we can
approximate tan θ/2 ≈ θ/2 to get θ ≈ 3/d. Now, the dis-
tanceD appearing in the Rayleigh criterion is the aperture
diameter of 5 mm, so we get (again using the small-angle
approximation)

(5 mm)(3/d) = 1.22(600 nm) =⇒ d

= 15 mm
1.22(600× 10−6 mm)

m ≈ 2× 104 m = 20 km.

This is choice E, and also seems physically reasonable –
on a clear night and a straight road, we ordinarily have no
trouble distinguishing the headlights of an approaching
vehicle.

7. C – From the single-slit formula, a sin θ = λ for the first
minimum, so sin θblue = 2× 10−2 and sin θgreen = 2.5×
10−2. These are small enough that we are justified in using
the small-angle approximation, sin θ ≈ tan θ ≈ θ . Since
θ = x/L, where x is the distance on the screen and L is the
distance to the screen (2 m in this case), xblue = 4 cm and
xgreen = 5 cm, and the distance between them is 1 cm,
which is C.

8. D – The position of the old second maximum (after the
central maximum) is given by d sin θ = 2λ, and the
new third minimum is d′ sin θ = 5λ/2. Setting the two
expressions for sin θ equal, we get

2λ
d
= 5λ

2d′
=⇒ d′ = 5

4
d.

Note that this is independent of λ!
9. A – Let n = 1.5 be the index of refraction of the soap.

At the front boundary, we have n > nair so there is a
phase shift of π . At the back boundary, nair < n so there
is no phase shift. The optical path length is 2nd, where

Air

Pool

Sun
θtrue

θobs

Figure 3.12 Solution for problem 11.

d = 1 µm. Thus the total phase shift is 2ndk + π , where
k is the wavenumber, and the condition for constructive
interference is that the total phase be a multiple of 2π :

2dn(2π/λ)+ π = 2mπ =⇒ λ = 4dn
2m− 1

.

For d = 1 µm, we can take m = 8 to get 400 nm, which
is A. None of the other choices correspond to possible
values ofm.

10. D – Now we are looking for destructive interference.
There is already a phase shift of π at the boundary
between the air and the coating because all the given
indices of refraction are greater than 1, so the only ques-
tion is whether there is an additional phase shift of π at
the coating–glass boundary. If the coating has index of
refraction n < 1.3, there is an additional phase shift, so
the condition for destructive interference is

2dn = (m− 1/2)λ =⇒ λ = 4dn
2m− 1

.

If n > 1.3, there is no additional phase shift, so we get
instead

2dn = mλ =⇒ λ = 2dn
m

.

Choice I must satisfy the first condition, which it does
whenm = 6. Choice II must satisfy the second condition,
which it does when m = 7. Choice III fails the second
condition (it satisfies the first condition, but that does not
apply since n > 1.3), so the correct options are I and II,
choice D.

11. A – Referring to Fig. 3.12, let θ = θobs, the observed angle
of the Sun, and θtrue be the true angle. Since we’re given
angles with respect to the horizon, not the normal, we
have to be careful applying Snell’s law. If α is the angle
to the horizontal, and β = π/2 − α is the angle to the
normal, then sinβ = cosα, so we can forget about the
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normal and just use cosines rather than sines. Since the
index of refraction of air is 1, we have

cos θtrue = n cos θobs =⇒ θtrue = cos−1(n cos θobs).

This matches choice A. For a quick limiting-cases analy-
sis, notice that if n = 1 we should have θtrue = θobs, which
gets rid of choice B.

12. D – This is the phenomenon of total internal reflection,
applied to the unfamiliar context of sound waves. Total
internal reflection occurs when Snell’s law has no solu-
tion for θ2, so that there is no refracted wave at all: this
occurs when sin θ2 > 1, or n1 sin θ1/n2 > 1. Here, θ1

(which, remember, is the angle to the normal) is 60◦, so
sin θ1 =

√
3/2. We’ll see in the following chapter on ther-

modynamics that the speed of sound in an ideal gas is
proportional to

√
T, and the “index of refraction” is pro-

portional to the reciprocal of the wave speed, so we have
the condition√

T′(
√
3/2)√
T

> 1 =⇒ T′

T
>

4
3
,

choice D. Choice E is the classic mistake of taking θ1 as
the angle to the boundary, rather than the angle to the
normal, while choice B results from forgetting that n1 is
the reciprocal of the speed.

13. E – This is a little tricky. If there is only one lens or
mirror, then by m = −s′/s and the sign conventions
for s and s′, a real image always has m < 0 and hence

is inverted, leading us to suspect choice C. However, in a
more general configuration a real image can serve as the
object for another lens or mirror, and a second succes-
sive real image causes another inversion and the resulting
object is upright. Counterexamples for the remaining
choices are easy. For A, place the object beyond the center
of curvature of a single concave mirror; for B and D, place
the object anywhere outside a single convex mirror.

14. E – There are two possibilities for light rays coming from
the object: they can either go to the left and pass straight
through the lens, or they can go to the right, hit themirror
first, then pass through the lens. Each of these paths can
potentially give rise to an image. For the first possibility,
note that the object is inside the focal length of the lens,
so we will get a virtual image; you can also see this from
1/s + 1/s′ = 1/f , which shows s′ must be negative. This
eliminates A and C. As for the second possibility, the mir-
ror has focal length R/2 = 3 cm. The object is 9 cm to the
left of the mirror, so the lens equation gives s′ = 4.5 cm, a
real image. But this is now outside the focal length of the
lens, which will give a real image somewhere far to the left
of the lens. Thus choice E is correct.

15. B – Straightforward application of the Doppler effect.
Here vr = 0, and we are solving for vs:

f
f0
= 210

200
= 350

350− vs
=⇒ vs = 16.7 m/s.

 



4 Thermodynamics and
Statistical Mechanics

Statistical mechanics and thermodynamics form a small but
important section of the exam. On the one hand, only 10%
of the exam covers these topics. On the other, the questions
tend to be at an easy level and students tend to perform
poorly because statistical mechanics and thermodynamics are
often poorly covered in undergraduate courses. A relatively
small amount of knowledge translates into a large gain in
performance on these questions.
In this section we will give a sketch of the basic structures of

statistical mechanics and thermodynamics, and then we will
consider their application to somemodel systems. Most prob-
lems will involve just a few of these model systems, so it is
worth understanding them well.

4.1 Basic Statistical Mechanics

4.1.1 Ensembles and the Partition Function

State variables such as temperature and pressure character-
ize the macrostate of a system, and completely specify the
macroscopic behavior of the system. On the other hand, many
microscopic configurations or microstates correspond to the
same macrostate. We can imagine preparing several copies of
a systemwith slightly different initial conditions; if, at the time
of measurement, the copies have the same state variables, the
systems will be macroscopically identical. Statistical mechan-
ics is the business of calculating properties of macrostates
without knowing the exact microstate of a system.
To carry out the calculation, we need to identify what

ensemble applies to our system. An ensemble is the collection
of all possible microscopic configurations of the system sub-
ject to some constraints, and formalizes the idea of different

microstates corresponding to a single macrostate. The most
common ensemble, by far, that appears on the GRE is the
canonical ensemble. The canonical ensemble consists of all
possible states of a system with

● fixed particle number (N)
● fixed volume (V)
● fixed temperature (T): the system is allowed to exchange
energy with a large heat bath whose heat capacity is
assumed to be so large that its temperature stays fixed.

So, a system described by the canonical ensemble can have
energy fluctuations, but the state variables N, V , and T must
remain fixed. A somewhat less common ensemble is the
microcanonical ensemble, which has fixed energy E rather than
fixed temperature T, and whose temperature can fluctuate
accordingly. There are other ensembles associated with other
state variables, but these do not ever seem to be tested by
the GRE. Unless otherwise specified, we will work with the
canonical ensemble in the remainder of this chapter.
With this picture, how do we actually calculate anything?

Consider a system with discrete energy states {Ei}. From a few
very basic assumptions one can show that the probability of
the system being in a state i is given by

pi = e−βEi∑
j e
−βEj

, (4.1)

where

β = 1
kBT

. (4.2)

Here kB is Boltzmann’s constant, and probabilities satisfy-
ing (4.1) are known as Boltzmann statistics; we will often use
β and T interchangeably depending on which one is more
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convenient.1 Equation (4.1) allows us to calculate extensive
quantities, such as average energy E or its variance σ 2

E , by
using the pi as a probability distribution. For example, sup-
pose the system is a magnet, and the energy states Ei have
magnetizationsMi. The average magnetization is given by

〈M〉 =
∑
i

piMi.

In fact, whenever you encounter any system that has a discrete
set of states in any parameterO (energy, spin, magnetization,
etc.), and you need to compute the average (or expectation
value) value of this parameter, just use the weighted sum of
the different states:

〈O〉 =
∑
i

piOi, (4.3)

which should be familiar from basic probability.
It is equally instructive to rewrite equation (4.1) as

pi = e−βEi

Z
, (4.4)

where Z is known as the partition function,

Z =
∑
j

e−βEj . (4.5)

The advantage of the partition function formalism is that the
same quantities we computed above using probabilities can
be computed directly from Z. This is important enough to
repeat: if you know the partition function, you can compute
all the state variables. The expectation value of energy, for
example, is

〈E〉 =
∑
i

piEi =
∑

i Eie
−βEi

Z
= − ∂

∂β
lnZ. (4.6)

This last equality is an extremely useful trick because it allows
us to compute the average energy directly from the parti-
tion function without even thinking about the probabilities or
doing complicated sums: just find Z and differentiate its loga-
rithm! On the other hand, for very simple systems, it may be
faster to compute the weighted sums by hand.
This n-state system arises very frequently on the GRE. In

general, youmight be given a systemwith n discrete states and
corresponding energies Ei; the quantum harmonic oscillator
is a favorite example, but sometimes the GRE just gives you a
list of states and their associated energies. Problems may ask
you to compute the probability of the system being in certain

1 The GRE writes k instead of kB in the Table of Information at the
beginning of the exam, and we will use this notation in the sample exams
at the end of this book. To avoid any confusion with the many other uses
of the letter k, we will stick to kB in this chapter.

states, ratios of probabilities of states, expectation values of
energy, expectation values of other quantities, and the heat
capacity, to be discussed in Section 4.2.5 below. The formulas
in this section should be enough to get you through any of
these kinds of problems.

4.1.2 Entropy

Another quantity of fundamental importance that constrains
the behavior of systems in thermodynamics and statistical
mechanics is the entropy. Entropy can be conceptually tricky,
but for the purposes of the GRE, you will only be expected
to know its mathematical definitions, and how to apply it in
well-defined thermodynamic scenarios. Here we give two def-
initions and a useful formula, but more discussion will follow
in Section 4.2.3.

● The most transparent and elegant definition is the one
given by Boltzmann:

S = kB ln	, (4.7)

where 	 is the number of microstates corresponding to the
system’s macrostate. For example, if a two-electron system
is in a magnetic field with HamiltonianH ∝ S ·B, the states
of the system are the spin singlet with S = 0 and the spin
triplet with S = 1. The zero-energy state is the one with
Sz = 0, for which there are two corresponding microstates:
the spin singlet, and the Sz = 0 component of the spin
triplet.2 Thus the zero-energy state has entropy kB ln 2. The
formula (4.7) is useful if you ever need to calculate the
entropy of a system that either has a small number of states
or a simple analytic expression for the number of states.

● Another closely related expression for entropy is

S = −kB
∑
i

pi ln pi = ∂

∂T
(
kBT lnZ

)
, (4.8)

where pi is the probability of the system being found in the
ith microstate. (Exercise: derive the last equality from the
definitions (4.4) and (4.5).) This definition has the advan-
tage of being directly connected to the partition function,
so it is useful if you happen to know the exact form of the
partition function.
It turns out to be equivalent to (4.7) if we assume some-

thing called the “fundamental assumption of statistical
thermodynamics” or sometimes the “postulate of equal a
priori probability.” The justification for this is very deep
and subtle, but for the purposes of the exam you can assume
that these forms of the entropy are equivalent.

2 If this discussion is unfamiliar to you, see Section 5.5.3.
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● For amonoatomic ideal gas, the expression for entropy is

S = NkB
(
ln

V
N
+ 3

2
lnT + 5

2
+ 3

2
ln

2πmkB
h2

)
, (4.9)

where V is the volume, N is the number of particles, T is
the temperature, m is the mass of the gas particles, and h
is Planck’s constant. The important point here is not the
constant numerical factors, but the scaling of S with state
variables. It is most useful to remember

S = NkB ln
VT3/2

N
+ constants. (4.10)

We’ll discuss ideal gases more in Section 4.2, but we men-
tion them here just to show what an explicit formula for
entropy looks like.

The interpretation of entropy from these definitions is as a
measure of the number of possible states that a system could
have in a particular macroscopic state. Gibbs is rumored to
have called it, more-or-less accurately, the amount of “mixed-
up-ness” of a system. If a system could be in many possible
states, then it has high entropy. Alternatively, we can think of
entropy as a measure of our uncertainty about the underlying
state of the system. If a system has low entropy, then it can
only be in a small number of possible states, and we can be
relatively certain what underlying state it is actually in.

4.1.3 Classical Limit

The partition function formalism is very simple to apply to
systems with a small number of states. But classical systems
do not generally have a discrete set of states. Because position
and momentum are continuous variables, there are formally
an infinite number ofmicrostates for a box of gas, for example.
Nevertheless, we can extend the formalism above to the con-
tinuum limit. The sum in the partition function becomes an
integral and we obtain the partition function for N (identical)
classical particles:

ZN = 1
N!h3N

∫
e−βH(p1,...pn;x1,...xn)d3p1 . . . d3pnd3x1 . . . d3xn,

(4.11)
where xi and pi are three-dimensional vectors,H is the classi-
cal Hamiltonian, h is Planck’s constant, and the normalization
factor N! accounts for identical particles. The effects of iden-
tical particles can be rather tricky and irritating, but it is not
too difficult to understand.When particles are identical, states
formed by interchanging particles are not counted twice, and
dividing by N! accounts for this. That said, N is a fixed quan-
tity in the canonical ensemble, so the factors multiplying the
integral in Z almost always disappear when you take the log
and differentiate to find the state variables.

4.1.4 Equipartition Theorem

The equipartition theorem is a simple application of equation
(4.11), which gives a quick rule for determining the internal
energy of a system. This is extremely useful for comput-
ing heat capacities, as discussed further in Section 4.2.5. The
theorem states that

Each quadratic term (degree of freedom) in the Hamil-
tonian for a particle contributes (1/2)kBT to the internal
energy of the particle.

For example, a particle in an ideal gas has a Hamiltonian
H = p2/2m = p2x/2m + p2y/2m + p2z/2m, so the internal
energy of such a particle is U = (3/2)kBT. The proof of this is
an exercise in manipulating Gaussian integrals, noting that we
can integrate each quadratic term in the exponential of equa-
tion (4.11) one by one, but the details are not relevant for the
GRE. See Example 4.1.
Often we can compute the internal energy from the

equipartition theorem without ever writing down an explicit
Hamiltonian, just by counting quadratic degrees of freedom.

4.1.5 Some Combinatorial Facts

A few basic combinatorial facts occasionally come in handy.
The first is the binomial coefficient. Suppose that we have N
distinguishable marbles and we want to know the number of
ways of choosing a group of M of these marbles from a hat.
The result is denoted(

N
M

)
= N!

(N −M)!M! , (4.12)

which is read “N chooseM.”
Another useful identity known as Stirling’s formula is

ln(n!) ≈ n ln n− n (4.13)

for large values of n.

4.2 Thermodynamics

Statistical mechanics reproduces macroscopic physics by ana-
lyzing microscopic physics. Thermodynamics ignores the
microscopic foundations and sets down rules for how macro-
scopic systems should behave. Even without the microscopic
foundations, thermodynamics gives a complete description of
thermal systems. Though thermodynamics is usually taught
first, it can be derived from statistical mechanics, so hopefully
the laws and formulas will seem straightforward in light of the
more formal tone of the previous section.
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4.2.1 Three Laws

Thermodynamics can be summarized succinctly in three laws
(plus a zeroth law) that completely determine the behavior of
a system. The laws of thermodynamics are

1. Energy cannot be created or destroyed. This is just the con-
servation of energy from the statistical mechanical point of
view, and it can be stated mathematically as

�U = Q−W, (4.14)

where �U is the change in the internal energy of a system,
Q is the heat added to the system, andW is the work done
by the system. Take care that the signs of your terms agree
with your definitions of the quantities.

2. There is no process in which the sole effect is to transfer heat
from a body at a lower temperature to a body at a higher
temperature. There are several equivalent formulations of

EXAMPLE 4.1

What is the specific heat of a diatomic gas as a function of temperature?
There are three translational degrees of freedom corresponding to the kinetic energy of the center of mass in the three

spatial dimensions. There are two rotational degrees of freedom, corresponding to rotations around the axes perpendicu-
lar to the axis connecting the two atoms (since the atoms are assumed to be point-like, there is no energy associated with
rotation along the axis connecting the atoms). And there are two vibrational degrees of freedom corresponding to the
kinetic and potential energy of the vibrating molecules. Without writing anything, we see that there are seven quadratic
degrees of freedom and the internal energy is (7/2)kBT. The explicit Hamiltonian for a diatomic gas composed of two
atoms of massm is

H = p2x
2m

+ p2y
2m

+ p2z
2m

+ L21
2I1

+ L22
2I2

+ p2s
m
+ 1

2
ks2,

where s is the separation between the atoms, k is the vibrational spring constant, I1,2 are the two moments of inertia about
the two rotational axes, and L1,2 and ps are the appropriate conjugate momenta (note that there is no factor of 1/2 in
the second-to-last term because vibrations are about the center of mass, and the reduced mass is m/2). But clearly, we
didn’t need to write down the Hamiltonian to get the answer. Other examples include the extreme relativistic gas and
two-dimensional gases, whose internal energies you will calculate in the end-of-chapter problems.
Remember that the equipartition theorem is a classical statement, and it breaks down when the spacing between energy

levels becomes large compared with kBT. In this regime, the classical assumption that the energy levels form a continuum
is no longer valid, and the equipartition theorem will tend to overestimate the internal energy of a system. This usually
happens at low temperatures, when degrees of freedom are “frozen out.” In the case of a diatomic ideal gas, for example,
we saw that the internal energy at high temperatures was (7/2)kBT. We know from quantum mechanics that the low-
energy states of the harmonic oscillator are discrete, and it is straightforward to show that the low-energy states of the
rigid rotor in three dimensions are also discrete. Using typical values for the harmonic oscillator angular frequency ω and
the moment of inertia I, we can estimate the temperature at which quantum mechanics becomes important:

kBT ∼ �ω =⇒ T ∼ 1000 K (vibrational),

kBT ∼ �
2

2I
=⇒ T ∼ 1 K (rotational).

So vibrational degrees of freedom freeze out first; at room temperature, the equipartition theorem still applies to transla-
tional and rotational degrees of freedom, and the internal energy is (5/2)kBT. At very low temperatures, if the substance
still exists as a gas once rotational degrees of freedom have frozen out, all that is left are the energy states associated with
the translational part of the Hamiltonian, or the free particle states. From quantum mechanics we know that such states
form a continuum down to low energies. So, at low temperatures, the equipartition theorem will continue to apply to the
three translational degrees of freedom and the diatomic gas will have an internal energy approximately equal to (3/2)kBT,
the same as for a monoatomic ideal gas. This situation is conveniently summarized in Fig. 4.1, where the temperature axis
is logarithmic.
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EXAMPLE 4.1 (Cont.)

3/2 kBT

5/2 kBT

7/2 kBT

1 K 1000 K

Figure 4.1 A sketch of specific heat CV of a diatomic gas as a function of temperature. Note the plateaus at (5/2)kBT and (7/2)kBT
corresponding to the “unfreezing” of rotational and vibrational degrees of freedom, respectively.

the Second Law of Thermodynamics: the previous sen-
tence is the so-called “refrigerator” statement, while the
“engine” version is no system can undergo a cyclic process
where heat absorbed from a reservoir at a single temperature
is completely converted into mechanical work. The refriger-
ator statement says that refrigeration cannot happen spon-
taneously, and the engine statement says that heat engines
must always waste some heat. All equivalent statements of
the Second Law imply the mathematical relationship

�S ≥
∫

δQ
T

, (4.15)

which describes the well-known result that the entropy of a
thermally isolated system (where δQ = 0) cannot decrease.
Past GREs have had questions involving conceptual appli-
cations of the Second Law, so it’s useful to know both the
words and the mathematical relationship.

3. Entropy is zero at absolute zero temperature. This statement
follows from the definition of entropy (4.7). At absolute
zero, there is only one microstate for a system and so the
entropy is zero.

There is an additional law, called the Zeroth Law, which
states that if two systems are in equilibrium with a third, then
they are in equilibrium with each other, easily remembered by
the succinct statement “thermometers exist.” This is necessary
in order for the notion of thermodynamic equilibrium to be
well defined.

4.2.2 Gases and Equations of State

Thermodynamic systems are specified by an equation of state
that constrains the values that the state variables may assume.
The most famous example of this is the equation of state for
an ideal gas:

PV = NkBT, (4.16)

where P is the pressure, V is the volume, N is the number of
particles, and T is the temperature. You probably know this
as the ideal gas law, describing how the state variables P, V ,
and T are related. The only other equation of state you may
see on the exam is the equation of state for the van der Waals
gas. The van derWaals gas has particles with nonzero size and
a pairwise attractive potential, and the equation of state is(

P + N2a
V2

) (
V − Nb

) = NkBT,

where ameasures the attraction between particles, and bmea-
sures the size of the particles. Clearly a = b = 0 reduces to the
ideal gas law. You should definitely not memorize this equa-
tion, as it will be given to you if needed, but you should be
familiar with its interpretation.

4.2.3 Types of Processes

Thermodynamic processes can be classified into several types
that have important properties, mostly relating to holding
certain variables constant. The words used to describe many
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of these processes are often used interchangeably, but this is
sloppy: there are very precise meanings, and it is crucial to
keep definitions straight to know which formulas apply. Here
is a list of the most important processes you will encounter on
the GRE.

● Reversible process. A process that proceeds in infinitesimal
steps such that the system is in equilibrium at each step, and
each infinitesimal step can be reversed by somehow chang-
ing the state of the system. A common example is slowly
heating a gas in a container of flexible size. As an infinites-
imal amount of heat is added, the gas expands, and comes
to equilibrium after enough time has elapsed; this can be
reversed simply by cooling the system by removing an equal
amount of heat.
Reversible processes imply several important conditions.

If the process involves a gas, the work done in each
infinitesimal step is given by

δW = P dV (reversible). (4.17)

Note that this is not true if the process is irreversible:
see “free expansion” below. In addition, the total entropy
change of the system and its surroundings must be zero.
The entropy of the system by itself can change, however,
and is given by

δQ = T dS (reversible), (4.18)

where T is the temperature and δQ is the heat input. The
integral form of this equation is

�S =
∫

δQ
T

, (4.19)

which is just the lower bound of the Second Law expres-
sion (4.15): a reversible process has the minimum possible
entropy increase for a given δQ. Notice that if δQ < 0,
�S is negative! There is no contradiction here: cooling
a system reduces its entropy, but increases the entropy
of its surroundings by an equal amount because of the
heat deposited, so the total entropy change is zero. Finally,
notice that, if the initial and final states of the system are the
same, the limits of integration degenerate onto each other,
and �S = 0: the entropy change of a system undergoing a
reversible cycle is zero.

● Quasistatic process. A process that happens infinitely
slowly, so that at each instant the system is in thermody-
namic equilibrium. Reversible processes are always qua-
sistatic, but a quasistatic process need not be reversible in
general.

● Adiabatic process. A process for which δQ = 0: no heat is
exchanged between a system and its surroundings.

● Isentropic process/Reversible adiabatic process. A pro-
cess that is both adiabatic and reversible. One can prove
that a process is reversible and adiabatic if and only if it has
zero entropy change (an isentropic process). Here we mean
that the entropy change of the system itself is zero, and con-
sequently the entropy change of the surroundings is zero as
well. Compressing a gas in a cylinder by pressing down a
piston is the prototypical example. By applying a very small
force, the piston is displaced a small amount; each com-
pression step can be reversed by removing the force, which
causes the gas to expand again and the system to return
to its initial state. Since no heat is exchanged during this
process, adiabatic compression is isentropic.
One major reason that this type of process arises in

problems is that for an ideal gas undergoing an isentropic
process,

PVγ = constant, (4.20)

where γ = CP/CV is the ratio of the heat capacity at con-
stant pressure P to heat capacity at constant volume V .
There is a particularly nice formula for γ for ideal gases,
which we discuss further in Section 4.2.5.
Warning! Past GREs have been known to use “adiabatic” to
mean “reversible adiabatic.” Keep the more restrictive def-
initions in mind, but be prepared to be flexible based on
context because the GRE often does not define its terms in
the test questions.

● Iso-something process. A process for which some state
variable is held constant. “Isothermal” means constant
temperature, “isobaric” means constant pressure, and “iso-
choric” means constant volume, though memorizing these
terms is completely unnecessary. The key to figuring out the
work done by a gas in such a process is to use the definition
of work (4.17), supplanted by the ideal gas law equation of
state (4.16), to solve for P in terms of the constant variables.
For example, if P is constant, it can be pulled outside the
integral andW = P�V . If T is constant, then solve for P in
terms of T:

P = NkBT
V

=⇒ W = NkBT
∫

dV
V

.

If V is constant, then no work is done since dV = 0. The
isothermal process is perhaps the most common, so get
familiar with the form of the integral and the appearance
of lnV from integrating dV/V .

● Free expansion. This process occurs when a gas suddenly
expands from a smaller region to a larger region: think of
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a balloon popping, where the gas initially inside the bal-
loon rushes out to occupy the whole volume of the room.
The temperature of an ideal gas does not change during free
expansion, so we have

PV = P′V ′ (free expansion).

Note that free expansion is adiabatic, but not reversible: one
cannot force all the gas molecules back into the smaller vol-
ume once they have expanded, simply by changing the state
variables of the system. Free expansion is the prototypical
irreversible process, just as irreversible as an egg breaking.
The fact that this process is irreversible means that there
is an entropy change, despite the fact that δQ = 0; equa-
tion (4.19) simply does not apply to irreversible processes.
We will see in Example 4.2 how to calculate the entropy
change. Similarly, note that, despite the fact that the vol-
ume changes, the gas does no work. This is consistent with
the First Law: �U = 0 at constant temperature, Q = 0
since the process is adiabatic, andW = 0, so we trivially get
0 = 0− 0.

4.2.4 Relations Between Thermodynamic
Variables

Equations of state tell us what states are accessible to a par-
ticular system in terms of the system’s state variables. What if
we are interested in other variables that are not the state vari-
ables of a system? How would we calculate the entropy of an
ideal gas, for example? There are a large number of thermody-
namic identities that relate, under varying circumstances, all
of the variables that we have been discussing.
The first identity is so useful that it is often called the fun-

damental thermodynamic identity. It relates the differentials
of state variables U, S, and V :

dU = TdS− PdV . (4.21)

This equation is simply the infinitesimal version of the First
Law (4.14), dU = δQ − δW, supplanted by the definitions
(4.18) and (4.17) for δQ and δW respectively. Notice that we
write δQ and δW, not dQ and dW. This is because Q and W
are not state variables, but refer to small quantities of heat and
work added to or done by the system, respectively. In con-
trast, U is a state function, a mathematical representation of
the internal energy of a system, which can thus be sensibly dif-
ferentiated. Finally, note that (4.21) applies to all infinitesimal
changes of state, not just reversible ones: this needs a tricky bit
of reasoning, so this fact is best simply memorized.

The fundamental thermodynamic identity also implies a
definition of temperature and pressure:

T =
(

∂U
∂S

) ∣∣∣∣
V
, (4.22)

P = −
(

∂U
∂V

) ∣∣∣∣
S
. (4.23)

The vertical bars refer to holding the subscript variable con-
stant, so (4.22) holds at constant V , and (4.23) holds at
constant S.
Another important class of thermodynamic relations are

the Maxwell relations, which relate partial derivatives of ther-
modynamic variables. From the expressions for T and P
above, we can equate mixed partial derivatives and determine(

∂P
∂S

) ∣∣∣∣
V
= −

(
∂T
∂V

) ∣∣∣∣
S
. (4.24)

There are three other thermodynamic potentials, which we
give here for completeness, though you almost certainly won’t
need them for the GRE:

dH = TdS+ VdP, (4.25)

dA = −SdT − PdV , (4.26)

dG = −SdT + VdP. (4.27)

The associated Maxwell relations are(
∂T
∂P

) ∣∣∣∣
S
=
(

∂V
∂S

) ∣∣∣∣
P
, (4.28)(

∂S
∂V

) ∣∣∣∣
T
=
(

∂P
∂T

) ∣∣∣∣
V
, (4.29)

−
(

∂S
∂P

) ∣∣∣∣
T
=
(

∂V
∂T

) ∣∣∣∣
P
. (4.30)

4.2.5 Heat Capacity

The heat capacity of an object is the amount of heat it takes to
change the temperature of that object. More precisely, we can
define the heat capacity at constant volume and pressure as(

∂Q
∂T

)
V
= CV , (4.31)(

∂Q
∂T

)
P
= CP, (4.32)

respectively.3 The more common one is CV , because referring
back to the fundamental equation (4.21), constant volume is
3 Given our admonition to be careful about writing δQ rather than dQ, the
abuse of notation ∂Qmay seem strange, but it is a common one. Just
make sure ∂Q only shows up when taking a derivative with respect to
something, and not as a total differential as in (4.21).
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EXAMPLE 4.2

Let’s calculate the entropy change for an ideal gas in a particular process, the adiabatic free expansion of the gas from
volume V1 to volume V2. The internal energy depends only on T ( 32NkBT for a monoatomic gas, or 5

2NkBT or 7
2NkBT

for a diatomic gas depending on the temperature), but since temperature is constant in free expansion, dU = 0. Thus
TdS = PdV , and

�S =
∫ V2

V1

P
dV
T

=
∫ V2

V1

NkBT
V

dV
T

= NkB ln
(
V2

V1

)
.

Of course, this matches the result you would obtain from using the full formula for the entropy (4.9). It’s much more
important to remember the steps that go into this derivation than memorize the equation for entropy change itself, since
this same kind of reasoning is used often in thermodynamics problems.

equivalent to dV = 0, so we can differentiate both sides with
respect to T and get (

∂Q
∂T

)
V
= ∂U

∂T
. (4.33)

Hence, differentiating the energy you obtain from the
equipartition theorem gives you CV .
In fact, for an ideal gas there is a very simple (but very tricky

to derive) relation between CP and CV :

CP − CV = NkB, (4.34)

where N is the number of particles. Note that this is true
for any ideal gas: monoatomic, diatomic, or something more
complicated. This in turn immediately gives you the ratio γ

you need for an adiabatic process if you know the internal
structure of the gas. For example, a monoatomic gas has inter-
nal energy 3

2kBT per particle from the equipartition theorem,
so we have

CV = 3
2
NkB =⇒ CP = 5

2
NkB =⇒ γ = CP

CV
= 5

3
.

As defined, CP and CV are extensive variables, because they
depend on the quantity of the substance being heated. If we
normalize to the mass of the material, we get an intensive
quantity c called the specific heat (or specific heat capacity),
typically in units of J K−1 g−1. From dimensional analysis,
we can remember the formula for the amount of energy Q
required to heat a massm of specific heat c by �T degrees as

Q = mc�T. (4.35)

The specific heat capacity of water is famously equal to
4.18 J K−1 g−1 at standard temperature and pressure. Because
of this, specific heats are sometimes quoted in units of calories
rather than joules. One calorie is set to be 4.18 J, so that the
specific heat capacity of water is conveniently 1 cal K−1 g−1.

We should note that the terms “heat capacity” and “specific
heat” are often used interchangeably, and if a distinction is
necessary the units and context should tell you which one is
meant.

4.2.6 Model Systems

Two thermodynamic systems are almost guaranteed to appear
on the GRE: heat engines and ideal gases. Gases also provide
a nice system for studying the propagation of sound waves.

● Heat engines, P–V, and T–S diagrams. A heat engine is
a process that converts heat into work. Schematically, the
heat engine absorbs some heat QH from a hot reservoir at
TH , expelsQC of this to a cold reservoir at TC, and converts
the remainder in workW = QH − QC. Since energy QC is
not converted into work, the efficiency of the heat engine is

e = 1−
∣∣∣∣QC

QH

∣∣∣∣ . (4.36)

(Note that there are various sign conventions for QC and
QH , but the absolute value signs make sure e < 1 always.)
Themaximum theoretical efficiency for a heat engine is

e = 1− TC

TH
, (4.37)

which is in fact the efficiency of the idealized Carnot cycle.
The Carnot cycle consists of four steps. First, the gas under-
goes reversible isothermal expansion at the hot temperature
TH . Entropy increases from S1 to S2 during this process.
Next, the gas expands adiabatically at constant entropy
until it has temperature TC. The gas then is compressed
at constant temperature TC, and entropy decreases from
S2 back to S1. Finally, the gas is compressed adiabatically,
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TC

TH

S1 S2

Figure 4.2 An example of a Carnot cycle in the T–S-plane.

increasing the temperature from TC to TH . The entire pro-
cess is thus a rectangle in the T–S-plane, illustrated in
Fig. 4.2.
Since the system returns to its initial state, its change in

internal energy over the cycle is zero: �U = 0. The First
Law then tells us that Q = W. The heat input in reversible
processes is Q = ∫ TdS, so we can compute the work by

W = Q =
∫

TdS = (TH − TC)(S2 − S1).

In other words, the work is the area in the T–S-plane
bounded by the Carnot cycle. Problems on the GRE often
involve analyzing cycles of systems in pressure–volume or
entropy–temperature diagrams. The Carnot cycle is just
one example of a problem that can be analyzed with one
of these diagrams.
A similar example with a P–V diagram is shown in Fig. 4.3.
This diagram could represent an ideal gas that undergoes
compression at constant pressure, an increase in pressure
at constant volume via heating, and then isothermal expan-
sion. To find the work done during the process, just find the
area in the P–V-plane, since that’s what the integral

∫
PdV

instructs you to do.
It is important to note that the areas are signed quantities:

if you reverse the direction of the closed path bounding the
area in question, you flip the sign of the area, and hence the
sign of the work. This is often a crucial distinction, since
it tells you whether the system is doing work on its sur-
roundings, or vice versa. You can determine this sign with
a right-hand type rule, but it’s just as easy to use physical
reasoning: the gas does positive work as it expands, and for
a given volume change �V , it does more work at higher
pressure. So, imagining a rectangle in the P–V-plane, the
gas does positive net work when the upper horizontal edge
is traversed left-to-right, and the bottom edge is traversed
right-to-left. A similar analysis holds for T–S diagrams, so,
to summarize,

P1

P2

V1 V2

Figure 4.3 An example of a cycle in the P–V-plane. The work done
is the signed area enclosed by the curve.

Clockwise paths in the P–V- and T–S-planes do posi-
tive work.

Just remember which axis goes where!
● Monoatomic ideal gases. Since ideal gases are so common,
at a minimum you should know the internal energy, the
entropy, and the root-mean-square (rms) velocity. Some-
times it’s handy to know the partition function, because it
allows you to calculate so many observables, but it is not
essential knowledge.
The Hamiltonian for a particle in an ideal gas is just

the Hamiltonian for a free particle in three dimensions.
So, using equation (4.11) with H = p2/2m, we have the
partition function for a single particle:

Z1 = 1
h3

∫
e−βp2/2md3pd3x = V

h3
(
2πmkBT

)3/2 .
For a gas of N identical particles, the partition function
is just the product of all single-particle partition functions
times the normalization factor 1/N! for identical particles:

ZN = VN

N!h3N
(
2πmkBT

)3N/2 .

From this, we can immediately derive the internal energy of
a classical ideal gas using (4.6):

U = 3
2
NkBT, (4.38)

which implies CV = (3/2)NkB from the discussion in
Section 4.2.5. You can turn this around and use the equipar-
tition theorem to remind yourself about the factor of 3/2
in the exponent of the partition function: there are three
quadratic degrees of freedom in the Hamiltonian (one for
each spatial dimension), giving the factor of 3/2 in the
internal energy.
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Related to the average internal energy of a gas is the rms
velocity of a gas molecule. This is given by

vrms =
√
3kBT
m

. (4.39)

The rotational and vibrational motion of a gas molecule
does not contribute to its velocity: a molecule can rotate
however it wants, but if it has no translational energy,
its rms velocity will be zero. The result of this is that
even thoughmonoatomic and diatomic gases have different
internal energies, the expressions for their rms velocities are
equivalent. This makes the formula very easy to remember:
the factor of 3 comes from three dimensions, and the rest
of the factors come from dimensional analysis.
We can also calculate the entropy of an ideal gas just

by differentiating the partition function, using (4.8), and
derive equation (4.9), which we saw earlier, repeated here
for convenience:

S = NkB
(
ln

V
N
+ 3

2
lnT + 5

2
+ 3

2
ln

2πmkB
h2

)
. (p.80)

(4.9)
This expression is useful for demonstrating the entropy of
mixing, as shown in Example 4.3.

● Sound waves in gases. Sound waves need a medium in
which to propagate, and in most everyday situations, this
medium is a gas. As discussed in Chapter 3, the speed of
sound in a material is given by

c =
√
K
ρ
,

where K is a measure of stiffness called the bulk modulus
and ρ is the density. The “stiffness” of an ideal gas is tricky
to define, but the general result is that

K = γP,

where γ = CP/CV and P is the pressure as usual. From
this, we have the general result that the speed of sound in
an ideal gas is just

c =
√

γ
P
ρ
. (4.40)

This formula is also simple to memorize: higher pressure
means faster speed of sound, higher density means lower
speed of sound, and the square root comes from dimen-
sional analysis. Notice, though, that this formula contains
an implicit dependence on the temperature: since ρ =
Nm/V , the ideal gas law gives

P
ρ
= P

Nm/V
= PV

Nm
= NkBT

Nm
,

so the speed of sound can be written

c =
√

γ
kBT
m

. (4.41)

4.3 Quantum Statistical Mechanics

Though we discussed the role of identical particles when cal-
culating the entropy, we have not considered the effect of
distinguishability in a more general quantum context. Iden-
tical particles behave very differently in quantum mechanics
than might be expected from classical mechanics; the best-
known example is the Pauli exclusion principle (to be dis-
cussed in much more detail in the following chapter), which
states that two identical fermions can’t occupy the same quan-
tum state. When we wish to calculate the energy of some
large ensemble of particles, knowing how many particles are
allowed to occupy each state with energy ε is obviously essen-
tial. More precisely, it affects the average occupation number
of a particular energy state.

EXAMPLE 4.3

Consider a box that is divided into two equal halves of volume V by an impermeable partition, with the same number
N of gas particles in each half. If the gases are identical, then removing the partition does not change the entropy of the
system. On the other hand, if the gases are different, then removing the partition produces a change in entropy:

�Smix = 2NkB
(
ln

2V
N

− ln
V
N

)
= 2NkB ln 2.

This example demonstrates the importance of whether particles in a system are identical or distinguishable for determin-
ing the entropy. Once again, remembering the constant terms is probably not worth your time, since they tend to cancel
when calculating entropy differences anyway, as they did in this example.
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Deriving the average occupation number for bosons and
fermions is straightforward, though a little lengthy, so we will
not repeat it here and simply state the results. By average
occupation number, we mean the average number of parti-
cles occupying a single-particle state at some energy εi. For
identical fermions (particles with half-integer spin), the occu-
pation number as a function of energy level εi is described by
the Fermi–Dirac distribution:

FFD(εi) = 1
e(εi−μ)/kBT + 1

. (4.42)

Notice that FFD can never exceed 1: this is the Pauli exclu-
sion principle at work, since there can be no more than one
fermion per energy level. For identical bosons (integer spin),
we have the Bose–Einstein distribution instead:

FBE(εi) = 1
e(εi−μ)/kBT − 1

. (4.43)

Now, the change of sign in the denominator means that,
depending on the temperature, arbitrarily many bosons can
occupy the same state. At zero temperature, this leads to the
familiar concept of Bose condensation: all the particles want to
sit in the state with lowest energy. Both of these distributions
limit to the usual exponential Boltzmann statistics (4.4) when
the system can be treated “classically” (large interparticle dis-
tance and high temperature), which forces the exponential
factor in the denominator to be much greater than 1.
To actually calculate anything with these distributions, we

need a few extra ingredients. The new quantity appearing
in all the above formulas is μ, the chemical potential, which
roughly speaking is the energy associated with adding or
removing a particle from the system. In the grand canon-
ical ensemble, a generalization of the canonical ensemble,
the number of particles is allowed to vary but the chemical
potential is held fixed. So just as in the canonical ensemble,
where we can fix T and ask about average E, in the grand
canonical ensemble we can fixμ in the above formulas and ask
about average particle number N. But first, we must take into
account the fact that each energy level εi may have a degener-
acy g(εi): for example, a free spin-1/2 fermion has two possible
spin states with the same energy (see Section 5.5), so in that
case g(εi) = 2, independent of the energy. To get the average
particle number, we just sum the distribution functions over
all energy states weighted by the degeneracy:

〈N〉 =
∑
i

g(εi)F(εi), (4.44)

where F is either FFD or FBE as appropriate for fermions or
bosons, respectively. If the energy levels are spaced closely
together enough, we can approximate the sum by an integral,

and instead of a degeneracy factor we use the density of states
ρ(ε), which counts the number of available states between
energies ε and ε + dε. We then have

〈N〉 =
∫

ρ(ε)F(ε) dε, (4.45)

It is unlikely that you would ever have to evaluate integrals
like this on the GRE, but knowing the physical meaning of the
distribution functions and density of states comes in handy.

4.4 Problems: Thermodynamics and
Statistical Mechanics

1. What is the partition function of a one-dimensional
quantum harmonic oscillator?

(A) exp
(−�ω

kBT

)
(B) 1− exp

(−�ω
kBT

)
(C)

(
1− exp

(−�ω
kBT

))−1
(D)

(
2 cosh �ω

2kBT

)−1
(E)

(
2 sinh �ω

2kBT

)−1
2. At low temperature, a gas undergoing isentropic expan-

sion from pressure P1 and volume V1 to pressure P2 and
volume V2 is seen to satisfy P1V

5/3
1 = P2V

5/3
2 . At higher

temperatures, the gas undergoing the same process could
satisfy which of the following relations?

I. P1V
5/3
1 = P2V

5/3
2

II. P1V
7/5
1 = P2V

7/5
2

III. P1V
9/7
1 = P2V

9/7
2

(A) II only
(B) III only
(C) I and II only
(D) II and III only
(E) I, II, and III

3. A system has two states of energies −ε and 2ε. What is
the probability of observing it in the higher energy state
at temperature T?
(A) 0

(B)
(
1+ exp

(
3ε
kBT

))−1
(C)

(
1− exp

(
3ε
kBT

))−1
(D)

(
exp
(

ε
kBT

)
+ exp

(−2ε
kBT

))−1
(E) 1

4. A diatomic ideal gas of N particles is trapped on a layer
of material, such that the gas molecules are free to move
only in two dimensions. What is the heat capacity at con-
stant volume of this gas at room temperature? You may
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assume that kBT � �
√
k/m, where m is the mass of

the molecule and k is the Hooke’s law constant associated
with vibrational motion.

(A) (1/2)NkB
(B) NkB
(C) (3/2)NkB
(D) 2NkB
(E) (5/2)NkB

5. The heat capacity per particle at constant volume of a
relativistic ideal gas is

(A) kB/2
(B) kB
(C) 3kB/2
(D) 2kB
(E) 3kB

6. The three-dimensional quantum harmonic oscillator
transitions from the n = 1 state to the n = 2 state. What
is the change in entropy?

(A) 0
(B) �ω

(C) kB
(D) kB ln 2
(E) kB ln 3

7. Six cups numbered 1 through 6 can each hold onemarble.
There are three red marbles and one blue marble. How
many different ways are there to fill the cups with all four
marbles?

(A) 6
(B) 12
(C) 24
(D) 30
(E) 60

8. Which of the following MUST be true of a closed system
undergoing an adiabatic process?

(A) No heat is exchanged with the environment.
(B) Entropy is constant.
(C) The system does no work on its environment.
(D) Entropy increases.
(E) The system is at constant pressure.

9. A box is partitioned into equal volumes, each containing
a different ideal monoatomic gas. When the partition is
removed, which of the following statements must be true?

(A) The entropy decreases.
(B) The entropy increases.
(C) The entropy does not change.
(D) The change in entropy depends on the mass of parti-

cles.

(E) The change in entropy depends on the temperature
of the gas.

P

V

1

2

3

4

10. The P–V diagram above illustrates the Sargent cycle for
an ideal gas. Paths 1–2 and 3–4 are reversible adiabatic,
path 2–3 is at constant volume, and path 4–1 is at constant
pressure. If Ti denotes the temperature at point i, which
temperature is hottest?
(A) T1

(B) T2

(C) T3

(D) T4

(E) it is impossible to tell from the information given
11. A Carnot engine absorbs 10 J of heat from a hot bath

in one cycle and is 90% efficient. How much heat is
dissipated to a cold bath?
(A) 10 J
(B) 9 J
(C) 2 J
(D) 1 J
(E) 0.9 J

12. The effects of intermolecular attractions in a van der
Waals gas can be modeled by adding a constant term
−a to the single-particle Hamiltonian. Which of the
following thermodynamic quantities depend(s) on the
parameter a?
I. The partition function
II. The internal energy
III. The specific heat
(A) I only
(B) II only
(C) I and II
(D) I and III
(E) I, II, and III

13. At zero energy, the Bose–Einstein distribution for a col-
lection of bosons approaches infinity as the chemical
potential approaches zero from below.What is the correct
interpretation of this phenomenon?
(A) The average occupation number of the ground state

is infinite.
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(B) There is no ground state for the ideal Bose–Einstein
gas.

(C) The Bose–Einstein distribution is the incorrect distri-
bution function for the ground state, and one should
use the Fermi–Dirac distribution instead.

(D) A macroscopic number of particles can occupy the
ground state and must be treated separately from the
occupation numbers of higher states.

(E) None of the above.
14. A grand canonical ensemble of fermions at chemical

potential μ has a density of states given by ρ(ε) =
Ae−κε . At zero temperature, what is the average number
of particles in the system?
(A) 1

(B)
A
κ
e−κμ

(C)
A
κ

(
1− e−κμ

)
(D)

A
κ
− e−κμ

(E) 0

4.5 Solutions: Thermodynamics and
Statistical Mechanics

1. E – The energies of the harmonic oscillator are just
En = �ω(n + 1/2), so the partition function is
Z = ∑∞

n=0 e−�ω(n+1/2)/(kBT). Pulling out a factor of
e−�ω/(2kBT) gives us a geometric series, which we can sum
as

∞∑
n=0

e−�ωn/(kBT) = 1
1− e−�ω/(kBT)

.

Putting back in the factor we pulled out and doing a little
manipulation with hyperbolic trig functions gives

e−�ω/(2kBT) 1
1− e−�ω/(kBT)

=
(
2 sinh

�ω

2kBT

)−1
.

2. E – In an isentropic process, pressure and volume are
related by PVγ = constant. The problem statement tells
us that γ = 5/3 at low temperatures, which is true for any
gas because all degrees of freedom are frozen out except
for translational modes. At higher temperatures, if the
gas is monoatomic, γ will remain 5/3, but if the gas is
diatomic, unfreezing of rotational or vibrational modes
can result in γ = 7/5 or γ = 9/7, respectively. Thus, all
of the listed relations are possible, since the information
at low temperatures is not sufficient to decide if the gas is
monoatomic or diatomic.

3. B – We can always shift the energies such that one of
them is 0. This trick usually avoids unnecessary confusion
with the notation. So we solve the problem for a system of
energies 0 and 3ε. Using the expression for the probability
of finding the system in a particular state, we have

pi = e−Ei/(kBT)

Z
= e−3ε/(kBT)

1+ e−3ε/(kBT)
= 1

1+ e3ε/(kBT)
.

4. C – The last sentence of the problem statement tells us
we may assume that vibrational motion is frozen out. In
this case, a diatomic gas in two dimensions has only three
quadratic degrees of freedom: two translational for the
center of mass, and one rotational (the only possible axis
of rotation is perpendicular to the plane on which the
gas is trapped). By the equipartition theorem, each con-
tributes (1/2)kBT to the internal energy U, and CV =
∂U/∂T, so choice C is correct.

5. E – Unlike the previous problem, we can’t just apply
the equipartition theorem since the energy–momentum
relation for a relativistic particle is linear rather than
quadratic.4 On the other hand, the heat capacity of a rela-
tivistic gas shows up so often that it may be useful simply
to memorize the result. The derivation is rather straight-
forward, though. In the canonical ensemble, we calculate
the partition function in a box of volume V . There is no
potential energy, so the energy of a single particle is pure
kinetic, E = |p|c. Thus the partition function is

Z = V
h3

∫
d3p e−β|p|c,

where β = 1/kBT as usual. Going to spherical coor-
dinates in momentum space and using the fact that the
integrand is spherically symmetric,

Z = 4πV
h3

∫ ∞

0
p2e−βpcdp = 8πV

(hβc)3
.

(The integral can be done simply by repeated application
of integration by parts.) Since we are calculating the heat
capacity, we only care about the part of lnZ that depends
on β :

lnZ = −3 lnβ + const.

Continuing, E = −∂ lnZ
∂β

= 3
β
= 3kBT, so CV = dE

dT
=

3kB, choice E.
6. D – The energy of the three-dimensional harmonic oscil-

lator is En = �ω(nx + ny + nz + 3/2), where n =
nx+ny+nz. There are three degenerate states correspond-
ing to the n = 1 level. There are six degenerate states

4 See Chapter 6 for a review of relativity.
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corresponding to the n = 2 level. From the Boltzmann
expression for entropy, the initial entropy is S1 = kB ln 3.
The final entropy is S2 = kB ln 6. The change in entropy
is therefore �S = kB ln 2.

7. E – There are six ways to place the blue marble. For each
placement of the blue marble, there are

(5
3
)
distinct ways

to place the remaining three red marbles. So there are

6× 5!
3! × 2! = 60

distinct ways of placing the marbles into the cups. Equiv-
alently, we can choose the four cups out of the six to place
the marbles in, then choose the one cup out of the four to
place the blue marble in, giving(

6
4

)
× 4 = 60,

the same answer.
8. A – By definition, an adiabatic process is a process

for which there is no heat transfer to the environment.
Entropy may be constant if the process is reversible, but
can increase if the process is irreversible, as in adiabatic
free expansion (incidentally, the pressure also changes
in this situation, eliminating choice E). The system can
do work on its environment, as it does in the expansion
phases of the Carnot cycle.

9. B – The entropy of mixing causes the total entropy
to increase. This can be seen immediately from equa-
tion (4.9).

10. C – An ideal gas undergoing a reversible adiabatic pro-
cess has a constant value of PVγ . This means that TVγ−1

is constant. For any ideal gas, CP > CV , so γ − 1 > 0
and a decrease in volume leads to an increase in temper-
ature. This implies that T3 > T4 and T2 > T1. From the
ideal gas law, we know that PV = NkBT, so T3 > T2 and
T4 > T1. Collecting inequalities, we have T1 < T2 < T3

and T1 < T4 < T3, so T3 is hottest.

11. D – From the expression for the efficiency of a Carnot
engine, we have QC = QH(1 − e). Plugging in numbers
we find that 1 J of heat is dissipated to the cold bath.

12. C – The effect of the constant term is to change theHamil-
tonian to H = p2/2m − a. This shows up explicitly
in the single-particle partition function Z1 ∝ ∫

e−βH ,
but since it is constant, it can be pulled outside the
integral:

Z1 = eβaZ1, ideal gas,

ZN = eNβaZN, ideal gas.

This just adds a constant term to the log of the partition
function: lnZN = Nβa + · · · . The internal energy still
depends on a:U = −∂ lnZN/∂β = −Na+· · · . However,
the a-dependent term no longer depends on T, so taking
the derivative to get CV = ∂U/∂T, this term disappears.
Thus CV is independent of a, so only I and II depend
on a.

13. D – This is the statement of Bose condensation. Since the
occupation number cannot be infinite for any finite sam-
ple of the gas, one must treat the two components of the
gas separately: themacroscopic condensate occupying the
ground state, and the rest of the particles occupying the
excited states.

14. C – As temperature goes to zero, the Fermi–Dirac distri-
bution limits to a step function: 1 for energies less than
the chemical potential ε < μ and 0 for energies above
the chemical potential ε > μ. This is a useful fact to
remember. Unlike the bosons of the previous problem,
the chemical potential of fermions is not bounded by the
lowest energy. In this case, we can just integrate the den-
sity of states from 0 to μ, and the number of particles is
just

〈N〉 =
∫ μ

0
Ae−κεdε = A

κ

(
1− e−κμ

)
.

 



5 QuantumMechanics and
Atomic Physics

Quantum mechanics no doubt seemed somewhat bizarre
when you were first introduced to it. Nice classical parti-
cles which followed deterministic trajectories were replaced
by mysterious wavefunctions and particles that no longer had
properties until you measured them – and let’s not even men-
tion the long philosophical discourses accompanying expla-
nations of the Copenhagen Interpretation, nonlocal hidden
variables, and the like. The good news is that none of this is rel-
evant for the GRE, so we won’t waste your time with it. This
will be a lightning review of how to compute things in quan-
tum mechanics: you can leave the deep thought to a situation
where you have more than two minutes per question.
While quantummechanics itself is rather under-represented

on the GRE (only 12% of questions, according to ETS), the
atomic physics section (10%) is really quantum mechanics in
disguise, which is why we include it in the same chapter as
quantum mechanics. Throw in a couple questions from the
Miscellaneous and Optics and Waves categories, and quan-
tum phenomena really make up about a full 25% of the test,
so it pays to know this material in detail.

5.1 Formalism (How To Calculate)

5.1.1 Wavefunctions and Operators

The state of a quantum system, whether a single particle or a
collection of 1023 particles, is described by a single complex-
valued function of position and time called the wavefunction,
usually denoted �(x, t). If there are multiple particles in the
system, � is a function of all the coordinates x1, x2, . . . of
the various particles as well as time. It’s likely that the only
situation where you’ll be concerned with multiple-particle

wavefunctions on the GRE is when dealing with Bose or Fermi
statistics, which we’ll get to later (see Section 5.5.4), so for now
we assume that our quantum system is just a single particle.
Given the wavefunction, the rules for calculating quantities
of interest in one-dimensional quantum mechanics are the
following:

1. The probability that the particle with wavefunction �(x, t)
will be found between positions x and x+dx is |�(x, t)|2 dx.

2. Observables A are represented by Hermitian operators Â
which act on � . The expectation value of an observable A
in the state � is

〈A〉 =
∫ ∞

−∞
�∗Â� dx. (5.1)

3. A measurement of an observable A at a time t0 on a state
� will always return one of the eigenvalues of Â. To find
the probability that a particular eigenvalue λn is observed,
expand �(x, t0) = ∑

k ckfk(x) in a basis of orthonormal
eigenfunctions fk(x) for Â with eigenvalues λk. The desired
probability is |cn|2. After measurement, the wavefunction
of the particle at time t0 is now fn(x).

Let’s now examine each of these rules in detail.

1. Position measurements. Notice that the quantity that
appears is the complex modulus |�(x, t)|2, not�(x, t) itself.
This is comforting because probabilities must be non-
negative real numbers. In fact, the probability of finding
the particle somewhere had better be exactly 1:∫ ∞

−∞
|�(x, t)|2 dx = 1. (5.2)

This extremely important consistency condition means
that the wavefunctionmust be normalized. The fact that we
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can actually perform this normalizationmeans that� can’t
do anything funny at x = ±∞: it has to vanish fast enough
for the integral to converge. Always keep normalization in
the back of your mind when calculating probabilities on
the GRE – if the problem doesn’t explicitly state that the
wavefunction is normalized, you should normalize it before
computing anything else. By the way, for a particle living
in more than one dimension, this rule generalizes appro-
priately: the probability of finding a particle in a small box
with opposite corners (x, y, z) and (x + dx, y + dy, z + dz)
is |�(x, y, z, t)|2 dx dy dz, and the probability of finding a
particle in a spherical shell at radius r with thickness dr
is |�(r, θ ,φ, t)|2(4πr2 dr).1 Dimensional analysis can also
help you with normalization: since |�|2 must be integrated
over space to give a probability, which is dimensionless, the
wavefunction has dimensions of (length)−d/2 in d spatial
dimensions.
An aside about normalization: note that we could mul-

tiply � by some phase factor, eiθ , which would not change
the normalization, since eiθ and e−iθ cancel out in |�|2.
The interpretation is that � and eiθ� represent the same
state. However, relative phases between two wavefunctions
are physical: if we have a wavefunction such as � =
ψ1+eiαψ2, we can multiply� by a phase (which preserves
the relative phase eiα between ψ1 and ψ2) but we are not
allowed to multiply ψ1 and ψ2 individually by their own
phase factors. Only the total wavefunction is defined up to
a phase.

2. Observables. First, some definitions. An operator is just a
rule instructing us to do something to a function f (x). For
example, the operator x says “multiply a function by x,”
and the operator 5 d/dx says “differentiate a function with
respect to x and multiply by 5.” The rule is that operators
are read from right to left, such that the piece closest to
the function acts first. This is important when derivatives
are involved: the operator x d/dxmeans “differentiate with
respect to x, thenmultiply by x,” not the other way around!
To distinguish an operator from an ordinary function, we
put a hat on it, like Ô.
Sometimes, acting on a function f (x) with an operator Ô

may return the same function, multiplied by a constant c.
Here are some examples:
● 3 · f (x) = 3f (x) for any function f (x). In other words,
the operator “3” acting on any f (x) just returns f (x)
multiplied by the constant 3.

1 Note, however, that it is conventional to normalize the radial and angular
parts of a three-dimensional wavefunction separately: see Section 5.4.1.

●
d
dx

eλx = λeλx. The operator d/dx, acting on a certain

function f (x) = eλx, returns λf (x).

In these cases, we say that f (x) is an eigenfunction of the
operator Ô with eigenvalue c. So in the examples above,
all functions whatsoever are eigenfunctions of the operator
Ô = 3 with eigenvalue 3, but only functions of the form eλx

are eigenfunctions of Ô = d/dx with eigenvalue λ. Note

that this is not always the case:
d
dx

sin x = cos x, so sin x
is not an eigenfunction of d/dx. Indeed, eigenfunctions
are special (and extremely useful) because they reduce the
potentially complicated action of an operator to something
very simple, namely multiplication by a constant.
A Hermitian operator Â is one such that

∫ ∞

−∞
f (x)∗(Âg(x)) dx =

∫ ∞

−∞
(Âf (x))∗g(x) dx (5.3)

for any f (x) and g(x). Here are some useful facts (definitely
worth memorizing!) about Hermitian operators:

● All their eigenvalues are real.
● Eigenfunctions corresponding to different eigenvalues
are orthogonal: if f (x) and g(x) are eigenfunctions with

different eigenvalues, then
∫ ∞

−∞
f (x)∗g(x) dx = 0.

Now, in classical mechanics, all observables can be built
out of the two quantities x and p, position and momen-
tum. For example, kinetic energy is E = p2/2m, the
potential energy of a harmonic oscillator is 1

2kx
2, angular

momentum in three dimensions is r × p, and so on. In
quantum mechanics, these observables are represented by
the operators

x̂ = x, p̂ = −i� ∂

∂x
. (5.4)

It’s easy to see that x̂, so defined, is Hermitian according
to (5.3): you should check for yourself that p̂ is Hermi-
tian, using integration by parts (notice the very important
factor of −i which makes this work). Any operators that
are the quantum analogues of classical observables (angu-
lar momentum, potential energy, and so on) can be built
out of these two operators. For the purposes of the GRE,
the only operators that can’t be built out of x and p are
the spin operators – we’ll treat those in great detail in
Section 5.5. We will often refer to “observables” and “oper-
ators” interchangeably, sometimes sloppily with the same
notation for both (omitting the hat), but remember that
“observable” refers to a physical quantity to be measured,
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while “operator” refers to its mathematical representation
in the formalism of quantum mechanics.

3. Measurements.The radical departure of quantummechan-
ics from classical mechanics arises from the first sentence
of rule 3 – a measurement of Awill always return an eigen-
value λn, and if the eigenvalues are discrete rather than
continuous, the measurement of A is quantized. To go
further, we use the previously mentioned facts about Her-
mitian operators: since the eigenfunctions are orthogonal,
we can build an orthonormal basis from them, and express
any normalized wavefunction �(x, t) as a linear combina-
tion of these basis functions fn(x). The coefficient cn is then
given by

cn =
∫ ∞

−∞
fn(x)∗ �(x, t) dx. (5.5)

Taking the complex modulus squared of this number then
gives the probability of getting eigenvalue λn when mea-
suring A on the state � at time t. Once this happens, the
state of the system is no longer � : it is simply fn(x). Thus,
a subsequent measurement ofA immediately following the
first measurement is guaranteed to return the value λn, and
no other.
Expectation values are very easy to compute once you

have the decomposition of � in an orthonormal basis: if
�(x, t0) =∑k ckfk(x), then

〈A〉 =
∑
k

λk|ck|2. (5.6)

When using this formula, make sure your eigenfunction
expansionmatches the observable whose expectation value
you are trying to compute! Notice that expectation values
are averages and are not required to be equal to one of the
eigenvalues, just as the average of a set of integers need not
be an integer.

5.1.2 Dirac Notation

All this talk about eigenvalues and eigenvectors, basis decom-
positions and normalization should remind you of linear
algebra. This is no accident – the formalism of quantum
mechanics is best expressed in this language, and Dirac nota-
tion provides an extremely convenient and intuitive way to
do this. You may find it unfamiliar to think of functions (the
wavefunction in particular) as elements of a vector space.
This is actually not so bad, and we’ll give the “dictionary”
now.
Dirac notation represents a vector as a ket, like this: |a〉.

Here, a is just a label – we could have written |1〉, or |Bob〉.

To each ket |a〉 is associated another object, the bra 〈a|, which
allows us to take inner products:

Inner product of |a〉 and |b〉 ≡ 〈b|a〉. (5.7)

The inner product is a complex number, which in this nota-
tion is also called the bracket of |a〉 and |b〉, hence the names
bra(c)ket for these objects. The vector space that the kets live
in is called Hilbert space, which is just a fancy name for a vec-
tor space where we are allowed to take the inner products
of vectors. We will always work with complex vector spaces,
so we define the inner product to behave as follows under
complex conjugation:

〈a|b〉 := 〈b|a〉∗. (5.8)

The reason for this is that 〈a|a〉 = 〈a|a〉∗, so the norm of a
vector is a real number.
To show the action of an operator Â on a vector |b〉, we

make the following convenient definition:

Â|b〉 ≡ |Âb〉.
Note that this is just notation, since, as we have previously
stated, the text that goes inside the ket is just a label. The
power of this notation comes when we now take the bracket
with another vector:

〈a|Âb〉 := 〈Â†a|b〉. (5.9)

This defines Â†, the Hermitian conjugate of Â. Most impor-
tantly, this means that in a bracket 〈a|Âb〉, we can let an
observable act either “on the left” on ket |b〉, or let its Her-
mitian conjugate Â† act “on the right” on bra 〈a|. We have
defined Â† so we get the same answer either way.
If Â is Hermitian – in other words, if Â† = Â – then both

sides of (5.9) contain the same operator Â, so we might as well
define another convenient notation:

ÂHermitian =⇒ 〈a|Âb〉 = 〈Âa|b〉 ≡ 〈a|Â|b〉.
Note the similarity with (5.3). These two conditions are in fact
identical provided we make the following definitions:

〈x|f 〉 := f (x), (5.10)

〈f |g〉 :=
∫ ∞

−∞
f (x)∗g(x) dx. (5.11)

The second of these just says that the inner product on func-
tion space is given by f ∗g. The first is a little more subtle: it
says that a function f should really be thought of not as a vec-
tor itself, but as a collection of coefficients f (x), one for each
point x. In other words, |f 〉 is the abstract vector, and 〈x|f 〉
represents the decomposition of f along the basis vectors |x〉.
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If the last two sentences didn’t make total sense to you,
don’t worry. This part of Dirac notation is not really relevant
for the GRE: we only include it so that if you see a statement
like “Let |1〉 be the ground state of the harmonic oscilla-
tor,” you’ll understand that |1〉 plays the role of |f 〉, and you
won’t find yourself wondering what happened to the wave-
function f (x). Indeed, we’ll see below that many quantum
mechanics problems can be solved totally within the con-
fines of Dirac notation, without ever having to resort to the
wavefunction.
One final comment about Dirac notation: if we are work-

ing in a finite-dimensional vector space, for example when
talking about spin-1/2, then kets are just column vectors,
operators are just matrices, and we have the following simple
dictionary:

〈b| := (bT)∗,
A† := (AT)∗,

where the superscript T denotes the transpose (of either a
vector or a matrix).

5.1.3 Schrödinger Equation

In all of the previous description, we assumed we were given
the wavefunction. But how do we find it in the first place? The
answer is given by the Schrödinger equation:

i�
∂

∂t
�(x, t) = Ĥ�(x, t). (5.12)

Here, we have introduced time dependence in the wavefunc-
tion, and the operator Ĥ appearing on the right-hand side is
the Hamiltonian operator, which represents the total energy.
Almost always,

Ĥ = p̂2

2m
+ V̂(x) = − �

2

2m
∂2

∂x2
+ V̂(x), (5.13)

where V(x) is the potential energy. The two exceptions are
the presence of an external magnetic field, which modifies the
first (kinetic) term, and when the potential V also depends
on time. Both of these cases require a different kind of anal-
ysis, which is more advanced than what you’ll need on the
GRE.
There is a useful way to read (5.12). We could view the

left-hand side as an operator in its own right, and define
Ê := i� ∂/∂t to be the total energy operator. Then, by rule
3 of Section 5.1.1, a measurement of the energy will always
return an eigenvalue of Ê, which by the Schrödinger equa-
tion is also an eigenvalue of Ĥ. Therefore, to find the possible
energies of the system, we must find all the eigenvalues of Ĥ.

Suppose we have done this, and we have a system in the state
ψn(x) with eigenvalue En. Then the Schrödinger equation
reads

i�
∂

∂t
�(x, t) = En�(x, t), (5.14)

where En on the right-hand side is just a number, not an
operator. Now we can solve this equation:

�(x, t) = e−iEnt/� ψn(x).

The most general wavefunction �(x, t) will just be a linear
combination of all the eigenfunctions of Ĥ, with appropriate
time dependence e−iEnt/� tacked on.

This line of reasoning leads to a recipe for finding the time
evolution of a quantum-mechanical system with Hamilto-
nian Ĥ:

1. Solve the eigenvalue equation Ĥψ(x) = Eψ(x) to find a
set of time-independent eigenfunctions ψn(x) (also called
stationary states) with eigenvalues En.

2. Given the wavefunction at time t = 0, �(x, 0), decom-
pose it along the basis of eigenfunctions ψn(x): �(x, 0) =∑

n cnψn(x).
3. The full time-dependent wavefunction is �(x, t) =∑

n cne
−iEnt/� ψn(x).

On the GRE, you will never have to complete all these steps
from scratch. Almost always, you will be given a well-known
Hamiltonian, for which the eigenfunctions are either given to
you or which you are supposed to remember yourself. You
will then be asked about time dependence, or to compute
expectation values of various observables in these states. You
may also be asked conceptual questions about this procedure:
for example, you should check that if �(x, 0) = ψn(x) (that
is, at t = 0 the system is in a stationary state of energy En),
then the probability of getting energy En at some other time t
is always exactly 1.
Here is a useful list (worth memorizing) of general

properties of the time-independent energy eigenfunctions
ψn(x), valid for any Hamiltonian you will encounter on the
GRE:

● ψn for different values of n are orthogonal, since they
correspond to different energy eigenvalues.

● ψ is always continuous. Its derivative dψ/dx is also always
continuous, except at a boundary where the potential V(x)
is infinite. This exception will be treated in various contexts
in Section 5.3.
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● ψ can be taken to be purely real, without loss of generality.2

Note this is not true for the full time-dependent wavefunc-
tion, since we must attach the complex exponential factors.
However, it does lead to an extremely convenient computa-
tional shortcut: if a particle is in a stationary stateψn, which
is taken to be real, the expectation value of its momentum
must vanish. The proof is as follows:

〈p〉 =
∫

ψ(x)e+iEnt/�

(
−i� ∂

∂x

)
ψ(x)e−iEnt/�dx

= −i�× (something real),

because the exponential factors e±iEnt/� cancel with each
other. But expectation values must be real for Hermitian
operators, hence 〈p〉 = 0. Caution: this does not apply to
a superposition of stationary states, for example �(x, t) =
ψ1e−iE1t/� + ψ2e−iE2t/�, because the exponential factors
will not cancel completely and�∗� will contain a real term
cos((E2 − E1)t/�).

● The ground state ψ0, corresponding to the lowest energy
E0, has no nodes: a node is a point at which the wavefunc-
tion vanishes (excluding the case where the wavefunction
vanishes at a boundary, as in the infinite square well).
Recalling the probabilistic interpretation, this means that
there are no points where the particle is guaranteed not to
be found. Each successive energy eigenstate has one more
node than the previous one: ψ1 has one node, ψ2 has two
nodes, and so on. So even if you know nothing about a given
Hamiltonian, you can say something about its energy eigen-
functions just by looking at their graphs. Indeed, a classic

GRE problem gives you sketches of possible wavefunctions
for an unspecified Hamiltonian and asks you questions
about them.

● If the potential V(x) is even (that is, if V(x) = V(−x)),
then ψ(x) can be taken to have definite parity. This means
that ψ(x) is either even, ψ(x) = ψ(−x), or odd, ψ(x) =
−ψ(−x). Furthermore, the parity of ψn alternates as we
change n: The ground stateψ0 is even, the first excited state
ψ1 is odd, and so on.

● For ψ to be normalizable, we must have E > Vmin, where
Vmin is the global minimum of V(x). The intuition, bor-
rowed from classical mechanics, is that if the particle has
less energy than the minimum of V , its kinetic energy
must be negative, which is impossible. As we have empha-
sized, this classical reasoning does not hold strictly true in
quantum mechanics, but it is a good mnemonic.

5.1.4 Commutators and the Uncertainty
Principle

If you remember only one thing about operators in quantum
mechanics, remember this:

Operators don’t commute (in general).

That is, applying Â, followed by B̂, is in general not the same
thing as applying B̂ followed by Â. If you know a little lin-
ear algebra, this follows in the finite-dimensional case from
the fact that matrices don’t commute in general. It’s even true
in the infinite-dimensional case, though. Example 5.1 shows
how this works.

EXAMPLE 5.1

Consider the two operators x̂ and p̂, defined in (5.4). Let them act on a test function f (x):

(x̂ ◦ p̂)f (x) = x
(
−i� d

dx
f (x)

)
= −i�(xf ′(x)),

(p̂ ◦ x̂)f (x) = −i� d
dx
(
xf (x)

) = −i�(f (x)+ xf ′(x))

=⇒ (x̂ ◦ p̂− p̂ ◦ x̂)f (x) = i�f (x).

Since the last line is true regardless of the function f (x), we can drop f and write a relation involving only the
operators:

[x̂, p̂] = i�. (5.15)

2 This is not to say that ψ must be real, only that we can choose a real basis of energy eigenfunctions. For example, e±ipx/� are eigenfunctions of the free
particle Hamiltonian, but so are the real linear combinations sin(px/�) and cos(px/�). Of course, these latter two are not momentum eigenstates, but
that’s an added requirement we’re not concerned with here.
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Equation (5.15) in Example 5.1 is perhaps the most impor-
tant equation in quantum mechanics. The symbol [ , ] stands
for the commutator of two operators: compose them in one
order, then subtract the result of composing them in the other
order. It can be quite easy to get confused when computing
commutators of operators like this, since just writing down
p̂ ◦ x̂ = −i� d

dx x might lead us to assume that only x is sup-
posed to be differentiated, and we would lose the second term
that we got from the product rule by acting on a test func-
tion f (x) above. So, when computing commutators where the
operators involve derivatives, always act on a test function.
One other important thing to note is that the commutator,
in general, is itself an operator: in this case it’s a particu-
larly simple operator, given by multiplication by the constant
i�. Equation (5.15) is known as the canonical commutation
relation.
Here are two useful identities for computing commutators

of products of operators:

● [AB,C] = A[B,C]+ [A,C]B
● [A,BC] = [A,B]C + B[A,C]

Both are fairly easy to remember, since they resemble prod-
uct rules for derivatives. But to rederive them in a pinch,
just write out the commutators as if they were matrix mul-
tiplication: [A,B] = AB − BA and so forth. You can be
even more economical and note that one rule follows from
the other by changing the order of the commutator using
[A,B] = −[B,A], and relabeling.
Commutators are intimately tied up with the uncertainty

principle, for the following reason. The commutatormeasures
the difference between the results of applying two operators
in different orders, which, according to the rules given above,
represents the difference between outcomes of measurements
of two observables applied in different orders. If the commu-
tator vanishes, it means that we can measure the two observ-
ables in either order, and we’re guaranteed to get the same
answer. A nonzero commutator [Â, B̂], however, means that
in general, if wemeasure B and put the system in an eigenstate
of B̂, a follow-up measurement of observable A will destroy
this state and put the system back in a linear combination
of eigenstates of B̂. In other words, there is a fundamen-
tal uncertainty in measurements of A versus measurements
of B.
This is made precise by the following statement:

σ 2
Aσ 2

B ≥
(
1
2i
〈[Â, B̂]〉

)2
. (5.16)

Here, σ 2
A is the statistical variance of a measurement of A,

defined as

σ 2
A := 〈A2〉 − 〈A〉2, (5.17)

and similarly for σ 2
B . Note that what appears on the right-

hand side of (5.16) is the expectation value of the commutator
[Â, B̂]: this means that the uncertainty bound (the right-
hand side) depends in general on what state the system is
in. Of course, the actual uncertainty (the left-hand side) also
depends on the state of the system. In particular, if we can find
a state such that the inequality becomes an equality, we call
such a state a minimal-uncertainty state for the two observ-
ables A and B. And once again, if the commutator vanishes
identically, so does the uncertainty bound: we can find states
for which both uncertainties are zero.
The case you are undoubtedly familiar with is A = x,

B = p, in which case the right-hand side of (5.16) becomes
(i�/2i)2 = �

2/4. Taking the square root of both sides gives
the familiar relation

σxσp ≥ �

2
. (5.18)

Notice that, because the commutator [x̂, p̂] is just a num-
ber, its expectation value is independent of the state, and the
minimum uncertainty is always the same, �/2.
It is a very important fact (derived in all basic quantum

mechanics books) that the position-space wavefunction of a
minimum-uncertainty state is a Gaussian. Indeed, because it’s
a minimum-uncertainty state, its momentum–space wave-
function is also a Gaussian. Even if we’re not dealing with
a minimum-uncertainty state, most systems do not conspire
to exceed the uncertainty bound by huge amounts, so the
following “folklore” statement,

�x�p ≈ �, (5.19)

holds quite generally. Note the missing factor of 2, and the
replacement of the precisely defined σx and σp by the rather
vague �x�p; this is because this statement is only intended to
give an order-of-magnitude estimate. Nevertheless, it is quite
useful, as you will see in the problems.
A similar “folklore” statement holds for energy and time,

�E�t ≈ �. (5.20)

The standard application of (5.20) is to decay processes: �t
represents the lifetime (mean lifetime, or half-life, or what-
ever, since this is just an order-of-magnitude estimate) of the
unstable state, and �E represents the uncertainty in energy
of the decay process. For example, when an unstable particle
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with an extremely short lifetime decays at rest, its decay prod-
ucts can have widely varying total energy because of the large
value of �E. Equally well, when a short-lived atomic excited
state decays by emitting a photon, the energy of the photon
is not precisely determined, but has a spread �E. In both of
these contexts,�E is known as the width (either of the excited
state, or of the emission line).
Finally, one very important remark regarding energy and

commutators:

If an operator Ô commutes with the Hamiltonian, the
corresponding observable is conserved.

In other words, we can simultaneously diagonalize Ô and
the Hamiltonian, and label states of the system by eigenval-
ues of Ô and energies at a given time. The above statement
guarantees that, at any subsequent time, these labels don’t
change.

5.1.5 Problems: Formalism

1. A particle has the wavefunction�(x) = A(1−x2) for |x| ≤
1, and �(x) = 0 elsewhere. What is the probability the
particle will be found in the region x < 0?

(A) 0
(B) 1/4
(C) 1/2
(D) 3/4
(E) 1

2. Let ψ1 and ψ2 be energy eigenstates of a time-independent
Hamiltonian with energies E1 and E2. At time t = 0, a
system is in state 1√

2
(ψ1−ψ2). At time t, what is the prob-

ability that a measurement of the energy of the system will
return E1?

(A) 0
(B) 1/

√
2

(C) 1/2
(D) cos[(E2 − E1)/�]
(E) cos[(E2 + E1)/�]

3. Let |a〉 and |b〉 denote momentum eigenstates with eigen-
values a and b respectively, where a �= b. What is 〈a|p̂|b〉?
(A) a
(B) b
(C) |ab|
(D) |ab|1/2
(E) 0

4. The wavefunction shown in the diagram above represents
one of the excited states of the harmonic oscillator. What
is the energy of the state?

(A) �ω/2
(B) 3�ω/2
(C) 5�ω/2
(D) 7�ω/2
(E) 9�ω/2

5. Which of the following is a Hermitian operator?

I.

(
1 0
−1 0

)

II.

(
0 −i
i 0

)

III.

(
1 2
2 1

)

(A) I only
(B) II only
(C) III only
(D) I and III
(E) II and III

6. Let |s〉 and |t〉 denote orthonormal states. Let |�1〉 = |s〉 +
2i|t〉 and |�2〉 = 2|s〉 + x|t〉. What must the value of x be
so that |�1〉 and |�2〉 are orthogonal?
(A) i
(B) −i
(C) 1
(D) −1
(E) i/

√
5

7. An unstable particle with a lifetime of 1.0 × 10−23 s
and a mass of 500 MeV/c2 is measured in a new experi-
ment to have a mass of 450 MeV/c2. The mass resolution
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of the experiment is 10 MeV/c2. The difference between
the observed mass and the expected mass is most likely
due to

(A) violation of conservation of energy
(B) the uncertainty principle
(C) experimental error
(D) time dilation
(E) the Mossbauer effect

8. The nitrogen molecule consists of two nitrogen atoms
joined by a covalent bond with length approximately 100
pm. What is the approximate kinetic energy of one of the
covalently bonded electrons?

(A) 4 meV
(B) 4 eV
(C) 4 keV
(D) 4 MeV
(E) 4 GeV

5.2 Harmonic Oscillator

5.2.1 One Dimension

The Hamiltonian for the quantum harmonic oscillator in one
dimension is

H = p̂2

2m
+ 1

2
mω2x̂2 (harmonic oscillator). (5.21)

In this form, it’s totally useless – we only include it to remind
you that if a problem says “A system has Hamiltonian given
by equation (5.21),” it’s just talking about a harmonic oscil-
lator. It may be written in terms of the spring constant k =
mω2 instead of the angular frequency ω, but no matter: if
the potential is quadratic, you have a harmonic oscillator on
your hands. Just remember to match the form given above by
relating ω to the coefficient of the quadratic.
A clever change of variables brings it to the following, much

more useful, form:

H = �ω

(
a†a+ 1

2

)
. (5.22)

How we arrived at the form (5.22) is irrelevant for GRE pur-
poses – what’s important is that there exists an operator a
(called a lowering operator or annihilation operator), and its
Hermitian conjugate a† (called a raising operator or creation
operator), which are linear combinations of x̂ and p̂ such that
H can be transformed as above. It’s worth memorizing the
commutation relation of a and a†, since it’s very simple:

[a, a†] = 1. (5.23)

The reason (5.22) is useful is that we can read off the eigen-
states of H right away. Suppose there exists a state called3 |0〉
which is killed by a: a|0〉 = 0. Then

H|0〉 = �ω

2
|0〉,

and |0〉 is an eigenstate of H with eigenvalue �ω/2. Indeed,
one can prove that this is the lowest-energy eigenstate of H,
so another fact worth memorizing is the ground state of the
harmonic oscillator has energy �ω/2. Using the commutation
relation (5.23) and the Hamiltonian (5.22), one can also prove
that acting with a† on |0〉 produces yet another energy eigen-
state, with energy 3�ω/2. (Exercise: check this yourself.) We
can continue this process indefinitely, so we have derived the
spectrum of the harmonic oscillator:

H|n〉 = �ω

(
n+ 1

2

)
|n〉, n = 0, 1, 2, . . . (5.24)

As usual, the states |n〉 are orthogonal, because they are eigen-
vectors ofH with different eigenvalues. They are also assumed
to be normalized. However, a†|n〉 is not automatically nor-
malized to |n+ 1〉 – the normalization factor will be provided
to you on the test if you need it, but it’s important to keep in
mind that when calculating expectation values, |n〉 is normal-
ized while a†|n〉 and a|n〉 are not. For convenience, we’ll give
you the normalization factors,

a†|n〉 = √
n+ 1|n+ 1〉; a|n〉 = √

n|n− 1〉,
but remember, you need not memorize these.
A standard question about the harmonic oscillator asks you

to calculate the expectation value of some observable written
in terms of a and a†. We’ll walk you through this calculation
once in Example 5.2 because it is both an excellent example
of the use of Dirac notation, but also an illustration of how to
calculate expectation values by using only orthonormality and
commutation relations.
We’ll finish this lightning review of the harmonic oscillator

with some bits of trivia.

● The ground state of the harmonic oscillator happens to be
a minimum-uncertainty state, so its position-space wave-
function is a Gaussian. You probably won’t need its full
expression, but you can get an estimate of its width from
dimensional analysis: the parameters of the harmonic oscil-
lator Hamiltonian are �, m, and ω, and the only combina-
tion of these with the dimensions of length is

√
�/mω.

● The position-space wavefunctions are related to so-called
Hermite polynomials.

3 Remember, this is not the zero vector! The 0 inside the ket is just a label.
However, the action of a on |0〉 does give the zero vector.
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EXAMPLE 5.2

Let’s find the expectation value of (a+ a†)2 in the state |3〉. We want to calculate

〈3|(a+ a†)2|3〉 = 〈3|a2 + aa† + a†a+ (a†)2|3〉.
Notice that because a and a† don’t commute, the order matters when expanding out the square, so we can’t just
combine the two middle terms. Now comes the clever part. Examining the first term, a2 will act on the |3〉 on the
right to give something proportional to |1〉; but |3〉 and |1〉 are orthogonal, so this term vanishes. Equally well, a2

can act on the 〈3| on the left to give something proportional to 〈5| (remembering (5.9), a acts like its Hermitian
conjugate a† when acting on a bra). But |5〉 and |3〉 are also orthogonal, so this term still vanishes. An identical
argument holds for the (a†)2 term. Thus the only two terms that contribute are the two middle terms, which each
raise once and lower once, bringing us back to state |3〉 which has nonzero inner product with itself. Using the
normalization relations,

aa†|3〉 = √
4(a|4〉) = √

4
√
4|3〉 = 4|3〉,

and similarly,

a†a|3〉 = √
3(a†|2〉) = √

3
√
3|3〉 = 3|3〉.

Let’s check that this makes sense using the commutation relation:

[a, a†] = 1 =⇒ aa† − a†a = 1,

and indeed, subtracting a†a|3〉 from aa†|3〉 gives just |3〉. So instead of calculating both terms separately, we could
have combined them using the commutation relation – either method is fine. Going back to our original expectation
value,

〈3|a2 + aa† + a†a+ (a†)2|3〉 = (4+ 3)〈3|3〉 = 7,

since by assumption |3〉 is normalized. That’s all there is to it.

● All energy eigenstates of the harmonic oscillator obey the
virial theorem, which states for the harmonic oscillator

〈T〉 = 〈V〉 = En
2
. (5.25)

In general, this theorem does not apply to superpositions of
energy eigenstates, but in certain particular cases it does –
see the problems for an example.

5.2.2 Three Dimensions

The generalization of the harmonic oscillator Hamiltonian to
three dimensions is simple: it’s just three identical copies of
the one-dimensional version. The quadratic potential is the
reason this works: r2 = x2 + y2 + z2, so a potential which
is quadratic in r, the three-dimensional distance to the ori-
gin, is the sum of quadratic potentials in the three rectangular
coordinates x, y, and z. This is very particular to the harmonic

oscillator, but also very convenient. It means that the energy
eigenfunctions are products of the energy eigenfunctions for
the coordinates x, y, and z, and the energies are sums of the
individual energies:

ψN(x, y, z) = ψn1 (x)ψn2 (y)ψn3 (z);

EN =
(
N + 3

2

)
�ω with N = n1 + n2 + n3. (5.26)

In particular, this means that while the ground state is
nondegenerate (all the ni must be 0 for N to be 0), the
first excited state is three-fold degenerate, because the three
permutations

(n1, n2, n3) = (1, 0, 0), (0, 1, 0), (0, 0, 1)

all give the same energy. (Of course, the same general argu-
ments would hold if we had a system confined to two dimen-
sions, though the details change – be careful!)
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5.2.3 Problems: Harmonic Oscillator

1. A particle of massm in a harmonic oscillator potential with
angular frequency ω is in the state 1√

2
(|1〉 + |4〉). What is

〈p2〉 for this particle?
(A) 3�ω/2
(B) 9�ω/2
(C) 6

√
2m�ω/2

(D) 3m�ω

(E) 6m�ω

2. Which of the following is NOT true of the spectrum of the
one-dimensional quantum harmonic oscillator?

(A) The ground state energy is equal to the classical
ground state energy.

(B) There are an infinite number of bound states.
(C) The energy levels are equally spaced relative to the

ground state.
(D) The ground state saturates the uncertainty principle

bound.
(E) The spectrum is nondegenerate.

3. A charged particle confined to two dimensions and sub-
ject to an external magnetic field can be modeled by a
two-dimensional harmonic oscillator potential, V(x, y) =
1
2mω2(x2 + y2). What is the degeneracy of the state with
energy 3�ω?

(A) 1
(B) 2
(C) 3
(D) 4
(E) There is no state with this energy.

5.3 Other Standard Hamiltonians

There are four other classic one-dimensional quantum-
mechanical Hamiltonians that it pays to be familiar with.
Most of the technical information in this section (energies
and eigenfunctions) will likely be given to you on the test, so
you need not memorize it, but being intimately familiar with
it means much less time spent puzzling over a complicated-
looking formula. What is important to memorize is the
methodology for approaching each particular Hamiltonian, as
this can be very difficult to derive from scratch and very easily
lead to lots of wasted time. These four Hamiltonians all admit
bound states, which we’ll study first; the last two also admit
scattering states, whose analysis is a little different, so we treat
it separately.

Keep in mind as we proceed that the essential difference
between bound and scattering states is that bound states have
discrete energy eigenvalues, whose values are determined by
enforcing boundary conditions on the wavefunction. In the
case whereV(x) goes to zero as x goes to±∞, bound states are
the ones with E < 0, and scattering states have E > 0. Along
the same lines, if the potential goes to infinity at x = ±∞,
as in the infinite square well or the harmonic oscillator, every
state is bound.
As a guide to your studying, the following four Hamiltoni-

ans are listed in order of decreasing priority. Only the square
well is listed explicitly on the official ETS list of topics, and
the free particle is important in its own right, as a basis for
many other solutions of the Schrödinger equation. However,
you may not see the delta-function well or the finite square
well on your exam, so don’t work too hard on them. Scattering
is a bit of a wild card: you will probably see something related
to scattering, but it will likely be a conceptual rather than a
computational question.

5.3.1 Infinite Square Well

This Hamiltonian is particularly simple:

H = − �
2

2m
d2

dx2
+ V(x), V(x) =

{
0, 0 ≤ x ≤ a,
∞, otherwise.

The eigenfunctions are found by requiring the wavefunc-
tion to vanish at x = 0 and x = a, the endpoints of the
well. An important subtlety arises here: usually we require
the wavefunction and its derivatives to be continuous, but for
the infinite square well, this is impossible. In general, when
the potential is infinite at a boundary, the derivative of the
wavefunction will not be continuous there – we’ll see another
example of this below, with the delta-function potential. The
best we can do is to make the wavefunction continuous by
vanishing at the endpoints, and let the derivative be what
it is. Solving the differential equation Hψ = Eψ gives the
normalized wavefunctions and energy eigenvalues:

ψn =
√
2
a
sin
(nπx

a

)
, En = n2π2

�
2

2ma2
.

Unlike the harmonic oscillator, we start counting from n =
1, since n = 0 would give a wavefunction that is identically
zero, hence not normalizable. So once again, the ground state
has nonzero energy E1 = π2

�
2/2ma2. We can almost derive

the formula for the energies just by pure dimensional analysis:
the parameters of the Hamiltonian are �, m, and a, and the
only combinationwith the units of energy is �

2/ma2.We can’t
get the factors of π or 2 correct from this argument, but it
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does tell us that, if we double the mass, we halve the ground
state energy, and if the well expands by a factor of 2, then each
energy changes by a factor of 1/4. This kind of reasoning is
important on the GRE, so you should get familiar with it.
By the way, the infinite square well in three dimensions,

defined by

V(x, y, z) =
{

0, 0 ≤ x, y, z ≤ a,
∞, otherwise,

behaves the same way as the three-dimensional harmonic
oscillator: the wavefunctions are just products of the one-
dimensional versions, and the energies just add. Note that this
is not the same as the infinite spherical well, which would have
V(x, y, z) = 0 for r < a, where r = √x2 + y2 + z2. This is an
entirely different beast, which we will cover in Section 5.4 on
three-dimensional quantum mechanics.

5.3.2 Free Particle

By definition, a free particle isn’t acted upon by any forces, so
there is no potential and the Hamiltonian is simply

H = − �
2

2m
d2

dx2
.

Solving this system reduces to finding the eigenfunctions of
d2/dx2, which are easily checked to be exponentials, e±ikx

and e±κx. If we adopt the convention that k and κ must
both be real, then only the oscillating exponentials e±ikx are
eigenfunctions with positive energy:

ψ(x) = e±ikx, E = �
2k2

2m
. (5.27)

We gave this equation a number because it isworth memoriz-
ing. The energy shouldn’t take too much work to memorize:
remembering the de Broglie formula,

p = �k, (5.28)

(5.27) just says the energy is equal to p2/2m, just as for a
classical particle. But there are no boundary conditions any-
where to be found, so nothing restricts the value of k: the free
particle can have any momentum at all. The form of the eigen-
functions is no more difficult: they represent waves (hence
the name wavefunction) with constant modulus through-
out all of space. This last statement implies that the energy
eigenfunctions for the free particle are not normalizable.
From here, most books launch into a long story about

Fourier transforms, wave packets, and such, but we just list
a few salient points:

● We can construct a normalizable wavefunction by forming
a continuous superposition of wavefunctionsψ(x) with dif-
ferent values of k. The more values of k we throw in, the
more possible values of momentum we could measure for
the particle. It’s not important for the GRE to know how to
do this superposition, just to know it can be done in prin-
ciple. The resulting wavefunction is called a wave packet. In
fact, by a clever choice of coefficients, we can construct a
minimum-uncertainty wave packet, which will of course be
a Gaussian in x.

● The non-normalizability of the energy eigenstates (which
are, incidentally, momentum eigenstates as well) just says
there is no such thing as a particle with a perfectly defined
value of momentum. This makes sense in the context of
the uncertainty principle: the uncertainty in position would
have to be infinite.

● The same story will hold for positive-energy solutions of an
arbitrary Hamiltonian, wherever the potential is zero: these
are called scattering states. The eigenfunctions will be oscil-
lating exponentials, and while we could form wave packets
to make the whole thing normalizable, this is rarely nec-
essary in practice. Scattering problems require their own
tricks of the trade and will be treated in Section 5.3.5 below.

● The formula for the energy can be read as a dispersion
relation for a free quantum particle. Einstein’s relation

E = �ω (5.29)

implies that ω(k) = �k2/2m, so ω(k) is quadratic in k. This
should be contrasted with the case of a classical wave, which
has ω = ck, where c is the wave velocity.

5.3.3 Delta Function

Recall that a delta function δ(x) is zero everywhere except at
x = 0, where the delta function is infinite. So if we let V(x) =
−Aδ(x) (a delta-function potential well), the Hamiltonian we
end up with,

H = − �
2

2m
d2

dx2
− Aδ(x),

is the same as the free-particle Hamiltonian, except at the sin-
gle point x = 0. The fact that the potential is infinite there
shouldn’t scare you: we’ve already dealt with an infinite poten-
tial in the infinite square well above. It just means we have to
be careful about the boundary conditions for dψ/dx.
Exploiting the similarity with the free particle, the wave-

function will be an exponential to the left and to the right.
Whether we get an oscillatory exponential e±ikx or a grow-
ing/decaying exponential e±κx depends on whether we want
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to consider positive or negative energy solutions; in other
words, scattering states or bound states. Here we consider
bound states. The wavefunctions ψ− on the left of the delta
function and ψ+ on the right must decay at x = ±∞, so we
must have ψ− ∝ eκx and ψ+ ∝ e−κx. (It’s the same value
of κ for both because both pieces must be energy eigenfunc-
tions with the same eigenvalue.) Now the crucial part: κ is
determined by the boundary conditions enforced by the delta
function. To find these boundary conditions, we use the trick
of integrating the Schrödinger equation Hψ = Eψ on an
infinitesimal interval (−ε, ε) about x = 0:
∫ ε

−ε

(
− �

2

2m
d2

dx2
ψ(x)

)
dx− A

∫ ε

−ε
δ(x)ψ(x) dx = E

∫ ε

−ε
ψ(x) dx.

Now take ε → 0. The term on the right-hand side van-
ishes, because ψ is continuous and we’re integrating it over
an interval whose size goes to zero. The left-hand side is more
interesting:∫ ε

−ε

(
− �

2

2m
d2

dx2
ψ(x)

)
dx− A

∫ ε

−ε

δ(x)ψ(x) dx

= − �
2

2m

(
dψ
dx

)∣∣∣∣
ε

−ε

− Aψ(0),

where we have used the fact that the delta function integrates
to 1 over any interval containing zero. The first term mea-
sures the discontinuity in dψ/dx about x = 0, so we can solve
for κ in terms of A and ψ(0). Rather than do this, though,
we will once again point out that κ is essentially determined
by dimensional analysis. This time our dimensional param-
eters are � and m, as usual, and the constant A, which has
dimensions of energy× length. This follows from the fact that
δ(x) has dimensions of 1/length, since it integrates to a pure
number. The only combination of these units with dimen-
sions of 1/length is mA/�

2, and indeed this is correct even
up to numerical factors:

ψ(x) =
√
mA
�

e−mA|x|/�
2
, E = −mA2

2�2
.

We could also get E (up to the factor of 1/2) from an iden-
tical dimensional analysis argument. As usual, it’s useless to
memorize the wavefunction and the energy; what matters is
the method. An upshot of this analysis is the delta-function
potential admits only one bound state, with energy and wave-
function given above.

5.3.4 Finite Square Well

The finite square well is similar to the infinite square well,
except the potential well has finite depth. For what follows

−a a
x

ψ (x)

Figure 5.1 Sketch of the wavefunction for a bound state of the finite
square well.

it will be convenient to center the well at x = 0, so the
Hamiltonian is as follows:

H = − �
2

2m
d2

dx2
+ V(x), V(x) =

{
−V0, −a ≤ x ≤ a,
0, otherwise.

We’ll consider bound states, which have E < 0. We will
exploit the fact that V(x) is even, so ψ can be chosen to have
definite parity; this means we only have to find the wave-
function for x < 0, and the rest of it will be determined by
ψ(x) = ψ(−x) or ψ(x) = −ψ(−x). Outside the well, where
V = 0, the solutions are as for the free particle: the normaliz-
able one is eκx. Inside the well, we are solving the differential
equation − �

2

2m
d2
dx2 ψ − V0ψ = Eψ , and by moving V0 to the

right-hand side we get the same equation as for the free par-
ticle. However, since the minimum of the potential is −V0,
we must have E > −V0, and E + V0 > 0. So instead of
being decaying exponentials, the solutions should be oscillat-
ing sines and cosines. The wavefunction then looks as shown
in Fig. 5.1.
This is essentially all you need to know about the finite

square well. The constants k and κ , and from them the ener-
gies, are determined by solving a transcendental equation
arising from the boundary conditions, and this is way beyond
the level of stuff you’re expected to do in two minutes on the
GRE. One final piece of trivia: since the potential is even, the
ground state is even. As the well gets shallower and shallower,
the excited states disappear one by one, until all that is left is a
single bound state, which is even.

5.3.5 Scattering States: Reflection and
Transmission

The delta-function and the finite square well potentials share
the feature that they are both localized: the potential is zero
for x � 0, becomes nonzero in some small region, and is then
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zero again for x � 0. This is the setup for a scattering prob-
lem, where something (the incident wave) comes in from the
left, interacts with the potential, and then separates into two
parts: the reflected wave, which travels back to the left, and the
transmitted wave, which goes through the potential and trav-
els to the right. Following the convention that eikx with k > 0
represents a plane wave traveling to the right, the wavefunc-
tion for a particle incident from the left on a generic potential
localized to |x| < a can be written as:

ψ(x) =

⎧⎪⎨
⎪⎩

Aeikx + Be−ikx, x ≤ −a,
something, −a ≤ x ≤ a,
Ceikx, x ≥ a.

Here, A is the amplitude of the incident wave, B is the ampli-
tude of the reflected wave, and C is the amplitude of the
transmitted wave. Determining the ratios of these amplitudes
as a function of k is well beyond what you’re expected to
know for the GRE, but the following qualitative knowledge
is important:

● The behavior of the wavefunction in the region |x| < a
depends on the energy and the height of the potential. For
example, in a square well, the wavefunction is sinusoidal,
but in a square barrier of height +V0, if 0 < E < V0, the
wavefunction will decay exponentially inside the barrier.
This is the phenomenon of tunneling: a classical particle
wouldn’t have enough energy to get over the barrier, but
a quantum particle can.

● The delta-function potential has the curious property that
the reflection and transmission probabilities are the same
for a delta-function well (V(x) = −Aδ(x)) and a delta-
function barrier (V(x) = Aδ(x)).

● The probabilities of reflection and transmission go as the
square of the wavefunction:

R = |B|2
|A|2 , T = |C|2

|A|2 .

Conservation of probability requires R+ T = 1.

One simple scattering problem whose exact solution did
appear on a recent test is that of a step potential:
Rather than derive the solution here, we’ll illustrate how

this setup might appear on the test in Problem 3 below. Note
that this potential is not localized, so there are subtle changes
in calculating the transmission coefficient; see Griffiths for
details.

5.3.6 Problems: Other Standard Hamiltonians

1. Which of the following is true of the wavefunction of a
particle in an energy eigenstate of the infinite square well?

I. It vanishes at the boundaries of the well.
II. It is discontinuous at the boundaries of the well.
III. Its derivative is discontinuous at the boundaries of the

well.

(A) I only
(B) II only
(C) I and II
(D) I and III
(E) II and III

2. A free particle has the wavefunction sin(kx). The particle
has

I. a definite value of position
II. a definite value of momentum
III. a definite value of energy

(A) I only
(B) II only
(C) III only
(D) I and II
(E) II and III

3. A particle of mass m and energy E is incident from the left
on a step potential,

V(x) =
{

0, x ≤ 0,
V0, x ≥ 0,

where E > V0. The wavefunction in the region x ≤ 0 is
AeikLx+Be−ikLx, and the wavefunction in the region x > 0
is CeikRx. Which of the following gives the transmission
probability for the particle to be found in the region x > 0?

(A) 0
(B) 1

(C)
kL
kR

(D)
(
kL − kR
kL + kR

)2

(E)
4kLkR

(kL + kR)2

5.4 Quantum Mechanics in Three
Dimensions

The generalization from one dimension to three dimensions
is really quite simple. In three dimensions, the momentum
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operator is a vector: p̂ = −i�∇ . In Cartesian components,
p̂x = −i�∂/∂x, p̂y = −i�∂/∂y, p̂z = −i�∂/∂z. The position
operator generalizes similarly: x̂ = x, ŷ = y, and ẑ = z. So a
general Hamiltonian in three dimensions is

H = − �
2

2m
∇2 + V(r) (three dimensions), (5.30)

where∇2 is the three-dimensional Laplacian,∇2 = ∂2/∂x2+
∂2/∂y2 + ∂2/∂z2. The final ingredient is the extension of the
canonical commutation relations, and all there is to remem-
ber is that different coordinates commute with each other. So
we have

[x̂, p̂x] = i�, [ŷ, p̂y] = i�, [ẑ, p̂z] = i�, (5.31)

but

[x̂, ŷ] = 0, [x̂, p̂y] = 0, [x̂, p̂z] = 0, . . . (5.32)

So we can feel free to form observables such as x̂ŷ2p̂z without
worrying about ambiguities coming from nonzero commuta-
tors.

5.4.1 Radial Equation and Effective Potential

Suppose the potential depends only on the distance from
the origin: V = V(r). Then, just as in classical mechan-
ics, we can separate out the angular and radial parts of the
problem (Section 1.6). In classical mechanics, we used con-
servation of angular momentum to reduce the dynamics to
a one-dimensional problem involving an effective potential.
A very similar thing happens in quantum mechanics, but the
technical details are different: we will use the technique of sep-
aration of variables to obtain a radial equation involving an
effective potential, and an angular equation whose solutions
will be treated in Section 5.4.2.
For a central potential V = V(r), it is most convenient

to work in spherical coordinates. From the general equation
(5.30), this will involve the Laplacian in spherical coordinates.
No doubt you’ve seen the exact form of this object before: it’s
quite complicated and totally unnecessary to memorize, but
what’s important is that it can be separated into a radial piece
and an angular piece,

∇2 = ∇2
r +

1
r2
∇2

θ ,φ .

If we then assume that the wavefunction is a product of a
radial part and an angular part, ψ(r) = R(r)Y(θ ,φ), we can
use the usual technique of separation of variables to get sep-
arate equations for R and Y . For completeness, the radial
equation is

− �
2

2m
d2u
dr2

+
[
V + �

2

2m
l(l+ 1)

r2

]
u = Eu,

where u(r) = rR(r) and l(l+1) is a separation constant related
to the eigenvalue of Y under the operator ∇2

θ ,φ . So just as
in classical mechanics, we get an effective potential, equal to
the original potential plus a piece that depends on angular
momentum (as will be seen below). Note that because of this
effective potential term, the infinite spherical well has rather
different eigenfunctions for l �= 0 than the infinite square well
in three dimensions.
Because we’ve separated the wavefunction into a radial and

an angular piece, it is conventional to normalize each piece
separately: ∫ ∞

0
|R(r)|2r2 dr = 1,∫ 2π

0

∫ π

0
|Y(θ ,φ)|2 sin θ dθ dφ = 1. (5.33)

Note how the spherical volume element dV = r2 sin θ dr dθ dφ
gets split up between the two normalization integrals.

5.4.2 Angular Momentum and Spherical
Harmonics

The story of how angular momentum relates to symmetries
in quantum mechanics is a subtle and beautiful one, which
for better or for worse has no place on the GRE. This section
will simply be a review of the relevant rules for dealing with
systems involving angular momentum.
Just as angular momentum was defined in classical

mechanics as L = r × p, the quantum operator for orbital
angular momentum L̂ is defined similarly: L̂ = r̂ × p̂. In
components:

L̂x = ŷp̂z − ẑp̂y, (5.34)

L̂y = ẑp̂x − x̂p̂z, (5.35)

L̂z = x̂p̂y − ŷp̂x. (5.36)

By using the commutation relations for r̂ and p̂, we get the
following commutation relations for L̂:

[L̂x, L̂y] = i�L̂z, and cyclic permutations of x, y, z. (5.37)

Youmay be given these relations on the GRE (one recent test
gave them, another did not), so it’s a good idea to be safe and
memorize them anyway.
Another useful operator is the dot product of L̂ with itself,

known as the total (orbital) angular momentum L̂2:

L̂2 := L̂2x + L̂2y + L̂2z . (5.38)
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Most importantly, L̂2 commutes with all the other L̂i (exercise:
check this!). So we can find simultaneous eigenfunctions of L̂2

and one of the L̂i, conventionally chosen to be L̂z. In spherical
coordinates, these operators take a familiar form:

L̂2 = −�
2∇2

θ ,φ ,

L̂z = −i� ∂

∂φ
.

where ∇2
θ ,φ is the angular part of the Laplacian introduced in

Section 5.4.1.
The simultaneous eigenfunctions of these two operators are

the spherical harmonics, Ym
l (θ ,φ), where θ and φ are the usual

angles in a spherical coordinate system. Despite the compli-
cated notation, they are just certain functions of θ and φ,
whose explicit forms you will probably never need for the
GRE. Their eigenvalues, labeled by the orbital quantum num-
ber l and the azimuthal quantum number m, are important
and are given as follows:

L̂zYm
l = m�Ym

l , (5.39)

L̂2Ym
l = l(l+ 1)�2 Ym

l . (5.40)

Here, m and l are integers, with l ≥ 0. However, l and m are
not totally independent: given a value of l, the corresponding
allowed values ofm are

m = l, l− 1, l− 2, . . . ,−l. (5.41)

These restrictions should make intuitive sense: l is the
quantum-mechanical analogue of the length of the angular
momentum vector, which must be non-negative, andm is one
component of that vector, which can’t exceed the total length
of the vector. Note that these intuitive reasons are not strictly
true, since quantum operators behave nothing like classical
vectors, but they are useful mnemonics for remembering the
correct relations.
Some important facts about (normalized) spherical har-

monics:

● They are orthonormal:∫ 2π

0

∫ π

0
(Ym

l (θ ,φ))∗Ym′
l′ (θ ,φ) sin θ dθ dφ = δll′δmm′ ,

(5.42)
which follows from the fact that they are eigenfunctions for
the Hermitian operators L̂z and L̂2 with different eigenval-
ues.

● The φ dependence of Ym
l is always of the form eimφ . The

θ dependence is more complicated, being contained in the
so-called Legendre polynomials, which will always be given
to you on the test should you need them.

● Y0
0 is simply a constant, with no θ or φ dependence – again

there’s no need to memorize its value (although it’s easy to
work out), since you will always be given the functional
form on the test should you need it.

● If the angular part of a particle’s wavefunction is exactly
equal to one of the spherical harmonics Ym

l , the parti-
cle has a definite value of total angular momentum l and
z-component of angular momentum m. More generally,
the spherical harmonics are a complete set of functions,
which means that the angular part of any wavefunction
on the sphere can be expressed as a linear combination of
them. So to answer the question “what is the probability a
system will be found with total angular momentum l and z-
component of angular momentumm,” we must decompose
the wavefunction into spherical harmonics and compute
the probability from the coefficients as discussed in Section
5.1. This just requires a lot of ugly integrals, so on the GRE
you will most likely be given the decomposition into spher-
ical harmonics, or will be asked a question about a system
with definite values of l andm.

5.4.3 The Hydrogen Atom

The hydrogen atom receives so much attention in quantum
mechanics texts because it is one of the very few exactly solv-
able problems that accurately represents a realistic system.
Some of this attention is also for historical reasons: the birth
of quantum mechanics began with the Bohr formula for the
hydrogen energy levels, which, despite being derived using a
lucky combination of classical mechanics and blind intuition,
turned out to be correct. Since it is treated in such great detail,
it’s also a favorite on the GRE, and straddles the two categories
of quantum mechanics and atomic physics.
The potential energy for the hydrogen atom is the Coulomb

potential for an electron of charge −e and a proton of charge
+e, so the Hamiltonian is

H = − �
2

2μ
∇2 − e2

4πε0

1
r

(hydrogen atom). (5.43)

Note theμ in the denominator of the kinetic term, rather than
me: this is because, just as in classical mechanics, we must
use the reduced mass μ = m1m2/(m1 + m2) to reduce the
two-body problem of electron and proton to an equivalent
one-body problem. In the case of hydrogen, μ is very close
to me because the proton is so much heavier than the elec-
tron. Nevertheless, the reduced mass is what shows up in all
the formulas for the energies and the wavefunctions, and by
writing μ we can use (5.43) as a model for all hydrogen-like
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systems (for example, positronium, with a positron replacing
the proton), except with different values of the reduced mass.4

This applies to all the formulas in this section.
From here, it is simply several pages of algebra to derive the

energies and the wavefunctions from the radial equation. This
is done in all quantum mechanics texts, so instead we will get
the answer by dimensional analysis. The dimensionful param-
eters in this problem are μ, �, and the combination e2/4πε0,
which has units of energy× length. As usual, there is only one
way we can combine these to get a length, which is so special
that it gets its own name, the Bohr radius:

a = 4πε0�
2

μe2
. (5.44)

(Sometimes this is denoted a0 rather than a; we use the two
interchangeably in this book.) Because of the factor ofμ, there
is a different “Bohr radius” for each hydrogen-like atom. A
favorite GRE question asks how the Bohr radius of positro-
nium differs from that of hydrogen: because μ = me/2 for
positronium and μ ≈ me for hydrogen, the Bohr radius of
positronium is double that of hydrogen. You could play the
same game with muonium, where a muon (essentially a heavy
electron) replaces the electron, or with any number of other
fundamental particles.
Because of the electrostatic attraction between the elec-

tron and the proton, intuition suggests that the wavefunction
of the electron should be largest near the origin. Since the
only length in the problem is a, a reasonable guess for the
(un-normalized) ground state wavefunction is

ψ1(r) ∝ e−r/a, (5.45)

and indeed, this is correct. As for the ground state energy, it
has the same form as for the infinite square well of width a
(the other standard Hamiltonian with a given length scale),
but the numerical factors are different:

− E1 = �
2

2μa2
= μe4

2(4πε0)2�2
= 13.6 eV for hydrogen.

(5.46)
(The minus sign is there because all energies are measured
relative to V(∞) = 0.)
The importance of memorizing this single number, 13.6 eV,

cannot be overemphasized. Not only does it tell you that the
energy scale of atomic processes is of the order of a few eV,
it can be used to derive approximate ionization energies for
hydrogenic atoms, and its numerical value is often a GRE
question in and of itself. In fact, both expressions for E1 are
4 You may also see the term hydrogenic, which usually refers to a bound
state of a negatively charged particle orbiting a positively charged particle
or nucleus.

worth memorizing; luckily, this is probably the most com-
plicated formula you’ll have to memorize for the test. Again,
the numerical factors are not important but the dependence
on μ is: the second formula, containing all explicit factors of
μ, shows that the ground state energy is proportional to the
reduced mass. So, in positronium, halving the reduced mass
compared to hydrogen gives a binding energy that is half that
of hydrogen.
Another trap to beware of is the e4 in the second formula

for E1: this does notmean that a helium ion (an electron orbit-
ing a nucleus of charge 2e) has ground state energy 24 × E1.
Rather, e4 = (e2)2 is the square of the e2 appearing in
the Coulomb potential, which is the product of the electron
charge and the nuclear charge. For a nucleus of charge 2e, the
Coulomb potential is stronger by a factor of 2, so E1 is greater
by a factor of only 22 = 4.
The last thing to remember is that the energies decrease as

1/n2:

− En = �
2

2μa2
1
n2

, n = 1, 2, 3, . . . , (5.47)

where n is the principal quantum number, which gives the
famous Rydberg formula for the frequency of light emitted
in hydrogen transitions:

f ∝ 1
n2f

− 1
n2i

.

You might have noticed that the formula for En doesn’t
depend on the angular quantum numbers l and m: this is a
special property of the Coulomb potential, and this degener-
acy will go away when we include various small effects that
we have neglected. As this is more properly an atomic physics
topic, we will treat it in Section 5.7 at the end of this chapter.
We finish with some important trivia about the hydrogen

atom:

● The energies don’t depend on l or m, but of course the
wavefunctions do, with the angular dependence carried in
the spherical harmonics. The radial part of the wavefunc-
tion is determined by so-called Laguerre polynomials, which
depend on l but notm.

● The wavefunction is zero at the origin for states with l �= 0,
so the states with zero angular momentum have higher
probabilities of being found near the origin. In particular,
the state n = 1 has the highest probability of all the states
of being found near r = 0.

● If we include the speed of light c as a dimensionful
parameter, we can form a dimensionless constant called the
fine-structure constant:
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α = e2

4πε0�c
≈ 1/137. (5.48)

Note that this does not involve the reduced mass μ: it just
characterizes the general quantum-mechanical strength of
electromagnetic interactions. Perturbations to the hydro-
gen atom are usually expressed in terms of powers of α,
and the reason they can be treated as perturbations is the
fortunate situation α � 1.

5.4.4 Problems: Quantum Mechanics in Three
Dimensions

1. A spin-zero particle has angular wavefunction

1√
2
(Y2

3 (θ ,φ)+ Y1
2 (θ ,φ)),

where Ym
l (θ ,φ) are the normalized spherical harmonics.

What is the expectation value of the total spin L2?

(A) 2�2

(B) 5�2/2
(C) 3�2

(D) 9�2

(E) 18�2

2. The radiation emitted by the first excited state of hydro-
gen as it drops to the ground state is called the Lyman
alpha line, and has wavelength 122 nm. An excited hydro-
gen atom is observed radiating light at wavelength 488 nm.
This most likely results from the transition

(A) n = 2 to n = 1
(B) n = 3 to n = 1
(C) n = 3 to n = 2
(D) n = 4 to n = 1
(E) n = 4 to n = 2

3. It is theoretically possible for an electron and a neutron
to form a bound state where the binding force is due to
gravity, rather than electrostatic attraction. Let GN denote
Newton’s constant and me and mn denote the mass of the
electron and neutron, respectively. Under the approxima-
tion me � mn, which of the following gives the “Bohr
radius” of the gravitationally bound electron?

(A)
�
2

GNm2
emn

(B)
�
2

GNmemn

(C)
�
2

GNmem2
n

(D)
�
2GN

memn

(E)
�
2GNme

m2
n

4. A new hydrogen-like atom is discovered where the particle
orbiting the proton has mass 2me and charge 2e, whereme

and e are the charge and mass of the electron, respectively.
What is the binding energy of this atom, in terms of the
binding energy E of ordinary hydrogen?

(A) E/2
(B) E
(C) 2E
(D) 4E
(E) 8E

5.5 Spin

It is an observational fact that all quantum particles carry
an “intrinsic” quantum number known as spin, whose oper-
ators Ŝx, Ŝy, and Ŝz obey the same commutation relations as
the angular momentum operators. In contrast to total orbital
angular momentum, whose value depends on what state the
particle is in, a particle’s total spin is a characteristic of the
particle itself and never changes. Spin is usually denoted s,
where s plays the same role as l in the nomenclature of angular
momentum: for example, a particle with s = 1/2 has Ŝ2 (the
dot product of Ŝ with itself) eigenvalue of s(s + 1)�2 = 3

4�
2

always and forever, and we say the particle has spin-1/2.
In contrast to the orbital angular momentum l, which must

be an integer, s can be either an integer or a half-integer.Other
than that, all the same rules still apply: the z-component of
spin, denotedms, can still range from −s to s in integer steps,
and can change depending on what state the particle is in.
But since s is always fixed, there are always the same num-
ber of possible ms for a given particle, and the Hilbert space
has dimension 2s + 1. For spin-1/2, we have only two states:
spin-up, with ms = +1/2, denoted by |↑〉, and spin-down,
with ms = −1/2, denoted by |↓〉. There is no such conve-
nient notation for spin s = 1 and higher, but for the purposes
of the GRE, pretty much all you have to know is spin-1/2.

5.5.1 Spin-1/2

Because the Hilbert space for spin is finite-dimensional, the
spin operators, instead of being differential operators, are just
matrices. The only ones you have to be familiar with are those
for spin-1/2, known as the Pauli matrices: Ŝx = �

2 σx, Ŝy =
�

2 σy, and Ŝz = �

2 σz, where
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σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

Don’t bother memorizing these because they will be given to
you on the GRE, but do become intimately familiar with their
properties so you’re not forced to rederive anything during
the exam. Notice that the σ ’s are Hermitian matrices, so the
corresponding operators areHermitian, as observables should
be. Since σz is diagonal, the vectors corresponding to |↑〉 and
|↓〉 are particularly simple: |↑〉 = (1

0
)
and |↓〉 = (0

1
)
. You

can check that these have the correct eigenvalues under Ŝz,
namely +�/2 and −�/2, respectively. In the case of spin-1/2,
it’s particularly simple to verify that Ŝ2 commutes with all the
other spin operators, since Ŝ2 turns out to be proportional to
the identity matrix.
With a finite-dimensional Hilbert space, we have to slightly

modify our rules for computing things such as expectation
values. Luckily, we have already taken care of most of this
in Section 5.1.2. Instead of integrating to compute an inner
product, we just take a dot product, and the action of Hermi-
tian observables is by matrix multiplication. For example, the
expectation value of Ŝx in the state |↑〉 is computed as follows:

〈↑| Ŝx |↑〉 = �

2

[
(1 0)

(
0 1
1 0

)(
1
0

)]
= �

2

[
(1 0)

(
0
1

)]
= 0.

Another common question asks you the probability of mea-
suring a particular value of Ŝz for a given state. If the normal-

ized wavefunction is � =
(

α

β

)
(in this context, normalized

means |α|2 + |β|2 = 1), then the probability of measuring
Ŝz = +�/2 is |α|2, and the probability of measuring −�/2 is
|β|2. To see why this is true, write the wavefunction in Dirac
notation:

� = α

(
1
0

)
+ β

(
0
1

)
= α |↑〉 + β |↓〉 ,

which is just the expansion of a vector in its basis components.
Now we can just apply the usual rules of quantummechanics.
To avoid doing repeated calculations, it’s extremely use-

ful to remember the eigenvectors of Ŝx and Ŝy. Instead of
doing the usual steps of finding the characteristic equation of
the matrix, finding the eigenvalues, and then solving for the
eigenvectors, we can take a convenient shortcut. The possi-
ble values of ms are ±�/2 no matter what basis we happen
to be working in, since that’s what it means for a particle to
have spin-1/2. We chose the Ŝz basis because it was conven-
tional, but it had no physical meaning. Thus, the eigenvalues
of Ŝx and Ŝy must also be ±�/2, and thus the eigenvalues of
the Pauli matrices σi are all ±1. Now, we can figure out the
eigenvectors almost by just staring at the matrices:

|↑〉x =
1√
2

(
1
1

)
, |↓〉x =

1√
2

(
1
−1
)
, (5.49)

|↑〉y =
1√
2

(
1
i

)
, |↓〉y =

1√
2

(
1
−i
)
. (5.50)

In the ket notation, we would say |↑〉y = 1√
2
(|↑〉 + i |↓〉), and

so on. These are simple enough to memorize (just remem-
ber an extra factor of i for the y vectors), but by remembering
what the eigenvalues are, it’s at most a one-minute derivation
if you forget. In any problem where you’ll need this informa-
tion, finding the eigenvectors is 90% of the work, so this would
be a minute well spent.
One final detail, which you will likely not have to know for

the GRE but will be important for what follows here: there is
a spin analogue to the raising and lowering operators of the
harmonic oscillator. The linear combinations

Ŝ+ := Ŝx + iŜy, Ŝ− := Ŝx − iŜy (5.51)

are called the spin raising and lowering operators. You can
show they deserve their names by acting on |↑〉 and |↓〉 with
them. You should find

Ŝ+ |↑〉 = 0, Ŝ− |↑〉 = � |↓〉 , (5.52)

and

Ŝ+ |↓〉 = � |↑〉 , Ŝ− |↓〉 = 0. (5.53)

The spin raising operator Ŝ+ turns a down spin into an up
spin, but kills the up spin vector. Likewise, the lowering oper-
ator Ŝ− turns an up spin into a down spin, and kills the down
spin.
These relations generalize to higher spin: what the lower-

ing operator does, in general, is preserve the total spin s but
reduce the value of ms by one unit of �. When acting on the
lowest possible ms, it annihilates that state. The raising oper-
ator does just the opposite. Beware, though: just like their
harmonic oscillator counterparts, the states created by rais-
ing and lowering operators are not automatically normalized!

5.5.2 Spin and the Wavefunction

The next step is to detail how spin fits into the more general
picture of a particle’s wavefunction. The simplest way to think
about it is that the total wavefunction is always (a linear com-
bination of) a product of a spatial wavefunction and a spin
wavefunction. See Example 5.3 for an illustration. For systems
of identical particles, the symmetry properties of both pieces
of the wavefunction can have important effects, as we will see
in much more detail in Section 5.5.4 below, so keeping track
of both pieces is crucial.
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EXAMPLE 5.3

A spin-1/2 particle in the ground state of the infinite square well andms = +1/2 would have the total wavefunction

�(x, t) =
[√

2
a
sin
(πx

a

)
⊗
(
1
0

)]
e−iE1t/�.

The funny symbol⊗ stands for a tensor product, and is there to remind you that the spin part and spatial part are separate
entities which never get mixed. The usual position and momentum operators act on the spatial part, but don’t touch the
spin part; likewise, the spin operators act on the spin part but leave the spatial part alone. In practice, this means that spin
operators always commute with spatial operators: in particular, [L̂, Ŝ] = 0. Acting with some operators for practice:

p̂�(x, t) =
[
−i� π

a

√
2
a
cos
(πx

a

)
⊗
(
1
0

)]
e−iE1t/�,

Ŝy�(x, t) =
[

�

2

√
2
a
sin
(πx

a

)
⊗
(
0
i

)]
e−iE1t/�.

Notice that we can pull the constants that multiply either piece out to the front of the whole wavefunction: that’s all the
tensor product means. It’s just a way of writing a product of two completely independent pieces where constants can be
absorbed into either one. This means that we are free to normalize each piece separately, which is always done in practice.
Finally, note that if a particle has spin-0, the spin part of its wavefunction is just 1: the system is completely described by
just a spatial wavefunction.

It’s important to remember that, in general, the Hamilto-
nian can contain both spatial operators and spin operators.
Indeed, this is exactly what happens when a quantum system
is exposed to a magnetic field: a particle’s spin makes it act like
a magnetic dipole, and there is a corresponding term in the
Hamiltonian representing the energy of a magnetic dipole in
an external field. While it’s true that the spatial and spin parts
never get mixed up with each other, keep in mind that the
Hamiltonian can act on both pieces, and thus both pieces can
contribute to the total energy of the system.

5.5.3 Adding Spins

Suppose we have a particle of spin s and a particle of spin s′.
The system of the two particles taken together also has a total
spin, but it’s not simply s + s′. In fact, that’s just one of many
possibilities. The possible spin states of the system are

Spin s and spin s′: stot = s+ s′, s+ s′ −1, s+ s′ −2, . . . , |s− s′|.
(5.54)

In other words, we can get any spin between |s− s′| and s+ s′

in integer steps. Thankfully,ms values do add,

mtot = ms +m′
s′ , (5.55)

which restricts the possibilities for stot. For instance, if you
have a spin-1 particle with ms = +1 and a spin-1/2 particle
with ms = +1/2, then mtot = +3/2, and the system must be
in the state with stot = 3/2. On the other hand, if the spin-
1/2 particle had ms = −1/2, then mtot = +1/2 and either
stot = 3/2 or stot = 1/2 are allowed. In fact, the system can
be described as a linear combination of states with different
values of stot.

The more common situation, though, is when we know
the total spin and ms value of the system, but not of the
individual particles. The all-important application is to two
spin-1/2 particles, so we’ll walk through that case in detail in
Example 5.4.
Note that the way to add more than two spins is to add

them in groups of two. For example, consider a system of
three spin-1/2 particles. Adding the first two spins gives pos-
sible values of s = 1 and s = 0, and now adding the third spin
gives possible values s = 3/2, 1/2, 1/2. Note the duplication of
s = 1/2: one copy came from adding spin-1/2 to spin-1, and
the second copy came from adding spin-1/2 to spin-0. Finally,
this formalism applies not only to spins, but to any opera-
tors obeying the angular momentum commutation relations,
most notably orbital angular momentum, as discussed in Sec-
tion 5.4.2. Perhaps the most important example of addition of
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EXAMPLE 5.4

Our goal is to classify the states of two spin-1/2 particles in terms of total spin and ms. The possible total spins are
1/2+ 1/2 = 1, or 1/2− 1/2 = 0. As described above, if both of the particles have their maximum value ofms, then
our job is easy: the system is in the state s = 1,ms = 1. We denote this as follows:

s = 1,ms = 1 : |↑〉 |↑〉 .
Now, the total spin operator is Ŝ = Ŝ(1) + Ŝ(2), where the superscripts 1 and 2 refer to particles 1 and 2. As with
spin-1/2, we can form the total raising and lowering operators by just adding together the contributions for particles
1 and 2, with the understanding that the 1 operators act only on the first spin, and the 2 operators act only on the
second. Using the relations (5.53), we can act on the state |↑〉 |↑〉 with the lowering operator:

Ŝ− = (Ŝ(1)− + Ŝ(2)− ) |↑〉 |↑〉 = �(|↓〉 |↑〉 + |↑〉 |↓〉).
By the rules for the action of the lowering operator, this must (after normalization) represent a state with s = 1 but
one less unit ofms:

s = 1,ms = 0 :
1√
2

(|↓〉 |↑〉 + |↑〉 |↓〉) .

Finally, acting once more with the lowering operator, we obtain the state withm = −1:
s = 1,ms = −1 : |↓〉 |↓〉 .

This is precisely as expected, since we could have written down this state from the beginning: it has the minimum
possible values ofms for both particles, so it must have the largest of the available s values.
There is one state remaining, since we started with a Hilbert space of dimension 4 (2 states for particle 1 times 2

states for particle 2) and we only have three states so far. We know this state must have s = 0, and hence m = 0.
Sincem values add, it must be a linear combination of |↑〉 |↓〉 and |↓〉 |↑〉, and since it has a different eigenvalue for
Ŝz from the s = 1,m = 0 state, it must be orthogonal to that state. This uniquely fixes the remaining state to be

s = 0,ms = 0 :
1√
2

(|↑〉 |↓〉 − |↓〉 |↑〉) . (5.56)

This state is given its own name, the singlet, and it shows up everywhere. It’s the unique combination of two spin-
1/2 states with total spin zero, and it’s also the only combination antisymmetric under the interchange of particles 1
and 2. The other three states, with s = 1, are called the triplet states, and they are symmetric under the interchange
of 1 and 2.

angular momenta is in forming the total angular momentum
of a system, Ĵ = L̂+ Ŝ, where as usual L̂ is the orbital angular
momentum operator and Ŝ is the spin operator. For a given
spin s and orbital angular momentum l, the possible eigenval-
ues for Ĵ2 and Ĵz are then given by (5.54) and (5.55) with s′ = l.
You’ll see several examples of this in the problems, both in this
section and in Section 5.7.

5.5.4 Bosons and Fermions

Particles with integer versus half-integer spin behave so radi-
cally differently that they are given their own names: integer

spin particles are bosons, and half-integer spin particles are
fermions. The reason for their difference in behavior only
arises when we consider collections of these particles:

Under the interchange of two identical particles, boson
wavefunctions are symmetric, and fermion wavefunc-
tions are antisymmetric.

Note the caveat “identical!” This only applies to systems of
three electrons, or five photons, not an electron and a pro-
ton: while the electron and proton are indeed both fermions,
they are not identical, so exchanging these particles need
not transform the wavefunction in this manner. This means,
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for example, that if we have a collection of three identical
bosons with coordinates x1, x2, and x3, the wavefunction of
the system �(x1, x2, x3) will obey

�(x1, x2, x3) = �(x1, x3, x2) = �(x2, x1, x3) = · · ·
In other words, the wavefunction remains the same under any
permutation of particles 1, 2, and 3: it is totally symmetric.
Fermions, on the other hand, pick up a minus sign under

the interchange of particles: the wavefunction is totally anti-
symmetric. For a system of two identical fermions at x1 and
x2, the wavefunction �(x1, x2) satisfies

�(x1, x2) = −�(x2, x1).

For more than two particles, two consecutive swaps result in
an overall plus sign, so one has to keep track of the so-called
sign of the permutation, but this is more than you’ll need for
the exam. Remember that overall phase factors don’t change
the quantum state, so the interchange of fermions doesn’t
change the state of the system: this is a reflection of the fact
that identical quantum particles are indistinguishable even in
principle. However, the minus sign can result in interesting
interference effects. More importantly, it restricts the possible
states of multi-fermion systems, which is encapsulated in the
Pauli exclusion principle:

No two identical fermions can occupy the same quantum
state.

This follows from the antisymmetry of the wavefunction: if
two fermions were in the same state ψ(x), then the only way
to make an antisymmetric combination out of ψ(x1)ψ(x2)
would be ψ(x1)ψ(x2) − ψ(x2)ψ(x1) = 0, and the whole
wavefunction just vanishes.
The whole story becomes a little trickier when we include

spin. Remember, the spin and spatial parts of the wavefunc-
tions are independent, so for the total wavefunction to have
a certain symmetry property, the symmetries of the spin part
and the spatial part must combine in the correct way. Usually,
this means both the spin and spatial parts have definite sym-
metry or antisymmetry.5 For a concrete example, consider the
electrons in a helium atom. The two-electron wavefunction
�(r1, r2) = ψ(r1, r2)χ(s1, s2) must be antisymmetric overall,
so we can have either a symmetricψ and an antisymmetric χ ,
or an antisymmetric ψ and a symmetric χ . You’ll finish this
analysis in the problems below.

5 These are the only possibilities for a two-particle state. For three or more
particles, there can be states of mixed symmetry, which can combine to
give an overall symmetric or antisymmetric total wavefunction, but you
won’t have to worry about these on the GRE.

To conclude, we list two important facts relating spin and
symmetry.

● When adding n identical spin-1/2 particles, the states with
the highest value of s (namely s = n/2) are always symmet-
ric. We saw this above for the case of two spin-1/2 particles:
the triplet states were all symmetric. Continuing on, adding
three spin-1/2 particles gives possible values s = 3/2 and
s = 1/2, and all four states with s = 3/2 are symmet-
ric under interchange of spins. On the other hand, the
s = 1/2 states have mixed symmetry, neither symmetric
nor antisymmetric.

● All of the symmetry arguments apply to subsystems of iden-
tical particles. For example, there are six fermions in the
4He atom: two protons, two neutrons, and two electrons.
We are free to consider the symmetry or antisymmetry of
just the identical electrons, as we did above, while ignoring
the fermions in the nucleus. However, the total spin of the
system will of course have to include contributions from all
the fermions.

5.5.5 Problems: Spin

1. A spin-1/2 particle is initially measured to have Sz = �/2.
A subsequent measurement of Sx returns −�/2. If a third
measurement is made, this time of Sz again, what is the
probability the measurement returns �/2?

(A) 0
(B) 1/4
(C) 1/2
(D) 3/4
(E) 1

2. A deuterium atom, consisting of a proton and neutron in
the nucleus with a single orbital electron, is measured to
have total angular momentum j = 3/2 and mj = 1/2 in
the ground state. Let |↑〉p and |↑〉n denote spin-up protons
and neutrons, respectively, and |↓〉p and |↓〉n denote spin-
down protons and neutrons. Assuming the nucleus has no
orbital angular momentum, the spin state of the nucleus
could be

I.
1√
2
(|↑〉p |↓〉n − |↓〉p |↑〉n)

II. |↑〉p |↑〉n
III.

1√
2
(|↑〉p |↓〉n + |↓〉p |↑〉n)

IV. |↓〉p |↓〉n
(A) I only
(B) I and III
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(C) II and IV
(D) II and III
(E) III and IV

3. In the ground state of helium, which of the following gives
the total spin quantum numbers of the two electrons?

(A) s = 0,ms = 0
(B) s = 1,ms = 1
(C) s = 1,ms = 0
(D) s = 1,ms = −1
(E) s = 1/2,ms = 1/2

4. Two spin-1/2 electrons are placed in a one-dimensional
harmonic oscillator potential of angular frequency ω. If a
measurement of Sz of the system returns �, which of the
following is the smallest possible energy of the system?

(A) �ω/2
(B) �ω

(C) 3�ω/2
(D) 2�ω

(E) 5�ω/2

5.6 Approximation Methods

Exactly solvable quantummechanics problems are few and far
between. The hydrogen atom is pretty much the only exam-
ple of a realistic system with a closed-form solution, and as
soon as we include relativistic and spin-related corrections,
we lose the exact solution. To this end, numerous approxima-
tion schemes have been developed. By far the most important,
both on the GRE and in the everyday life of a physicist, is
perturbation theory, discussed below. The variational prin-
ciple and the adiabatic theorem are both important, but the
variational principle is too involved to actually apply on a
GRE-type question, and the adiabatic theorem is more of a
heuristic that applies to only certain types of problems. So
we’ll discuss perturbation theory in great detail, but spend
only a short paragraph on the other two methods.

5.6.1 Time-Independent Perturbation Theory:
First and Second Order

Suppose the Hamiltonian H of a quantum system can be
written as

H = H0 + λH′,

where λ is a dimensionless number that is small compared
to 1. Suppose further that we know the exact energies E0n and

corresponding eigenfunctions ψ0
n of H0, and that H′ is inde-

pendent of time. Then perturbation theory gives us a recipe
for computing corrections to these energies and eigenfunc-
tions, as a power series in the strength of the perturbation λ.
To start, the first-order energy shift to the nth level is

En = E0n + λ
〈
ψ0
n |H′|ψ0

n
〉
. (5.57)

In other words, the first-order correction to the nth energy
E0n is proportional to λ and the expectation value of H′ in the
unperturbed state. So we don’t need to solve the Schrödinger
equation anew in order to find these first-order shifts: all we
have to do is compute an expectation value for some given
observable H′, which is usually pretty easy.

If the first-order shift happens to vanish, then wemust go to
second order in λ to find a nonzero correction. The formula
is considerably more complicated, but we present it here for
completeness:

En = E0n + λ2
∑
m�=n

|〈ψ0
m|H′|ψ0

n〉|2
E0n − E0m

. (5.58)

Rather than memorize this formula, just remember its impor-
tant features:

● It still only involves brackets of H′ with the unperturbed
states, except instead of being expectation values, they are
off-diagonal matrix elements H′

mn = 〈ψ0
m|H′|ψ0

n〉.
● The numerator is always non-negative, so the sign of the
denominator is important: it tends to push neighboring
energies away from each other. In other words, if E0m is only
a little smaller than E0n, the denominator will be small and
positive, so En will be pushed even further away from E0m.
This is known as the no level-crossing phenomenon. In fact,
remembering that levels don’t cross is an excellent way to
remember the sign of the denominator in the first place.

● If there is degeneracy in H0, that is if E0n = E0m for some m,
the expression is undefined because the denominator goes
to zero.

This last observation is the basis of degenerate perturbation
theory. Before discussing this, we should mention that there
is a formula similar to (5.58) for the first-order correction to
the wavefunctions, but it’s never been asked for on the GRE
and so is probably not worth learning.
If H0 is degenerate, then there are multiple linearly inde-

pendent eigenfunctions corresponding to the same energy
eigenvalue. We are free to apply the first-order formula as
long as we choose the basis of eigenfunctions appropriately.
The solution, which you should be able to quote in your
sleep, is
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Diagonalize the perturbation in the subspace of degener-
ate states.

This sounds scary but it’s really not. For example, say some
state of H0 was twofold degenerate, with eigenstates ψa and
ψb. Then in the degenerate subspace, the perturbation is a 2×
2 matrix:

H′
degen =

(
H′
aa H′

ab
H′
ba H′

bb

)
≡
(
〈ψa|H′|ψa〉 〈ψa|H′|ψb〉
〈ψb|H′|ψa〉 〈ψb|H′|ψb〉

)
.

Now diagonalize this matrix, and the eigenvalues are your
first-order shifts. Clean and simple. In fact, you’re not even
required to find the eigenvectors first: the eigenvalues give
you all the information about the energy that you need. Also,
if it happens that a state has some large degeneracy, but
most of the matrix elements vanish, you can simply exclude
those states with vanishing matrix elements from considera-
tion until you get down to a matrix that doesn’t have any rows
or columns that are identically zero. We’ll see some examples
of this in Section 5.7.4.
Incidentally, the problem of the denominator vanishing is

taken care of by excluding the degenerate states from the sum
(5.58). But again, this is too advanced for the GRE: all you
really need to know about second-order perturbation theory
is that it only matters if the first-order shift vanishes. Because
it’s so important, we’ll repeat the mantra of degenerate pertur-
bation theory again: diagonalize the perturbation. This will be
extremely useful when we have all sorts of competing pertur-
bations H′, of different strengths, as we’ll see Section 5.7.4.

5.6.2 Variational Principle

The variational principle is a method for approximating the
ground state energy of a system for which the Hamiltonian
is known. It is based on the simple observation that for any
normalized wavefunction, the expectation value of the energy
is greater than the ground state energy E0.6 Roughly, this is
because a normalized wavefunction that is not the ground
state wavefunction will contain admixtures of other excited
state wavefunctions, which push the expectation value of the
energy above E0. This leads to a method of calculating the
ground state energy by picking a trial wavefunction with an
adjustable parameter (say, a Gaussian of variable width), then
calculating 〈E〉 and minimizing it with respect to this param-
eter. You won’t have to do this on the GRE, but it’s worth
knowing how the procedure works since you may be asked
questions about it.

6 Of course, it’s equal to E0 if you happened to pick the ground state
wavefunction itself.

5.6.3 Adiabatic Theorem

Suppose a particle is in the nth eigenstate of a Hamiltonian
H. The adiabatic theorem states that if we slowly change H to
H′, then at the end of the process the particle will end up in
the corresponding eigenstate of H′. For the purposes of the
GRE, that’s all you need to know: whenever you see “slowly”
on a quantum mechanics problem, you should immediately
think of the adiabatic theorem. The standard applications take
a one-dimensional Hamiltonian, such as the infinite square
well or the harmonic oscillator, and “slowly” change one of
the parameters: for example, letting the well expand slowly to
some other width, or slowly changing the spring constant of
the harmonic oscillator. Then the final energy is determined
by the corresponding eigenstate of the Hamiltonian with the
new parameters. This is really simple in practice, and is best
illustrated through an example problem – see below.

5.6.4 Problems: Approximation Methods

1. A harmonic oscillator Hamiltonian of angular frequency
ω is perturbed by a potential of the form V = K(a− a†)2,
where K is a constant and the operators a and a† satisfy
a†|n〉 = √

n+ 1|n+ 1〉 and a|n〉 = √
n|n− 1〉. What is the

energy shift of the state with unperturbed energy 3�ω/2, to
first order in perturbation theory?

(A) −3K
(B) −K
(C) 0
(D) K
(E) 2K

2. A particle in the ground state of an infinite square well
between x = 0 and x = a is subject to a perturbation
�H = Vx, where V is a constant. What is the first-order
shift in the energy?

(A)
V
√
2a3

π
(B) −Va/2
(C) 0
(D) Va/2
(E) 2Va/π

3. A particle of mass m is subject to an infinite square well
potential of size a, and is found to have energy E. The well
is now expanded slowly to size 2a. What is E′/E, where E′

is the expectation value of the energy of the particle after
the expansion has finished?

(A) 0
(B) 1
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(C) 1/
√
2

(D) 1/2
(E) 1/4

5.7 Atomic Physics Topics

5.7.1 Bohr Model

Why you would need to remember an obviously incorrect for-
mulation of quantum mechanics is beyond us, but questions
on the Bohr model of the hydrogen atom have appeared on
recent GRE exams, so here is a brief review.

● The electron moves in classical circular orbits around the
nucleus, called energy shells or energy levels, with quan-
tized values of angular momentum: L = n� with n =
1, 2, . . .

● Electrons in a given shell do not radiate as they move
around the nucleus – this accounts for the stability of the
atom. This was a big problem in early twentieth-century
physics, since classically, the electron would radiate at all
times during its orbit (since it’s moving in a circle, it’s
accelerating) and spiral into the proton, collapsing the
atom.

● The energy of transitions between energy shells can be
shown tomatch the Rydberg formula given in Section 5.4.3.

If asked about the Bohr model, you will likely get either a
simple calculation question about angular momentum quan-
tization, or a conceptual question about why the Bohr model
rescued the stability of the atom.

5.7.2 Perturbations to Hydrogen Atoms

The hydrogen atom as described in Section 5.4.3 is a great
approximation, but it’s not the whole story. There are sev-
eral important corrections to the spectrum of hydrogen, all
of which give interesting observable effects. In the discussion
below (and in Section 5.7.4), keep inmind that, because L2, S2,
and J2 = (L+ S)2 commute with everything, states of hydro-
gen can always be labeled by any combination of s, l, and j.
However, in the presence of some of these perturbations, the
correspondingm-values may not be conserved.

● Fine structure. These corrections are order α2 smaller
than the Bohr energies, and arise from two very different
physical phenomena: replacing the electron kinetic energy
term in the Hamiltonian with the full relativistic form,
and including spin–orbit coupling between the electron’s
orbital angular momentum and its spin, of the form L · S.

Note that this is not the interaction of the electron’s orbit
with the nuclear spin: nuclear spin only gets into the game
when we discuss hyperfine structure below. Actually calcu-
lating the energy shifts requires way more math than you’ll
have time for on the GRE, but the upshot is that the hydro-
gen energy levels acquire a dependence on the total spin j:
since J commutes with L · S (exercise: check this),mj is also
conserved. The energies are still degenerate in mj, but the
degeneracy in l is broken: states with different values of l
can have different energies.

● Lamb shift. This effect is smaller than fine structure by
an additional factor of α, and splits the 2s and the 2p lev-
els with j = 1/2, which are degenerate even including
fine structure since they both have the same j. The physi-
cal mechanism comes from quantum electrodynamics, far
beyond the scope of the GRE, but the Lamb shift could
appear as a trivia-type question.

● Hyperfine structure. This correction is a magnetic dipole–
dipole interaction between the spins of the electron and
the proton, known as spin–spin coupling. The energy cor-
rections are of the same order in α as fine structure, but
are further suppressed by the ratio me/mp because the
gyromagnetic ratio of point particles depends on their
masses. Because of the smallness of the effect, this per-
turbation is known as hyperfine structure. The result is
that the ground state of hydrogen is split depending on
whether the two spins are in the singlet or triplet state;
the triplet has the higher energy (roughly because the spins
are aligned, and magnetic dipoles want to be anti-aligned),
and the wavelength of the emitted photon in a transition
between these two states is about 21 cm, with energy about
5× 10−6 eV.

It’s extremely unlikely that you’ll have to calculate anything
relating to these perturbations, but their relative strengths
and the physical mechanisms responsible for them is cer-
tainly fair game for the GRE. In passing, we will mention
one calculational trick that is useful when dealing with fine
structure:

J2 = (L+ S)2

= L2 + 2L · S+ S2

=⇒ L · S = 1
2
(
J2 − L2 − S2

)
. (5.59)

For a system with definite values of j, l, and s, this lets you
calculate the eigenvalues of the spin–orbit operator L · S
immediately.
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5.7.3 Shell Model and Electronic Notation

Let’s go back to high school chemistry. There, you learned that
an atom has various energy shells, numbered 1, 2, . . . You also
learned that each electron could occupy one of many orbitals,
labeled s, p, d, f , . . . This is just saying that atomic electrons
lie in hydrogenic states ψnlm: the energy shells are labeled by
n, and the orbitals are labeled by l (s is l = 0, p is l = 1,
d is l = 2, and f is l = 3). This naming scheme is stupid
but unfortunately must be memorized. For a given n, there
are n2 possible combinations of l andm, but since an electron
has spin-1/2, it can be either spin-up or spin-down in any of
these states. This gives a total of 2n2 possible orbitals in each
energy shell. Sincem can take any value from−l to l, there are
2(2l + 1) possible states in each orbital. The counting for the
first few goes as follows:

1s 2 states

2s 2 states

2p 6 states

3s 2 states

3p 6 states

3d 10 states

Electronic notation represents the electron configuration of
an atom by putting the number of electrons in each orbital as
an exponent next to the orbital name. For example, hydro-
gen is 1s1, helium is 1s2, and the noble gas neon is 1s22s22p6.
The detailed description of how the shells get filled is more
chemistry than physics, but a few points to remember:

● The shells fill in order, preferring smaller values of l, up
through argon with atomic number 18, where the rules
break down due to complicated interactions among the
electrons and the nucleus. So, continuing after helium,
lithium has 1s22s1, beryllium has 1s22s2, boron has
1s22s22p1, and so on.

● Noble gases are chemically inert because they have totally
filled energy shells. This means that there are the maximum
possible number of electrons in each orbital.

● Alkali metals have one “extra” electron compared to the
noble gases: for example, sodium has 3s1 in addition to
the 1s22s22p6 of neon. Their chemical tendency is to shed
this extra electron to form ions. Similarly, halogens have
one electron fewer, like fluorine (1s22s22p5), and want
to gain an electron. This accounts for salts such as NaF,
where sodium transfers an electron to fluorine in an ionic
bond.

5.7.4 Stark and Zeeman Effects

Placing an atom in external electric or magnetic fields tends
to split degenerate energy levels into closely spaced multi-
plets. The splitting by an electric field is called the Stark
effect, and the splitting by a magnetic field is called the Zee-
man effect. Calculating the energy shifts usually involves the
whole machinery of degenerate perturbation theory, so you’re
unlikely to have to do a full-blown calculation on the GRE,
but there are some important facts and conceptual statements
about each that you should be aware of.

Stark Effect

● The change in the Hamiltonian from the potential energy
of a charge−e in a uniform electric field E is

�H = eE · r. (5.60)

If |E| is small, this can be treated as a perturbation, at least
for small r.

● There is no change in the ground state energy of hydrogen
or any hydrogenic atom, to first order in |E|.

● The lowest-energy states to show a first-order shift are the
n = 2 states. The states withm = ±1 are unperturbed, but
the 2s state and the 2p state withm = 0 are split. The mag-
nitude of the splitting is likely unimportant for the GRE,
but we can get pretty close just by dimensional analysis.
Dimensional analysis tells us the energy splitting must be
of the form �E = ke|E|d, where k is a constant and d is
some length. The only length scale of the hydrogen atom is
the Bohr radius, so we can take d = a0 and all that is left
undetermined is some number k.

Zeeman Effect

● The Hamiltonian responsible for this effect is the interac-
tion of both the electron’s orbital angular momentum and
spin with a magnetic field B:

�H = e
2m

(L+ 2S) · B. (5.61)

The exact numerical factors are probably not important to
memorize, but they have names: e/2m is the electron’s clas-
sical gyromagnetic ratio, and the extra factor of 2 in front
of the spin operator is because the quantum gyromagnetic
ratio happens to be twice the classical value. The magnetic
field picks out a preferred vector, so it is conventional to
measure spins with respect to the direction of B, which is
equivalent to taking B to point in the ẑ direction.

● The main pedagogical purpose of the Zeeman effect is to
illustrate the concept of “good quantum numbers.” In play
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are three operators, L, S, and J = L + S. Depending
on the magnitude of B, different combinations of these
operators may be conserved (or approximately so), and
hence different combinations of eigenvalues may label the
energies.

● If |B| is small, the Zeeman Hamiltonian is a perturbation
on top of fine structure, for which we have already seen that
the energies are labeled by j, l, and mj. The weak-field Zee-
man effect splits the j states according tomj, with the lowest
energy for the most negative mj: physically, the electron
spin wants to be anti-aligned with the magnetic field, since
this is energetically favorable. This splitting of energy levels
according to spin can be seen in the famous Stern–Gerlach
experiment, where an inhomogeneous magnetic field splits
a beam of atoms into two, effectively performing ameasure-
ment ofmj. If spin were a classical phenomenon, one would
have expected the beam to smear out continuously depend-
ing on the projection of the spin vector onto the direction
of B; the splitting into two sharp components was a striking
demonstration that spin was quantized.

● If |B| is large, we treat fine structure as a perturbation on
top of the Zeeman Hamiltonian, the reverse of the weak-
field case. Since we have taken B to point in the ẑ-direction,
Lz and Sz both commute with the Zeeman Hamiltonian.
This means that l, ml, and ms are now conserved before
fine structure comes into the picture. The total spin j
and mj are not conserved, because the magnetic field pro-
vides an external torque. The energy of the Zeeman states
depends on ml and ms in the same way as for the weak-
field effect, and fine structure causes these states to develop
a dependence on l as well.

5.7.5 Selection Rules

A rough characterization of atomic physics is the study of
what happens when you poke atoms with light. That being
said, the emission and absorption of electromagnetic radi-
ation by atoms is really a topic for quantum field theory.
Thankfully, it can be well approximated by time-dependent
perturbation theory in ordinary quantum mechanics, and
many results summarized in a list of rules known as selec-
tion rules, which are actually quite easy to remember. One
caveat: the following rules apply only to the electric dipole
approximation, which assumes that the wavelength of the
electromagnetic radiation is large compared to the size of
the atom, so that the spatial variation of the field is negligi-
ble and the atom feels a homogeneous electric and magnetic
field which oscillates sinusoidally in time. When we say that

certain things can or can’t happen, we are working only in
the context of this approximation. We emphatically do not
mean that these processes can’t ever happen: in fact, any
quantum process that is not forbidden by conservation laws
(energy, momentum, charge, and so on) must occur with
some nonzero probability.
The following selection rules refer to transitions between

hydrogenic orbitals ψnlm and ψn′l′m′ . To a decent approxima-
tion, all atomic electrons are in one of these spatial wavefunc-
tions, so we are considering excitation or de-excitation of a
single atomic electron between two of these states. Of course,
since we are dealing with quantum mechanics, the energy of
the emitted or absorbed photon can only take certain discrete
values, corresponding to the energy difference between the
final and initial states.

● No transitions occur unless�m = ±1 or 0.You can remem-
ber this by conservation of the z-component of angular
momentum: the photon has spin 1, and hence must carry
off −�, 0, or � units of angular momentum in the z-
direction. If the incident electric field is oriented in the
z-direction, we can be more precise: no transitions occur
unless �m = 0.

● No transitions occur unless �l = ±1. Again, this sort of
follows by the rules of addition of angular momentum, but
the case l = l′ is conspicuously absent.

Note that the 2s → 1s transition in hydrogen is technically
forbidden by these rules, since this transition has�l = 0. This
transition does happen, but it gets around the rules because it
occurs by two-photon emission. This also implies that if you
shine light on the ground state of hydrogen, the first excited
states you will populate are the 2p states, with l = 1.

5.7.6 Blackbody Radiation

One of the triumphs of early quantum mechanics was the
derivation of the radiation spectrum of a blackbody. This is
an idealized object which absorbs all the radiation that hits it,
while reflecting none of it, so that any radiation emitted from
the blackbody is a result of its overall temperature. Unlike in
atomic transitions, this radiation is not all at one frequency:
there is a whole spectrum. The word “blackbody” is actually
a bit misleading, because if this spectrum peaks in the visible
region, the body will appear to be the color that corresponds
to the peak frequency. This is in fact the case for the Sun,
which to a good approximation is a blackbody whose spec-
trum peaks in the yellow part of the visible region. By using
the dependence of the blackbody spectrum on temperature,
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one can measure the temperature of an object by observing its
color.
In equations, the power spectrum, which is the radiated

power per unit area of the blackbody per unit solid angle
per unit frequency (what a mouthful!) as a function of fre-
quency, is

I(ω) ∝ hω3

c2
1

e�ω/kBT − 1
. (5.62)

You probably don’t need to memorize this equation, but it
is important for historical reasons: the classical formula con-
tains only the first factor proportional to ω3, which would
cause the power to grow without bound as the frequency
of the radiation increased. This “ultraviolet catastrophe” was
averted by Planck, who supplied the second factor and ush-
ered in the era of quantummechanics: you should recognize it
as the Bose–Einstein factor (4.43) for identical photons, which
are bosons. (The chemical potential for photons is μ = 0,
since there is no conservation law for photon number: they
can be created or destroyed in physical processes.)
The two facts you do need to remember about blackbody

radiation are:

● Integrating (5.62) over everything but the area of the black-
body, we obtain from the power spectrum the Stefan–
Boltzmann law:

dP
dA

∝ T4, (5.63)

where T is the temperature of the blackbody. The exact
prefactor isn’t worth memorizing (for what it’s worth, it’s
some dimensionful constant called the Stefan–Boltzmann
constant), but the T4 dependence is crucial.

● The location of the peak of the spectrum (5.62) is given by
Wien’s displacement law:

λmax = (2.9× 10−3 K ·m)T−1. (5.64)

The numerical prefactor is important this time: it’s one of
those constants that really should appear in the currently
useless Table of Information at the top of your test, but
it’s not there. We strongly recommend that you memo-
rize this number (approximate 2.9 to 3 if you like), since
although the constant has shown up explicitly on recent
tests, its appearance or nonappearance on past GRE tests
is inconsistent. Notice that this formula is in terms of wave-
length, not frequency: this is conventional. If you know the
temperature of a blackbody, you can use this formula to
find the wavelength at which the power spectrum is at a
maximum, or vice versa. (Try it yourself: plug in the wave-
length of yellow light, and find the temperature of the Sun.)

Also note that the maximum wavelength is inversely pro-
portional to temperature: as the body gets hotter, λmax gets
smaller, shifting toward the ultraviolet.

5.7.7 Problems: Atomic Physics Topics

1. In the Bohr model of the hydrogen atom, let r1 and r2 be
the radii of the n = 1 and n = 2 orbital shells, respectively.
What is r2/r1?

(A) 1/2
(B) 1/

√
2

(C) 1
(D) 2
(E) 4

2. The Bohr model is inconsistent with the modern picture
of quantum mechanics because it predicts which of the
following?

(A) The electron will not lose energy as it orbits the
nucleus.

(B) The electron is confined to distinct energy shells.
(C) Angular momentum of the atom is quantized.
(D) The ground state has nonzero orbital angular momen-

tum.
(E) The energy levels go as 1/n2, where n is the principal

quantum number.

3. An atom with the electron configuration 1s22s3 is forbid-
den by which of the following?

(A) Conservation of angular momentum
(B) Hund’s rule
(C) The Pauli exclusion principle
(D) The uncertainty principle
(E) None of the above

4. Which of the following is the most likely decay chain of
the 3s state of hydrogen? Ignore all relativistic and fine-
structure effects.

(A) 3s→ 1s
(B) 3s→ 2s→ 1s
(C) 3s→ 2p→ 1s
(D) 3s→ 2p→ 2s→ 1s
(E) The 3s state is stable

5. Observations of the early universe show that it behaves
as an almost perfect blackbody, with associated radia-
tion known as the cosmic microwave background (CMB).
Given that the spectrum of the CMB peaks in the
microwave region at a wavelength of 1.06mm, which of the
following is closest to the temperature of the CMB?
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(A) 0.03 K
(B) 0.3 K
(C) 3 K
(D) 30 K
(E) 300 K

6. A space heater whose heating elements are maintained at a
constant temperature can heat a cold room from 15 ◦C to
25 ◦C in time t. If the temperature of the heating elements
is doubled, how much time will it take to heat the room?

(A) t/16
(B) t/8
(C) t/4
(D) t/2
(E) t

5.8 Solutions: Quantum Mechanics and
Atomic Physics

Formalism

1. C – We could calculate the normalization constant, and
then do the integral

∫ 0
−∞ |�(x)|2 dx to find the probability.

But it’s much simpler to stare at the wavefunction and just
write down the correct answer, 1/2. The reason is that�(x)
is symmetric with respect to x = 0, so the area under the
curve of |�(x)|2 is equal for x positive and negative, inde-
pendent of whatA is. This is typical of the kind of shortcuts
you might see on a GRE problem.

2. C – Let �(0) = 1√
2
(ψ1 − ψ2). The full time-dependent

wavefunction is given by �(t) = 1√
2
(ψ1e−iE1t/� −

ψ2e−iE2t/�). However, note that the complex moduli of the
coefficients multiplying ψ1 and ψ2 are the same as they
were at t = 0, since the exponential factors have modulus 1
at any time t. So the probability of measuring E1 is the same
at time t as at time zero: namely, (1/

√
2)2 = 1/2. This is

a general feature of time-independent potentials: even in
superpositions of energy eigenstates, the energy eigenval-
ues and relative probabilities of energy measurements are
constant in time. This is no longer true for time-dependent
potentials, but luckily you won’t have to worry about those
on the GRE.

3. E – Since |b〉 is an eigenstate of p̂, we have p̂|b〉 = b|b〉.
But since p̂ is a Hermitian operator, eigenfunctions corre-
sponding to different eigenvalues are orthogonal, and

〈a|p̂|b〉 = b〈a|b〉 = 0.

We also could have proceeded by process of elimination.
Since p̂ is Hermitian, we have 〈a|p̂|b〉 = 〈b|p̂|a〉, so the
answer must be symmetric in a and b, which eliminates
choices A and B. The answer must also have dimensions
of momentum (the same units as a and b), which leaves D
and E. It’s hard to see how a square root might come out
of a calculation like this, so E seems the most reasonable
choice.

4. D – Recall that the nth state of the harmonic oscillator has
energy (n+1/2)�ω. If you don’t remember this, make sure
you study Section 5.2! This wavefunction has three nodes,
so it must represent the third excited state; since the har-
monic oscillator starts counting with n = 0, this means it’s
the n = 3 state, with energy 7�ω/2.

5. E – For a matrix to be a Hermitian operator, it must be
equal to its Hermitian conjugate; in other words, transpos-
ing the matrix and complex-conjugating the entries must
give back the original matrix. For matrices that consist of
purely real entries, this just means the matrix must be sym-
metric: I fails but III passes. It turns out that II is also
Hermitian, since transposing switches the i and −i, but
conjugating switches them back. Incidentally, II is one of
the Pauli matrices, and if you recognized this you could
immediately determine that it is Hermitian – see Section
5.5.

6. B – We want the inner product 〈�1|�2〉 to vanish. In tak-
ing the inner product, remember that we have to complex-
conjugate the coefficients of |�1〉:

(1)(2)+ (−2i)(x) = 0 =⇒ x = −i.
If we had forgotten to conjugate, we would have ended up
with the trap answer A.

7. B – This is an application of the energy–time uncertainty
principle, combined with a little special relativity which
tells us a particle of mass m has rest energy mc2. From
�E�t ≈ �, we plug in the lifetime of the particle for
�t and use the numerical value of � (which would be
given in the Table of Information at the top of the test,
here we want units of eV · s) to find �E ≈ 66 MeV. In
other words, a mass difference of greater than 66 MeV/c2

from the central value of 500 MeV/c2 represents one stan-
dard deviation, and is expected to happen about 32% of
the time. Here the mass difference is only 50 MeV/c2, so
this may be expected to happen about 50% of the time.
On the other hand, the mass difference is five times the
expected experimental error, and a 5-sigma event happens
much more rarely. So the difference is most likely due to
the uncertainty principle, choice B.
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8. B – This is a classic application of the “folklore” uncertainty
principle (5.19):

(100 pm)(�p) ≈ � =⇒ �p ≈ 2 keV/c.

To do the arithmetic fast, we could use the fact that hc =
1240 eV · nm (also given in the Table of Information on
the most recently released test) to get the momentum in
natural units of eV/c. Now, find the energy by

E = p2

2me
≈ 4 keV2/c2

1 MeV/c2
= 4 eV.

This makes complete sense, since we know that chemical
processes take place on the scale of eV, rather than MeV
(the scale of nuclear physics) or GeV (the scale of particle
accelerator physics). Using just this knowledge, we prob-
ably could have zeroed in on choice B right away, but it’s
nice to see it come out of the uncertainty principle.

Harmonic Oscillator

1. D – The key here is the virial theorem, supplemented by a
bit of clever reasoning. Since 〈T〉 = En/2 for any energy
eigenstate, and T = p2/2m, we have 〈p2〉 = mEn for
any energy eigenstate |n〉. Now, the virial theorem does
not generally apply to superpositions of energy eigenstates,
but in this particular case it does. The operator p̂ is a lin-
ear combination of a and a†, so p̂2 contains products of
at most two of these operators, such as (a†)2 or a†a. Thus
〈1|p̂2|4〉 = 0, because applying a raising or lowering opera-
tor twice can never give a product of nonorthogonal states;
we always get orthogonal combinations such as 〈2|3〉 or
〈1|2〉. So there are no cross terms, and the virial theorem
still applies to each diagonal term in the expectation value.
Denoting our state by |ψ〉 = 1√

2
(|1〉 + |4〉), we have

〈ψ |p̂2|ψ〉 = 1
2
(〈1|p̂2|1〉 + 〈4|p̂2|4〉).

Using the virial theorem gives

〈p2〉 = 1
2
m(E1 + E4) = m

2
(3�ω/2+ 9�ω/2) = 3m�ω,

choice D.
2. A – The classical ground state of the harmonic oscilla-

tor has zero energy, corresponding to a particle sitting at
x = 0, where the potential vanishes, and having no kinetic
energy. But the ground state of the quantum oscillator has
energy �ω/2.

3. C – Let (nx, ny) label the levels of the independent x-
and y-coordinate oscillators. The total zero-point energy
is �ω/2+ �ω/2 = �ω in two dimensions, so the state with

energy 3�ω has nx+ny = 2, which can occur in three ways:
(2,0), (1,1), and (0,2). Thus this state has a degeneracy of 3.

Other Standard Hamiltonians

1. D – This is easiest to see from the explicit form of the wave-
function, sin(nπx/L). Even without the functional form,
we can still eliminate B, C, and E because II is clearly false:
the wavefunction is always continuous.

2. C – Clearly I is false because a definite value of position
would mean the wavefunction must be a delta function
δ(x − x0). In fact, this wavefunction represents a superpo-
sition of two momentum eigenstates, e+ikx and e−ikx, with
equal but opposite values of momentum p = �k. So II is
false. However, the energy �

2k2/2m doesn’t care about the
sign of k, so the particle does have a definite value of energy.
Only III is true, so C is correct.

3. E – The incident wave has amplitude |A|, the reflected wave
has amplitude |B|, and the transmitted wave has amplitude
|C|, so the transmission probability is |C|2/|A|2 multiplied
by an extra factor which takes into account the differ-
ent speeds of the waves on the left and the right. Rather
than solving for this quantity using conservation of prob-
ability, continuity of the wavefunction and its derivatives
and so on, we can just use logic. Choices A and B are
clearly false, for any finite nonzero value of V0. Further-
more, we should have the transmission probability going
to 1 when kL = kR, since that corresponds to the step
disappearing. This eliminates D. Furthermore, since prob-
abilities are proportional to squared amplitudes, the only
way a ratio like kL/kR would show up would be if solving
the continuity conditions gave a

√
k factor: since deriva-

tives of the wavefunction will only give k and not
√
k, this

seems rather unlikely. So E seems best, and indeed it is
the correct answer. Notice that this kind of careful reason-
ing, while it may seem involved, took much less time than
the corresponding calculations would have. In our opinion
this is the best way to approach these kinds of quantum
mechanics problems on the GRE.

Quantum Mechanics in Three Dimensions

1. D – Since the spherical harmonics are eigenfunctions of
L2, Y2

3 has eigenvalue 3(3+1)�2 = 12�2 and Y1
2 has eigen-

value 2(2 + 1)�2 = 6�2. The squares of the coefficients in
the given wavefunction are 1/2 for both spherical harmon-
ics, so the expectation value is (1/2)6�2+(1/2)12�2 = 9�2,
choice D.
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2. E – The given wavelength is exactly 4 times the wave-
length of the Lyman alpha line, which comes from the
n = 2 to n = 1 transition. Letting ni and nf be the ini-
tial and final states of the 488 nm transition, the Rydberg
formula (inverted because we’re dealing with wavelength
rather than frequency) gives

4 =
1
12 − 1

22
1
n2f
− 1

n2i

,

and this is solved just by doubling the n values for Lyman
radiation: ni = 4 and nf = 2. This is choice E.

3. A – The gravitational potential is GNmemn/r, and the
corresponding electric potential in the hydrogen atom is
e2/4πε0r, so we simply replace e2/4πε0 by GNmemn in
the formula for the Bohr radius. Since we’re approximat-
ing me � mn, we can use me instead of the reduced mass.
This gives

a = �
2

me

1
GNmemn

= �
2

GNm2
emn

,

which is A. We could also have made progress by dimen-
sional analysis, since only A and C have the correct units.
By the way, the reason we never see this bound state is that,
plugging in the numbers, a = 1.2 × 1029 m; for compar-
ison, the radius of the observable universe is 4.7 × 1026

m!
4. E – From (5.46), the ground state energy is proportional to

the reduced mass and the square of the “electron” charge.
This gives a total factor of 2(22) = 8, choice E.

Spin

1. C – The first measurement is irrelevant. After the sec-
ond measurement the particle is in the −�/2 eigenstate of

Ŝx, which is
1√
2

(
1
−1
)
. The components of |↑〉 and |↓〉

in this state have equal magnitude, so the probability of
measuring either one is 1/2, choice C.

2. D – The ground state has zero orbital angular momentum,
so combined with the given information about the nucleus
having no orbital angular momentum, we only have to
worry about spins. To get j = 3/2 the nucleus must be
in the triplet state, which rules out I. The z-component of
spin of the electron can be either 1/2 or −1/2, and so the
nucleus could either have mj = 0 (with ms = 1/2 for the
electron), ormj = 1 (withms = −1/2 for the electron). So
both II and III are viable options, choice D.

3. A – This is a classic problem and well worth remembering,
so we’ll reason through it carefully. Because the interaction

of electron spins with the nucleus is an order of magni-
tude smaller than the Coulomb interaction between the
electrons and the protons (see Section 5.7), the ground
state is determined by the spatial wavefunction, and prefers
both electrons to be in the same lowest-energy orbital,
the 1s orbital. Since both electrons have the same spa-
tial wavefunction, the spatial piece is symmetric, so the
spin configuration that comes along for the ride must be
antisymmetric. The possible spin configurations of two
electrons are the singlet and the triplet, as discussed in Sec-
tion 5.5.3. But only the singlet (choice A) is antisymmetric,
so this must be the correct spin state. Helium is such a GRE
favorite that it’s best just tomemorize the conclusion of this
argument, rather than rederiving it each time: the ground
state of helium is the singlet state.7 But really, you already
knew this from high school chemistry, when you wrote the
electron configuration of hydrogen as ↑, the configuration
of helium as ↑↓, and so on. While technically an imprecise
shorthand, it’s a good mnemonic nonetheless.

4. D – Total Sz = � means the electrons must be in the
triplet state, which is symmetric. For a totally antisymmet-
ric wavefunction, the spatial wavefunction must be anti-
symmetric. This knocks out the ground state, where both
electrons are in the n = 0 state of the harmonic oscillator,
since after antisymmetrization this vanishes identically.
So the next available state is an antisymmetrized version
having n = 0 and n = 1:

ψspatial = 1√
2
(|0〉1 |1〉2 − |1〉1 |0〉2).

This is an energy eigenstate with energy �ω/2 + 3�ω/2,
choice D.

Approximation Methods

1. A – The state with energy 3�ω/2 is |1〉, so the shift we’re
looking for is 〈1|V|1〉. Expanding out V isn’t really that
helpful. Instead, note that the only terms that survive in
the expectation value contain exactly one a and exactly one
a†, since otherwise we would have something of the form
〈m|n〉which vanishes by orthogonality. There are two such
terms: −aa† and −a†a. (Remember to keep track of the
order, since these operators don’t commute!) We have

〈1|(−aa†)|1〉 = −(√2)2〈2|2〉 = −2,
7 Note that there is an important subtlety in this discussion: the
electron–electron repulsion in helium means that the ground states are
not really the pure hydrogen orbitals. However, this line of reasoning
does give the correct experimentally observed answer, which is all that
matters. So feel free to regard this argument as a mnemonic for
remembering the correct answer.
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〈1|(−a†a)|1〉 = −(√1)2〈0|0〉 = −1,
where in the first line we acted on |1〉 with a† and on 〈1|
with a on the right, and similarly in the second line with
the roles of a and a† reversed. Adding these up gives�E =
K(−2− 1) = −3K, choice A.

2. D – The ground state is ψ(x) = √
2/a sin(πx/a), and the

first-order shift is given by

�E =
∫

ψ∗(x)�Hψ(x) dx = V
2
a

∫ a

0
x sin2(πx/a) dx.

This is likely more difficult than any integral you’ll actually
see on the GRE, but just in case, let’s briefly review how to
do it: use the half-angle identity to write

sin2(πx/a) = 1
2
(
1− cos(2πx/a)

)
.

Integrating the first term against x gives

V
2
a
1
2

∫ a

0
x dx = V

2a
a2 = Va

2
.

Do the second integral
∫
x cos(2πx/a) dx by parts; the

boundary term vanishes because sin(2πx/a) vanishes at
both the endpoints, so the remaining integral is

−V 2
a
1
2

a
2π

∫ a

0
sin(2πx/a) dx = 0,

because cos(2πx/a) is equal to 1 at both endpoints. So the
energy shift is simply Va/2, choice D.

3. E – After an energy measurement the particle is in some
eigenstate of the infinite square well, say the nth state.
Under a slow expansion of the well, the adiabatic theorem
tells us the particle remains in the nth state of the infinite
square well. Since the energies of the infinite square well

are
n2π2

�
2

2ma2
, the energy of the final configuration is 1/4 of

the original energy, independent of n.

Atomic Physics Topics

1. E – We can eliminate A, B, and C right away since the
n = 2 shell hasmore energy than n = 1, and hencemust be

further away from the nucleus. The angular momentum
for a circular orbit is L = mvr, and the orbital velocity
can be determined from classical mechanics by setting the
centripetal force equal to the Coulomb force:

1
4πε0

e2

r2
= mv2

r
=⇒ v ∼ r−1/2.

Thus L ∼ r1/2, and from L1 = � and L2 = 2�, we get
r2/r1 = L22/L

2
1 = 4.

2. D – In the Bohr model, L = n�, where n > 0, since oth-
erwise the electron would be sitting right on top of the
nucleus (its classical orbital radius would be zero). How-
ever, in the modern picture the ground state is ψ100, which
has orbital quantum number l = 0.

3. C – The 2s orbital has l = 0, and hence m = 0, so elec-
trons in this orbital are distinguished only by the direction
of their spin. There are only two independent spin states,
so a third electron would have to be in the same state as one
of the other two, violating the Pauli exclusion principle for
fermions.

4. C – By the selection rules, 3s must decay to a state with
l = 1, so the only option is the 2p state. From there, we
again must have �l = ±1, and so 1s is the only remaining
possibility.

5. C – This is a straightforward application of Wien’s law.
Solving for T, we get T = (2.9 × 10−3K · m)/λmax, and
approximating Wien’s constant by 3 and the wavelength
by 1 mm, we get T ≈ 3 K. (Even without any knowledge of
Wien’s constant, we could have eliminated choice E since
the universe certainly isn’t at room temperature.) By the
way, questions on the CMB are fairly likely to appear on
the GRE in some form, so it’s worth remembering both the
wavelength and the temperature if you can.

6. A – Treating the space heater as a blackbody, the power
(energy per unit time) is proportional to the fourth power
of temperature. So doubling the temperature increases
the power by a factor of 16, and for a constant desired
energy, this means the time taken to deliver this energy will
decrease by a factor of 16.

 



6 Special Relativity

Problems on relativity in the GRE often look simple, but can
be tricky as they tend to deal more with conceptual issues than
with detailed calculations. Throughout this chapter, keep in
mind how important it is to define things precisely: concepts
such as time, length, and simultaneity, which seem so obvious
in classical mechanics, can actually be quite subtle. Our dis-
cussion will necessarily be brief, so by all means consult our
recommended references if you want more details.

6.1 Relativity Basics

There are two simple postulates from which all of special
relativity follows:

1. The speed of light in vacuum is a constant (denoted c) in
all inertial reference frames.

2. The laws of physics are identical in all inertial reference
frames.

The crucial idea in both postulates is the inertial reference
frame, which for the purposes of the GRE just means an
observer traveling at constant velocity – that is, in a straight
line with constant speed. So another way of stating the second
postulate is that the apparent laws of physics do not change as
long as the observer is in a frame that is moving at a constant
velocity. We should add that only inertial frames with velocity
v < c are allowed: this is the familiar statement that no signals
propagate faster than light.
These postulates lead directly to the famous Lorentz trans-

formations, which relate the coordinates used to describe
two inertial frames. Since this can get a little confusing, let’s
first consider a simpler example, where the velocities are
small compared to c and we can use ordinary coordinate

transformations familiar from classical mechanics. Let system
S be a person standing on the side of the highway, and sys-
tem S′ be a car traveling on the highway at constant speed v.
We’ll let (t, x) represent the time and distance along the high-
way, respectively, for the person in S, and (t′, x′) represent the
analogous quantities for the car in S′, where x′ = 0 corre-
sponds to the front bumper of the car. The first thing to do
is synchronize the origin of coordinates in both systems: let
t = t′ = 0 be the instant where the front bumper of the car
passes the person on the side of the highway, and let this occur
at x = x′ = 0. The car in S′ is moving with constant speed, so
its position at time t is x = vt. In the frame of the car, then,
an object at position x′ with respect to the front bumper has
traveled an additional distance vt as seen by the person in S:
x = x′ + vt, or x′ = x − vt. Finally, in classical mechan-
ics, clocks tick at the same rate everywhere, so t = t′. Thus
we have the Galilean transformations relating the coordinates
(t, x) to (t′, x′):

t′ = t,

x′ = x− vt.

We can check that these make sense: at t′ = t = 0, we
have x′ = x, corresponding to the synchronizing of clocks
described earlier.
However, in special relativity, this simple behavior goes out

the window. At velocities near the speed of light, time and
space mix with each other. The analogous transformations
between S and S′ are

t′ = γ
(
t − v

c2
x
)
, (6.1)

x′ = γ (x− vt) , (6.2)
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where γ is often called the Lorentz factor, and is defined by

γ = 1√
1− v2/c2

. (6.3)

These are the Lorentz transformations for one-dimensional
motion along the x-axis. They tell you, given coordinates (t, x)
in S, what the analogous coordinates (t′, x′) are in S′. Notice
how the t′ equation involves both x and t, which is very much
unlike the simple statement that t′ = t in classical mechanics.
The inverse transformations, which express S coordinates in
terms of S′ coordinates, are

t = γ
(
t′ + v

c2
x′
)
, (6.4)

x = γ
(
x′ + vt′

)
. (6.5)

These are extremely easy to remember: just flip the sign of v!
This is the concept of “relativity” in action: if S′ is moving to
the right with respect to S, then from the point of view of an
observer in S′, it’s S that is moving to the left. (Just picture
how the scenery seems to fly by backwards as you’re driving
in a car.)
We’re now going to look in detail at the consequences

of these transformations. In what follows, think of S as a
collection of clocks, one at each point x, all of which are syn-
chronized with each other: a clock at x = x1 and another at
x = x2 will all read the same time t. Similarly, S′ is a different
collection of clocks, all traveling together at velocity v with
respect to S, and all synchronized with each other. However,
they are not all synchronized with the clocks in S! The best
we can do is synchronize the origin of coordinates, as we did
in our simple example above: we define t = t′ = 0 to be the
instant that the x′ = 0 clock in S′ passes the x = 0 clock in S.
This is consistent with the Lorentz transformations we wrote
down: at (t, x) = (0, 0), we also have (t′, x′) = (0, 0).

6.1.1 Simultaneity

Suppose two events are simultaneous in system S: that is, event
A occurs at position xA, while event B occurs at position xB,
and they both happen at time t. Looking at the t′ equation, we
find

t′A = γ
(
t − v

c2
xA
)
, t′B = γ

(
t − v

c2
xB
)
.

These are not the same! In fact, unless xA = xB (in which
case A and B might as well have been the same event), the
times measured in S′ are different, and so A and B are not
simultaneous in S′. Since simultaneity is a concept that is so
ingrained in our intuition, and we use it to build other con-
cepts such as length and causality, this is a red flag which we

will have to be very careful of in the context of special relativ-
ity. This also explains why we can’t synchronize all the clocks
in S′ with all the clocks in S: synchronization is the same as
asking for clocks to simultaneously read the same time, and,
as we’ve just seen, that’s impossible for two clocks at different
positions.

6.1.2 Time Dilation

Suppose we’re sitting in S, and we wait for a time interval
�t. How much time elapses in frame S′? Here we have to
carefully define what we mean by “time elapsed”: since we’re
thinking of S′ as a set of clocks, one at each position, we want
to follow a single clock, at a fixed position x′, for a time �t.
So the appropriate equation is (6.4), relating �t to �t′ at
fixed x′:

�t = γ�t′ (fixed x′). (6.6)

Notice that γ ≥ 1, since v < c, so for a given interval of time
that elapses in the moving frame S′, more time elapses in the
stationary frame, by a factor of γ . This is known as

Time dilation: moving clocks run slower by a factor of γ .

Here is where things start to get confusing. An easy mistake
to make is to use fixed x instead of fixed x′: plugging this into
the equation for t′, we would find �t′ = γ�t, which is pre-
cisely the opposite of the correct result! The problem is that
fixed x corresponds to looking at a whole sequence of clocks
in S′ as they fly by, one by one, which does not correspond
to measuring any kind of time elapsed in S′ because of the
issue of synchronization mentioned earlier. The moral of the
story is that, while “time dilation’’ sounds nice and simple,
it’s very easy to get mixed up by exactly whose time is being
dilated. Luckily, the instances you’ll see on the GRE are all
pretty standard, and you’ll see many examples in the practice
problems.

6.1.3 Lorentz Contraction

Suppose we are sitting in S, and want to measure the length
of an object in S′. For simplicity, let’s put the back end of the
object at x′ = 0 and the front end at x′ = L′. Now, to mea-
sure the length of the object as seen from S, we need to note
the positions of the two ends at the same S-time t. This brings
in simultaneity, but that’s OK since the clocks in S are all syn-
chronized with each other, so we can talk about events that
are simultaneous in S. Applying the x′ equation (6.2) at x′ = 0
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and x′ = L′, we have

0 = γ (x1 − vt),

L′ = γ (x2 − vt).

Subtracting the first from the second, and defining L = x2−x1
as the length in S, we obtain

L′ = γ L (fixed t). (6.7)

Again, the two definitions of length differ by the same fac-
tor γ . But note the direction! Since L, the length as measured
in S, is smaller than L′, we remember this as

Length contraction: moving objects are shortened by a
factor of γ .

Note that we don’t say “moving objects appear shortened.” As
far as we can define the concept of length, they are shortened.

6.1.4 Velocity Addition

Here’s a familiar situation from classical mechanics: you’re
riding in a car at 100 km/h, and you throw a ball forwards out
the window at 5 km/h. Ignoring air resistance, from the point
of view of someone standing on the side of the highway, the
ball travels at 100+ 5 = 105 km/h. In our language of inertial
reference frames, we would say that the stationary observer
defines a reference frame S, the car defines a frame S′, and the
ball defines a third reference frame S′′: we just calculated the
velocity of S′′ with respect to S, given its velocity with respect
to S′.
With this formalism, it’s easy to re-evaluate this situation in

the context of special relativity, and as expected it differs from
the classical result. Suppose S′ travels at velocity v, and the ball
travels at velocity u with respect to S′. Then a bit of algebra
with the Lorentz transformation equations gives the Einstein
velocity addition rule for the velocity w as seen in frame S:

w = v+ u
1+ vu/c2

. (6.8)

This formula is useful to memorize since it is tricky to derive,
but simple to remember. Here are a couple sanity checks that
will make memorizing this formula easy. The factor of 1/c2

in the denominator (required for dimensional consistency)
means that at velocities very small compared to the speed of
light, u, v � c, the formula reduces to the usual addition of
velocities, w = u + v. That gives you the numerator. On the
other hand, plugging in u = c (corresponding to shooting
a laser beam out of the car, instead of throwing a ball), we
find w = c. This recovers the first postulate of relativity, that

the velocity of light is the same in all inertial frames: here,
we’ve shown it to be true for a frame moving at velocity v.
Finally, note that the signs must always match: if we throw
the ball backwards rather than forwards, we should change
the sign of u in both the numerator and the denominator. By
the way, this velocity addition formula only applies to one-
dimensional motion, but that’s the only case you’ll see on the
GRE: the general formula is considerably more complicated
and isn’t worth memorizing.

6.2 4-Vectors

We’re now going to introduce some notation that will make
the previous results easy to remember, and generalizes easily
to other useful physics situations. Define

x0 = ct, x1 = x, x2 = y, x3 = z, (6.9)

which emphasizes the fact that space and time are treated
on a similar footing in relativity: they’re both just coordi-
nates. Note that the superscripts are labels, not exponents!
This notation is totally standard, so, as confusing as it is, we’ll
stick with it because it will match what you’ll see on the exam.
We can collect these coordinates into a single object called a
4-vector:

xμ = (x0, x1, x2, x3) = (ct, x, y, z). (6.10)

In this notation, the superscript μ is again a label that takes
the values 0, 1, 2, or 3.

6.2.1 Lorentz Transformation Matrices

Now, we can write the Lorentz transformations as a matrix
equation involving the vector xμ. Defining

β = v/c (6.11)

as the velocity of S′ in units of c, we have⎛
⎜⎜⎜⎝

x0′

x1′

x2′

x3′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎟⎠ . (6.12)

The top 2 × 2 block of the matrix reproduces (6.1) and (6.2),
but is much easier to remember because all the annoying fac-
tors of c have been absorbed into the various symbols γ ,β , x0,
and x1. The rest of the matrix comes from the fact that a
Lorentz transformation along the x-axis does not touch the
y or z coordinates. By the way, a Lorentz transformation is
often called a boost. It is unlikely that you will see a problem
on the GRE that will ask you to simply plug in numbers to
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the Lorentz transformation, but we have encountered GRE
questions that required identifying the form of the Lorentz
transformation. The generalization to boosts along the other
coordinate axes is straightforward, and you’ll see an example
in the problems at the end of this chapter.
In fact, there are several other quantities whose Lorentz

transformation properties use that exact samematrix. In addi-
tion to position xμ = (ct, x, y, z), which we have already
discussed, the other useful 4-vectors are

Energy–momentum: pμ = (E/c, p), (6.13)

Current density: jμ = (cρ, J), (6.14)

Wavevector: kμ = (ω/c, k). (6.15)

The first one needs some clarification: when we write p, we
mean the relativisticmomentum, which differs from the usual
definition of momentum by a crucial factor of γ :

p = γmv = mv√
1− |v|2/c2 . (6.16)

With this caveat, all of the 4-vectors listed above satisfy the
matrix equation (6.12) for a boost along the x-axis, with the
components x0, x1, etc. replaced by the appropriate compo-
nents of the 4-vector. Note that not every random collection
of four objects satisfies this property, just like not every col-
lection of three objects transform correctly under rotations,
as would be true for an ordinary vector. But for the purposes
of the GRE, you don’t need to know where these 4-vectors
come from: in fact, it’s probably sufficient just tomemorize the
energy–momentum 4-vector, as it is by far the most common.
Speaking of the energy–momentum 4-vector, we should

mention a couple of key properties you’re probably already
familiar with, but are very important for the GRE. Con-
sider a particle of mass m. In its rest frame, its velocity is
zero, so pμ = (E0/c, 0, 0, 0). It turns out that the rest energy
E0 is

E0 = mc2, (6.17)

an equation so famous it barely even needs explaining. In
another inertial frame, the zeroth component of pμ will still
contain a contribution from the rest energy, and we define the
remainder as the kinetic energy:

T = E−mc2. (6.18)

In fact, plugging pμ into (6.12) we see that the energy in a
frame other than the rest frame is given by

E = γmc2, (6.19)

so

T = (γ − 1)mc2. (6.20)

It’s an excellent exercise to Taylor expand this last equation
for v � c and see that we recover the correct nonrelativistic
expression for the kinetic energy T.

6.2.2 Relativistic Dot Product

With this covariant notation it is easy to write down an
extremely important quantity, the 4-vector product, or rel-
ativistic dot product. The dot product of two 4-vectors is
defined to be1

a · b ≡ a0b0 − a1b1 − a2b2 − a3b3. (6.21)

At this point many relativity texts go into enormous detail
about covariant versus contravariant indices, the metric ten-
sor, Einstein summation convention, and so forth. Forget
about all that: (6.21) is all you ever have to remember for the
GRE about the relativistic dot product. Its key property is that
it is invariant under Lorentz transformations, in exactly the
same way that the ordinary 3-vector dot product is invariant
under rotations of the coordinate axes. Practically speaking,
this means that you can evaluate the dot product in any iner-
tial frame you want: you’ll get the same answer no matter
which frame you use. The individual components of the 4-
vectors will change, but the combination a · b remains the
same. This often allows us to work in the reference frame with
the simplest physics.
There are two important special cases of this formula, both

involving dotting a 4-vector with itself. The first will give us a
classification of spacetime events based on the sign of the dot
product, and the second is a useful formula relating energy
and momentum. The power of both of these results is that,
because they use the invariant dot product, they are inde-
pendent of the reference frame, and hold regardless of which
coordinate system we choose for the 4-vectors themselves.

● Invariant interval. Given two position 4-vectors xμ
A and

xμ
B , we can define the displacement 4-vector

�xμ ≡ xμ
B − xμ

A

that represents the spacetime vector between two events,
A and B, occurring at xA and xB respectively. The reason
it’s easier to work with displacement rather than position
is that relative positions, rather than absolute positions, are

1 Warning! Some texts define the dot product with an extra overall minus
sign, so be careful! This convention is fairly standard, but be prepared to
be flexible about sign conventions depending on where you’ve learned
relativity previously.

 



6.3 Relativistic Kinematics 127

actually meaningful. Now, dotting �xμ with itself gives the
spacetime “distance” between the two events, also known
as the invariant interval, (�x)2. (The notation p2 for the
relativistic dot product of a 4-vector pμ with itself is stan-
dard, but don’t confuse it with the square of a scalar, or the
ordinary dot product!) Crucially, this quantity can be posi-
tive, negative, or zero. Each of these cases has a name and a
corresponding physical interpretation:

Timelike: (�x)2 > 0, (6.22)

Spacelike: (�x)2 < 0, (6.23)

Lightlike or null: (�x)2 = 0. (6.24)

Two events that are timelike-separated are in causal con-
tact: there exists an inertial frame where both events occur
at the same place. It’s useful to imagine this frame as a space-
ship that travels between events A and B: in the frame of
the spaceship, both events occur at the same spatial point
(namely, the origin of the spaceship coordinate system), but
at different times (corresponding to how long it takes the
spaceship to travel between them).
For events that are spacelike-separated, there exists an

inertial frame where both events occur at the same time.
This gives a precise condition for simultaneity: simul-
taneous events must be spacelike-separated (though not
all spacelike-separated events are simultaneous, since that
depends on the frame). Incidentally, these events are not
in causal contact: if there is a frame such that event A
occurs before event B, there exists another frame such that
the order is reversed, and event B occurs before event A!
Thus the whole notion of causality doesn’t make sense for
spacelike-separated events. The intuition is that these kinds
of events are so “far away” from each other that there is
no inertial frame traveling slower than light that can go
between them.
Finally, lightlike-separated events correspond to paths of

light rays: A and B are lightlike-separated if and only if
they lie on a trajectory traveling at the speed of light. The
signs and names here are quite tricky, but the best way to
remember them is to consider the simplest of all possible
displacement 4-vectors: �xμ = (c�t, 0, 0, 0), correspond-
ing to sitting in the same place for a time �t. This 4-vector
clearly has (�x)2 > 0, and it only has a time component
(hence “timelike”), and furthermore it represents the dis-
placement in the frame where the two events occur at the
same place.

● Energy–momentum formula. The second important
application of the relativistic dot product is to the

energy–momentum 4-vector. Consider a particle ofmassm.
As we noted above, in its rest frame the energy–momentum
4-vector is pμ = (mc, 0, 0, 0), which satisfies p · p = m2c2.
On the other hand, plugging its components into a general
frame from (6.13) into (6.21), we find p · p = E2/c2 − p2.
Setting these expressions equal and rearranging, we find the
very useful formula

E2 = p2c2 +m2c4. (6.25)

This lets us determine a particle’s energy given its momen-
tum without ever having to deal with its velocity, which can
save a lot of time in calculations.

6.3 Relativistic Kinematics

One of the main applications of relativity is to kinematics
problems: systems of particles that decay and collide, but
whose speeds are large and so must be treated relativisti-
cally. It’s important to remember that whenever relativity is
involved, we must use the relativistic energy E = γmc2 and
relativistic momentum p = γmv: forgetting the factors of
γ will likely lead to trap answers. But apart from that, the
setup of the problems should be very familiar from classical
mechanics. Despite the importance of these kinds of problems
in the physics curriculum, they are fairly under-represented
on the GRE, at least based on our experience and the exams
that have been released so far. A careful treatment with many
examples can be found in both books by Griffiths, but we’ll
stick to the bare-bones treatment here.

6.3.1 Conserved vs. Invariant

The reason for introducing all the previous definitions is that
the quantities we’ve defined satisfy certain properties that
make calculations easier. As you undoubtedly remember from
classical mechanics, momentum is conserved in the absence
of external forces. For any relativity question you’ll see on
the GRE, we can drop that caveat about external forces: rela-
tivistic energy–momentum is conserved. Note that because the
Lorentz transformations mix up space and time components,
asking for the relativistic momentum to be conserved implies
that the whole energy–momentum 4-vector is conserved,
which includes the relativistic energy as its first component.
We can write the conservation as a 4-vector equation:∑

i

pμ
i =

∑
f

pμ

f , (6.26)

where pi are the incoming 4-vectors and pf are the outgoing
4-vectors. As with ordinary vector equations, this means that
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each component of the total 4-momentummust match before
and after the collision.
We’ve also introduced the relativistic dot product, which is

invariant under Lorentz transformations. The GRE loves to
test the subtleties of these two definitions, so let’s be totally
clear:

Conserved = same before and after. Invariant = same in
every reference frame.

A very common question will give a list of quantities and
ask whether they are conserved, invariant, both, or neither.
For example, the total momentum of a system is conserved,
but is not invariant, because it can be transformed to zero by
going to the center-of-momentum frame. The kinetic energy
of a system is neither conserved (since it’s not the whole rel-
ativistic energy, but only a part of it) nor invariant (because
it can be changed by transforming to another frame). An

additional example can be found in the problems at the end
of the chapter.

6.3.2 Exploiting the Invariant Dot Product

A standard trick in kinematics problems is to exploit two key
properties of the relativistic dot product:

● It takes the same value in any reference frame.
● The square of a particle’s energy–momentum 4-vector is
equal to its mass squared with a factor of c2: p2 = m2c2.
(You can put the c’s in the right place by remembering
that the whole energy–momentum 4-vector has units of
momentum.)

This trick, suitably applied, will (almost) always let you calcu-
late energies and momenta without ever having to compute
a Lorentz factor γ or a velocity β . The idea is to choose a

EXAMPLE 6.1

Suppose we have a particle of massM at rest, decaying to two particles of massesm2 andm3. What is the energy of
m2?
Let p1 be the 4-vector ofM, and p2, p3 be the 4-vectors ofm2 andm3. By conservation ofmomentum, p1 = p2+p3,

but for reasons we’ll see in a moment, we actually want to write this as

p1 − p2 = p3.

Now we square both sides using the relativistic dot product:

p21 + p22 − 2p1 · p2 = p23.

Note that the usual algebraic rules for squaring a sum apply to the relativistic dot product as well. Now, since M is
at rest, p1 = (Mc, 0, 0, 0). We don’t know p2 yet, but we can always write it as (E2/c, p2). Note that p1 · p2 exactly
isolates E2:

p1 · p2 = (Mc)(E2/c)− 0 = ME2,

which is what we’re looking for! We don’t know p3 either, but by the second property of the dot product, p23 = m2
3c

2.
Making these replacements, we have

M2c2 +m2
2c

2 − 2ME2 = m2
3c

2,

and solving for E2 gives

E2 = (M2 +m2
2 −m2

3)c
2

2M
.

The key step here was to move p2 to the other side so as to isolate E2 in the dot product: if we wanted the energy of
m3, we would have done the same with p3. Just squaring the conservation equation p1 = p2+ p3 directly would not
have helped, since it would have involved the dot product p2 · p3 of two 4-vectors we know nothing about. At most,
you’ll see one of these types of problems on the GRE, but it’s still an important trick which can save you precious
minutes compared to calculating Lorentz factors directly.
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EXAMPLE 6.2

Suppose that a galaxy is moving toward us at some substantial fraction of the speed of light, and emitting red light:
what wavelength of light do we receive? The motion towards us means that the light will be blueshifted, so the
wavelength will decrease, and we should flip the sign of β so that the numerator is smaller than the denominator:

λrec =
√
1− β

1+ β
λemit.

Similarly, from λf = c, we can find the change in f by taking the reciprocal:

frec =
√
1+ β

1− β
femit.

frame, and a combination of 4-vectors, such that the square
has as many zeros as possible and so is easier to calculate.
Example 6.1 shows how this technique is used.

6.4 Miscellaneous Relativity Topics

Here are a couple of odd topics not covered by the previous
discussion, but which have appeared frequently on the GRE.

6.4.1 Relativistic Doppler Shift

We’ve already covered the Doppler shift in Chapter 3, but the
relevant formulas change slightly when we include the effects
of relativity. Recall that the formula for the Doppler shift
depended on both the velocity of the source and the veloc-
ity of the emitter. But according to special relativity, if we’re
asking about the Doppler shift of light, there are no privileged
reference frames, this distinction is meaningless, and the shift
can only depend on the relative velocity between the source
and the observer. If this relative velocity is v = βc, then the
change in wavelength of the emitted light is

λ′

λ
=
√
1+ β

1− β
. (6.27)

This simple-looking equation is actually quite tricky to
derive, so we recommend simply memorizing it. The signs,
as well as the corresponding formula for the frequency shift,
can be deduced from context and some physical intuition. See
Example 6.2.
As with velocity addition, the Doppler shift formula only

applies to collinear motion, where the source and emitter
move along the same line. There also exists a transverse
Doppler effect, but we are not aware of it ever having shown
up on the GRE thus far.

6.4.2 Pythagorean Triples

You’ll likely be expected to do some number-crunching in
the relativity questions, either by calculating length con-
tractions, Doppler shifts as above, or energies of particles
in collisions. These all involve the ubiquitous factor γ =
1/
√
1− β2, and taking square roots by hand is annoying.

Luckily, since the GRE is made to minimize calculations,
the presence of the square root tells you exactly which num-
bers to expect: Pythagorean triples! Only certain values of β

make the square root easy to compute, and they’re the ones
for which 1 and β form two parts of a Pythagorean triple
where 1 is the hypotenuse. An extremely common example
is β = 0.6, which belongs to the triple (0.6, 0.8, 1), better
known as (3, 4, 5). Since things will usually be given in terms
of decimals rather than fractions, we’re looking for triples with
nice denominators, so (0.28, 0.96, 1) (derived from (7, 24, 25))
is probably more common than one derived from (5, 12, 13).
In any case, it may be helpful to spend just a few minutes
reminding yourself of the small Pythagorean triples, just to
save a few minutes on arithmetic. For the most common
triple, (0.6, 0.8, 1), we have

β = 0.6 =⇒ γ = 1.25, (6.28)

β = 0.8 =⇒ γ = 5/3. (6.29)

6.5 Relativity: What to Memorize

There was a good deal of information presented in this chap-
ter, but since relativity only makes up 6% of the exam, it’s
important not to go overboard memorizing equations. We
recommend memorizing only the following, which are sim-
ple to state but too time-consuming to derive on the spot in
the exam:
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● Definitions:

β = v/c (6.11)

γ = 1√
1− v2/c2

= 1√
1− β2

(6.3)

xμ = (ct, x, y, z) (6.10)

pμ = (E/c, p) (6.13)

p = γmv (6.16)

● Lorentz transformation matrix for boost along the x-axis:⎛
⎜⎜⎜⎝

x0′

x1′

x2′

x3′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎟⎠ (6.12)

● Addition of velocities:

w = v+ u
1+ vu/c2

(6.8)

● Relativistic Doppler shift:

λ′

λ
=
√
1+ β

1− β
(6.27)

● 4-vector dot product:

a · b ≡ a0b0 − a1b1 − a2b2 − a3b3 (6.21)

● Rest energy of a particle of massm:

E0 = mc2 (6.17)

Everything else can be derived very quickly from these.
In particular, time dilation and length contraction can be
derived from (6.12) after specializing to the position 4-vector,
the invariant interval and the energy–momentum relation-
ship E2 = p2c2 + m2c4 can be derived from (6.21), and so
forth. If you feel comfortable with it, an excellent additional
simplification is just to set c = 1 in all the formulas in this
chapter. These are the units typical for particle physics, and
you can always restore the factors of c by dimensional analysis.

6.6 Problems: Special Relativity

1. System S travels with constant velocity v �= 0 in the x̂-
direction with respect to system S. If two events, separated
by a distance x �= 0, occur simultaneously at time t in S,
do they occur simultaneously in S?

(A) Yes, always
(B) No, never
(C) Only if x < vt
(D) Only if x > vt
(E) Only if x < ct

2. System B travels with respect to system A at constant
velocity v = βcẑ. Assuming the origins of both coordi-
nate systems coincide, which of the following represents
the Lorentz transformation matrix from the coordinates
(ct′, x′, y′, z′) of system B to the coordinates (ct, x, y, z) of
system A? (γ = 1/

√
1− β2.)

(A)

⎛
⎜⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠

(B)

⎛
⎜⎜⎜⎝

γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠

(C)

⎛
⎜⎜⎜⎝

γ 0 0 −γβ

0 1 0 0
0 0 1 0

−γβ 0 0 γ

⎞
⎟⎟⎟⎠

(D)

⎛
⎜⎜⎜⎝

γ 0 0 γβ

0 1 0 0
0 0 1 0

γβ 0 0 γ

⎞
⎟⎟⎟⎠

(E)

⎛
⎜⎜⎜⎝

1 0 0 0
0 γ 0 γβ

0 0 1 0
0 γβ 0 γ

⎞
⎟⎟⎟⎠

3. A particle of massM and energy E decays into three iden-
tical particles of equal energy. What is the magnitude of
the momentum of one of the decay products of massm?

(A)
E
3c

(B)
1
3
Mc

(C)

√
E2

9c2
+m2c2

(D)

√
E2

9c2
+M2c2

(E)

√
E2

9c2
−m2c2

4. An explosion occurs at the spacetime point (ct, x) in
one frame, and at (ct′, x′) in another frame related by a
Lorentz transformation. If (ct)2 > |x|2, we can conclude:

(A) There exists a frame where t′ = 0.
(B) There exists a frame where x′ = 0.
(C) There exists a frame where (ct′)2 = |x′|2.
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(D) There exists a frame where (ct′)2 < |x′|2.
(E) None of the above.

5. The classical cyclotron frequency of an electron in a uni-
formmagnetic field isω0.What is the cyclotron frequency
of an electron of velocity v, as measured by a stationary
observer?

(A) ω0

(B) ω0
√
1− v2/c2

(C) ω0(1− v2/c2)
(D)

ω0√
1− v2/c2

(E)
ω0

1− v2/c2

6. A massive particle has energy E and relativistic momen-
tum p. Which of the following is true of the quantity
E2 − p2c2?

I. It is conserved in elastic collisions.
II. It is invariant under Lorentz transformations.
III. It is equal to zero.

(A) I only
(B) II only
(C) I and II
(D) II and III
(E) I, II, and III

7. The USS Enterprise, moving at speed 0.5c with respect
to a nearby planet, fires a photon torpedo of speed c
at a Romulan warship, initially 6000 km away, which is
retreating away from the Enterprise at constant veloc-
ity. According to the Enterprise’s clock, the torpedo made
contact with the warship 0.1 seconds after firing. How fast
was the warship traveling, in the frame of the planet?

(A) 13
28 c

(B) 13
16 c

(C) 13
14 c

(D) c
(E) 13

10 c

8. A space-car speeds towards an intergalactic traffic light.
The traffic light is red, emitting light of wavelength 750
nm, but the driver sees it as green, at wavelength 500 nm.
How fast was the car traveling?

(A)
1
5
c

(B)
2
7
c

(C)
5
13

c
(D) c

(E) The given wavelengths are not consistent with any
speed.

9. Spaceship 1, carrying a meter stick, flies past Spaceship 2,
carrying a 1 liter container. The occupants of Spaceship 2
measure the meter stick on Spaceship 1 to be 0.5 m long.
What volume do the occupants of Spaceship 1 measure
for the container on Spaceship 2? Both spaceships travel
along parallel trajectories and all dimensions should be
measured parallel to the axis of their trajectories.

(A) 0.125 L
(B) 0.25 L
(C) 0.5 L
(D) 1 L
(E) 2 L

10. An 8 kg mass is traveling at 30 m/s. What is the approxi-
mate difference between its classical kinetic energy and its
relativistic kinetic energy?

(A) 27 pJ
(B) 27 nJ
(C) 27 µJ
(D) 27 mJ
(E) 27 J

6.7 Solutions: Special Relativity

1. B – Following the same method as in the discussion of
simultaneity, we arrive at the same equation using the
Lorentz transformations:

t′A = γ
(
t − xAv

c2
)
, t′B = γ

(
t − xBv

c2
)
.

These are only equal if v = 0 or if xB = xA, both of which
are excluded by the problem statement.

2. D – Since the boost is along the z-axis, we want compo-
nents of thematrix thatmix up the x0 and x3 components,
and those are the corners of the matrix, as in choices C
and D.We’re asked for the transformation from B to A, so
we want the inverse Lorentz transformations, which don’t
have the minus signs. Choice D has the correct signs for
the inverse transformations.

3. E – Each final-state particle has the same energy, E/3. We
now apply the energy–momentum relation (6.25):

(E/3)2 = p2c2 +m2c4

=⇒ |p| =
√

E2

9c2
−m2c2,

which is choice E. We could also have arrived at this
answer purely by logical reasoning: for a given energy E,
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as the mass m of the decay products increases, eventu-
ally there will not be enough available energy to produce
them. Choice E is the only one that displays this behavior:
indeed, |p| goes imaginary when E < 3mc2.

4. B – The given information is equivalent to saying that the
displacement vector between (ct, x) and the origin (0, 0)
is timelike. Thus, by our discussion of the invariant inter-
val, there is a frame where the two events occur at the
same place. Since the origins coincide for systems related
by Lorentz transformations, this place is x = 0. A is char-
acteristic of a spacelike event, and C and D contradict the
given information because the invariant interval never
changes sign. Notice how the phrasing of this question
doesn’t commit itself to a particular choice of sign con-
vention for the invariant interval: this is typical of GRE
questions on this topic.

5. B – There are at least two valid solutionmethods. The first
is to apply time dilation: in the electron frame, an interval
of time �t′ is related to frequency by ωo ∝ 1/�t′. The
electron’s clock runs slow when it is moving, so the inter-
val �t measured by a stationary observer is longer by a
factor of γ . Again, using the inverse relation of frequency
and time, we have

�t = γ�t′,
1
�t

= 1
γ

1
�t′

=⇒ ω =
√
1− v2/c2ω0.

Stated more simply, the stationary observer’s time is
dilated by γ , so the frequency observed is reduced by γ .
Another method is to recall that the formula for cyclotron
motion, p = qBR, holds relativistically as long as p is
interpreted as the relativistic momentum γmv. The clas-
sical cyclotron frequency is ω0 = qB/m, and doing the
algebra shows that the factor of γ ends up in the same
place, ω = qB/(mγ ).

6. C – By the energy–momentum relation (6.25), the given
quantity is equal to m2c4, which is conserved in elas-
tic collisions where the outgoing particles are the same
as the ingoing particles (since the particle’s mass doesn’t
change). It is also invariant, either because the mass of a
particle doesn’t depend on its reference frame, or because
it is equal to p2, the square of the energy–momentum
4-vector. It is never identically zero unless the particle
is massless, but this case is excluded by the problem
statement.

7. C – This problem involves the addition of velocities for-
mula with a small twist. For our setting, the addition of
velocities formula is

s = u+ v
1+ uv

c2
,

where u is the speed of the warship in the Enterprise
frame, v is the speed of the Enterprise in the planet frame,
and s is the speed of the warship in the planet frame. We
are given v in the problem, and we are solving for s. To
determine u, we divide the distance �x traveled by the
warship in the Enterprise frame while the photon torpedo
is in transit by the time �t taken for the photon torpedo
to contact the warship in the Enterprise frame. This gives

u = �x
�t

.

On the other hand, we know that, since the torpedo
travels at c, we must have

�t = �x+ x0
c

,

where x0 is the distance between the Enterprise and the
warship when the torpedo is fired. This implies that

�x = c�t − x0,

and therefore that

u = c�t − x0
�t

= c− 6× 106 m
0.1 s

= 2.4× 108 m/s = 0.8c,

with c = 3 × 108 m/s. Plugging this result into our
expression for s above, we find

s = 0.5c+ 0.8c
1+ (0.8c)(0.5c)/c2

= 1.3
1.4

c = 13
14

c,

which is C.
8. C – A straightforward application of the relativistic

Doppler shift formula gives

750 nm
500 nm

=
√
1+ β

1− β

=⇒ β = 5
13

,

so the car’s speed is 5
13 c. Note that the wavelength

decreases (the light is blueshifted) because you are travel-
ing towards the source, but the problem was kind enough
to give you this fact for free.

9. C – The Lorentz contraction factor between Spaceship
2 and Spaceship 1 is γ = 2, and so each ship will
measure the other’s length in the direction of motion by
a factor of 1/γ = 0.5. But as we can see from the
Lorentz transformation equations, there is no change
to the coordinates in the perpendicular directions, so
volumes are only contracted by a factor γ , from the single
length contraction in the direction of motion.
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10. A – Recall that the total relativistic energy of a parti-
cle is given by E = γmc2, so the relativistic kinetic
part is T = γmc2 − mc2 = (γ − 1)mc2. If we Taylor
expand the (γ − 1) factor, the leading term is the classical
kinetic energy, and the subsequent terms are the higher
relativistic corrections:

T =
((

1− v2

c2

)−1/2
− 1

)
mc2

=
(
1+ v2

2c2
+ (−1/2)(−3/2)

2!
v4

c4
+ · · · − 1

)
mc2

= 1
2
mv2 + 3

8
mv4

c2
+ · · · .

Plugging in the numbers,

3
8
mv4

c2
= 27 pJ,

which is choice A. Even without doing an exact Taylor
expansion, we could have reasoned as follows: since the
velocity is small, the difference is likely to be extremely
small, which means it is suppressed by powers of c.
The only quantities with units of energy are mv3/c and
mv4/c2, which correspond roughly to choices C and A,
respectively. Odd powers of c are rare in quantities involv-
ing energy, so we might make an educated guess towards
choice A.

 



7 Laboratory Methods

The Laboratory Methods section of the GRE is an odd duck.
Some questions (such as graph reading or basic statistics)
cover things you learned in middle school, while others (such
as lasers or radiation detection) deal with things you’ll never
see until a lab class, or even (if you’re a theorist like one of
the authors) until your second year of graduate school. The
purpose of this chapter is to remedy that problem and briefly
review all the material you may see on a GRE. Keep in mind
that Laboratory Methods questions only make up 6% of the
GRE, which means that it’s not worth memorizing every type
of laser medium in detail only to get one question right on
your exam. Use this chapter as a reference to shore up any
knowledge you may be missing, but by all means don’t spend
too much time on it.

7.1 Graph Reading

We won’t insult your intelligence by telling you how to read a
graph. But here are some less common features to watch out
for.

7.1.1 Dimensional Analysis

Problem solving with dimensional analysis is mostly dis-
cussed in Chapter 9. Here we just mention one rather obvious
application to graph reading, because it showed up on a
recently released GRE:

● Read the axis labels. In particular, note if they carry dimen-
sions. One question on a recent GRE asked for the expres-
sion of a slope of a line in terms of some fundamental
constants, and the question could be solved entirely by

finding the dimensions of the ratio y/x by looking at the
respective axes.

7.1.2 Log Plots

Linear plots are useful for displaying data obeying linear rela-
tions, but for data obeying a power law or an exponential
relation, a log plot is most useful. In this kind of graph,
equal intervals on the x- or y-axes correspond to constant
multiples, rather than constant differences. Or in terms of log-
arithms, equal intervals correspond to constant differences
in log10 x or log10 y.

1 For example, equally spaced ticks on
the y-axis may represent 1, 10, 100, 1000, etc. Most likely, if
you encounter this kind of plot on the GRE, you will see a
log–log plot, where both axes are divided logarithmically as
described above. Occasionally, you may see a log–linear plot,
where one axis has a linear scale and the other has a log scale.
In either case, examining the scale of the graph will tell you
which you’re dealing with.
Here are a few facts that come in handy when working with

log plots:

● Log–log plots never show zero on the axes. This is because
if x = 0 or y = 0, log x or log y is−∞. Instead, the graph is
simply cut off at some point.

● A straight line on a log–log plot corresponds to a power–
law, y = axb. The slope is b and the constant a can be
determined by finding the y value corresponding to x = 1.

● A straight line on a log plot, where the y-axis is logarith-
mic and the x-axis is linear, corresponds to an exponential
growth law, y = C · 10bx. C is the y-intercept, and the slope

1 This is one of the very few times in your scientific life you will use base-10
logs rather than base-e.
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is b. If the exponent is some other base than 10, for example
y = C · 3bx, you can take logarithms of both sides to find
log10 y = log10 C + bx log10 3, from which we identify the
slope as b log10 3 (the y-intercept is still C).

● Similarly, a straight line on a log–linear plot (the opposite of
a log plot, logarithmic x-axis and linear y-axis) corresponds
to logarithmic growth, y = C log10(bx). This time the situ-
ation is reversed: the x-intercept is b and the slope is C. If
the function you’re plotting involves the natural logarithm,
y = C ln(bx), you can convert to base-10 with ln(bx) =
log10(bx)/ log10 e to find a slope of C/ log10 e ≈ 2.3C.

7.2 Statistics

You are undoubtedly familiar with the basic statistical con-
cepts of mean, median, and mode; we will not review these
here. We will also not review the general theory of statis-
tics, because the only kinds of statistics questions you’ll see
on the GRE will be applied to particular scenarios. Specifi-
cally, you’ll see questions dealing with data where measure-
ment error must be quantified, and counting problems where
probabilities are given by the Poisson distribution.

7.2.1 Error Analysis

For a sample of data points {x1, x2, . . . , xn} taken from amuch
larger underlying population, one can get an estimate of their
spread by computing the sample variance:

σ 2
S =

1
n− 1

n∑
i=1

(xi − x)2, (7.1)

where x is the sample mean, i.e. the average of the sample data
points. You may be used to seeing n rather than n − 1 in the
denominator. The difference between the two is clearly only
important for small sample sizes, and is meant to correct for
the fact that the true variance (rather than the sample vari-
ance) must be calculated using the true mean, instead of the
sample mean. This distinction is unlikely to be important on
the GRE, but it is easy to remember which to use. If you are
estimating the variance of a full population using all members
of the population, put n in the denominator. For example, if
you want the variance of the height of students in a school,
and you have measured the heights of every student, then
there is an n in the denominator. If you are using a sample
to estimate the variance, then put n − 1 in the denominator.
For example, if you measured the heights of a random sample
of 50 out of the 1000 students in the school, then you would
use n− 1.

Measurement errors are typically quoted in terms of the
standard deviation, which is the square root of the variance.
For instance, if a mass measurement is given as 5 ± 2 kg, the
mean x of the sample is 5 kg, the standard deviation σ is 2
kg, and the variance is 4 kg2. For a large number of measure-
ments, the distribution of measurement results approaches
a Gaussian with mean x and standard deviation σ , so the
± means that the probability of the true value of the mea-
sured quantity falling outside the range x±σ is 32%. Turning
this around, a measurement error may be computed by some
other means, and used as if it represents the variance of a
Gaussian. There are a couple of standard manipulations you’ll
be expected to do with measurement error:

● Propagation of error. Suppose that you measure a num-
ber X ± σX and a number Y ± σY . What is the uncertainty
on, say, the ratio r of X and Y? This is the question
answered by propagation of error.Uncorrelated errors σ add
in quadrature. That is, if a measurement is quoted with two
separate uncorrelated sources of error, say statistical σstat

and systematic σsys, the total error is

σtot =
√

σ 2
stat + σ 2

sys. (7.2)

This simple relation can be generalized quite easily for
a variable that is a function of some other variables,
z(x1, x2, . . . , xn). Given errors on the xi, the error on z is
essentially given by the chain rule:

σ 2
z =

n∑
i=1

(
∂z
∂xi

)2
σ 2
xi . (7.3)

Because the trend of the GRE seems to be to eschew calcu-
lus entirely, you probably won’t need this formula, but we
include it here for completeness. A few specific instances
of this formula for combining multiple sources of uncer-
tainty tend to arise frequently and are easy to remember. If
A±σA and B±σB are twomeasurements with uncorrelated
errors and a is a constant factor with no uncertainty (e.g.
the number π), then we have the following combinations
and associated uncertainties:

f = aA, σf = aσA,

f = A± B, σf =
√

σ 2
A + σ 2

B ,

f = AB,
σf

f
=
√(σA

A

)2 + (σB

B

)2
,

f = A/B,
σf

f
=
√(σA

A

)2 + (σB

B

)2
.

Notice the similarity in form of the propagation of error
for f = AB and f = A/B to the propagation of error for
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f = A ± B; these cases are related by taking logarithms
lnAB = lnA+ lnB and lnA/B = lnA− lnB.

● Weighted averages. Suppose the same quantity is mea-
sured in two different ways, yielding two different values
x and y with two different errors σx and σy. These mea-
surements can be combined to give a single value X using
a weighted average, where the weights are the errors them-
selves:

X = x/σ 2
x + y/σ 2

y

1/σ 2
x + 1/σ 2

y
, (7.4)

σ 2
tot =

1
1/σ 2

x + 1/σ 2
y
. (7.5)

In other words, the data points with smaller errors are
weighted more strongly in the weighted average, and the
total variance is the harmonic mean of the variances,
divided by the sample size. These equations generalize
simply to more than two measurements.

● Uncertainty. A statement such as “this measurement has
an uncertainty of 10%” means that the sample mean x and
the error σ satisfy σ/x = 0.1.

Finally, we will mention one silly piece of nomenclature
that was probably drilled into your head in high school
chemistry, but which you’ve long since forgotten:

● Precisemeasurements have small variance.
● Accuratemeasurements are close to the true value.

You can come up with examples where any combination of
these two is true or false: precise but not accurate, accurate
(on average) but not precise, and so on.

7.2.2 Poisson Processes

The Poisson distribution describes the probability of count-
ing 1, 2, 3, etc. events in a fixed time, when the events occur
randomly at a known constant rate. Some classic examples
described by the Poisson distribution are the clicks in a Geiger
counter measuring radioactive decays, or photons arriving in
a telescope. Since the Poisson distribution describes the prob-
ability of “counting” a certain number of events, it is often
called counting statistics. Mathematically,

P(n) = λne−λ

n! . (7.6)

Here, λ is the expected (or average) number of counts in a
given time interval, and P(n) is the probability of observing
exactly n counts in that same time interval. You should prob-
ably memorize this formula, but it’s really not that hard to

remember where all the n’s and λ’s go by noting that, like
any probability distribution, we must have

∑∞
n=0 P(n) = 1.

Indeed, summing over n gives the Taylor series for eλ, which
cancels with e−λ to give 1 as required. Even if you don’t mem-
orize equation (7.6), definitely memorize these important
facts:

● The standard deviation of a Poissonmeasurement is σ ≈√
N for large N. When we observe a Poisson process, we

usually are interested in measuring the rate. We might, for
example, measure N = 100 decays of a radioactive source
in 1 second. But then what is the error of the measurement?
The Poisson distribution has the useful property that if N
events are expected, then the standard deviation of the dis-
tribution is σ = √

N (this approximation is typically safe
for N > 20). This means that the error on a measurement
ofN events is just

√
N. In our example above, we would say

that the measured rate was 100± 10 Hz.
● PPP(0) = eee−λ. This is a measure of how rare the process is: if

λ is small, you are relatively likely to observe no events.
● The time between Poisson events follows an exponential
distribution.More specifically, if one event from a Poisson
distribution with mean λ occurs at time t = 0, the time t of
the next event’s arrival is distributed as a function of time
according to P(t) = λe−λt , the Poisson waiting time. Here t
is measured in whatever units of time are used to define λ.

7.3 Electronics

The electronics portion of Laboratory Methods takes over
where the circuits portion of Electricity and Magnetism left
off. Now, instead of just applying a constant voltage to a
simple circuit, we are interested in the response of basic cir-
cuit elements to a time-varying voltage, the behavior of more
advanced circuit elements, and the basics of digital logic.

7.3.1 AC Behavior of Basic Circuit Elements

You’re already familiar with the three basic circuit elements
(resistors, capacitors, and inductors) from E+M. In the con-
text of electronics, these devices are usually described in terms
of their AC behavior; in other words, their response to an
alternating current. Roughly, capacitors and inductors can
behave as if they carry resistance when hit with an alternating
current of various frequencies, and it’s convenient to treat all
three circuit elements on the same footing. This is done using
the concept of impedance, Z, a complex number which obeys
Ohm’s law, V = IZ. For an alternating current V = V0eiωt ,
Z contains information about both the magnitude and the
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phase of the resulting current, allowing considerable calcu-
lational simplifications. It’s probably useful to remember the
following:

Capacitor: Z = 1
iωC

, (7.7)

Inductor: Z = iωL, (7.8)

Resistor: Z = R. (7.9)

As always, ω refers to the angular frequency of the supply
voltage V .
Looking only at the magnitudes of these quantities, we see

that, at high frequencies, capacitors have small impedances –
in other words, they tend to cause only small voltage drops,
and behave like short circuits. Inductors, on the other hand,
have the opposite behavior: at high frequencies, they behave
like open circuits, where no current can flow. This makes
sense because at high frequencies the capacitor is barely being
charged, and easily goes through many tiny charge–discharge
cycles without saturating its maximum charge for a given volt-
age. Inductors are hindered by their self-inductance, which
tends to resist large changes in current, so at very high fre-
quencies they don’t let any current pass at all. See Example 7.1.

Essentially, impedance is just a clever way for remembering
all these arguments and encoding them in a simple mathe-
matical formula so you don’t have to reproduce the argument
every time. It also tells you how things behave when you add
them in series or in parallel: using V = IZ, we get

Series: Ztot = Z1 + Z2 + · · ·Zn, (7.10)

Parallel: Z−1tot = Z−11 + Z−12 + · · ·Z−1n . (7.11)

These formulas contain all the usual formulas for resistors,
capacitors, and inductors in series, as well as all the infor-
mation about phase lag in RLC circuits, in one convenient
package.

(a) High-pass filter

Vin Vout

C

R

Vin Vout

C

R

(b) Low-pass filter

Figure 7.1 Example circuit diagrams for high- and low-pass filters.

For the GRE, the most common application of these
impedance formulas will be to high-pass and low-pass filters.
Examples of these related circuits are shown in Fig. 7.1.
In both cases, the circuit has distinctive behavior because

the capacitor acts like a short circuit at high frequencies. If
the resistor is connected to ground as in Fig. 7.1(a), at high
frequencies the impedance of the resistor will dominate, and
the voltage drop across C will be negligible – in other words,
high frequencies will pass but low frequencies are attenuated.
On the other hand, if the capacitor is connected to ground,
the reverse is true: at high frequencies the capacitor shorts
and all the current flows to ground, so Vout is near zero. You
may find it a helpful mnemonic to remember that in a low-
pass filter the capacitor is “low,” that is, connected to ground.
One could also build RL high-pass and low-pass filters, with
the roles of the two circuit elements reversed because of the
opposite impedance behavior of capacitors and inductors.
Finally, we should mention how the resonant behavior of

LC circuits can be derived using impedance. For a circuit with
just one inductor and one capacitor, we have

ZLC = 1
iωC

+ iωL = −i(1− ω2LC)
ωC

.

The numerator vanishes when ω = ω0 ≡ 1/
√
LC, the

resonant frequency of an LC circuit. All circuit elements
have some small intrinsic resistance, which means that the
impedance is never perfectly zero, but frequencies near
1/
√
LC still have small impedance, so this circuit acts as a

EXAMPLE 7.1

One important example of thinking in terms of frequency is when a constant (DC) voltage source V is suddenly
switched on at t = 0. This situation can be very roughly described by an ultra-high-frequency event (ω = ∞) at
t = 0, gradually relaxing to low frequencies (ω = 0) at t = ∞; this is only a mnemonic, with the precise statement
given by taking the Fourier transform, which is unnecessary for the GRE. The above arguments then tell you that
the voltage across an uncharged capacitor at t = 0 is zero, but increases to V as t → ∞; on the other hand, the
voltage across an inductor is V at t = 0, but tends to 0 as t → ∞. Similarly, at t = 0 there is a large current going
through the capacitor, but no current going through the inductor. This is helpful in recognizing the correct graph
of V , Q, or I for an RL or RC circuit, a very standard GRE question.
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bandpass filter. Indeed, adding a resistor will end up giving
a real part to Z, such that Z can never exactly vanish no mat-
ter what the frequency: however, resonance is still defined as
the frequency where the imaginary part of the impedance van-
ishes.2 Recall from Section 1.7.2 that a damped oscillator can
oscillate at a frequency different from the natural frequency
ω0. The resonant frequency for electrical circuits as defined
here is the driving frequency at which the current through the
circuit will be maximized. This corresponds to the frequency
at which a mechanical oscillator will have a kinetic energy res-
onance; see Chapter 3 of Thornton and Marion for further
details.

7.3.2 More Advanced Circuit Elements

The most complicated circuit we can make from just the three
basic elements is an RLC circuit, which we already exam-
ined in Chapter 2. If we add a few other key circuit elements,
whose circuit diagram icons are shown in Fig. 7.2, we get more
interesting behavior.

● Diode. This device uses properties of semiconductors to
ensure that current can only flow in one direction. In a
circuit diagram, the triangle in Fig. 7.2(a) points in the
direction current is allowed to flow. However, no current
can flow at all until aminimum bias voltage is applied across
the diode – typically this is about 0.7 V for a silicon diode.
Apart from that bias voltage, the voltage drop across a diode
is approximately independent of the current. Uses of diodes
include turning an alternating current into a direct current
(this is known as a rectifier circuit) and to reroute current
away from sensitive electrical components (if the voltage
surges, the diode starts conducting, resulting in an almost
short circuit if the voltage is high enough).

● Op-amp. Short for operational amplifier, this device has
two inputs and one output. The output voltage is propor-
tional to the difference between the two input voltages,

(a) Diode (b) Op-amp

Figure 7.2 Symbols for two common advanced circuit elements:
diodes and op-amps.
2 Depending on whether the circuit elements are in series or parallel, the
resonant frequency may actually be a maximum of |Z|, rather than a
minimum, but the definition of the resonant frequency is still the same.

Figure 7.3 Waveform characteristic of clipping.

(a) AND gate (b) OR gate

Figure 7.4 Circuit diagram symbols for basic logic gates.

usually by factors as large as 10,000. However, the op-amp
has a maximum possible output voltage, so if the difference
between input voltages is too large, the output will saturate
and distort the signal; that is, there will no longer be a lin-
ear relationship between input and output voltage. This is
known as clipping, and has a very distinctive waveform (as
well as a distinctive sound if the signal is audio), shown
in Fig. 7.3. Note how the top of the sine wave has been
“flattened.”

7.3.3 Logic Gates

The basis of modern electronics is digital circuitry, where cir-
cuit element output voltages take discrete values rather than
continuous ones. A “high” output voltage is interpreted as the
digit 1, and a “low” voltage is interpreted as 0, so Boolean
logic can be implemented in electronic circuits. The two main
logic gates are AND and OR, and their symbols are shown in
Fig. 7.4.
For two inputs A and B, AND outputs A · B, while OR out-

puts A + B. Here we are using Boolean logic notation (which
also shows up on the GRE): note that this is not the same as
binary arithmetic. Instead, it’s easiest to decipher with 0 stand-
ing for “false” and 1 standing for “true.” So AND returns true
only if inputs A and B are true, otherwise it returns false. Simi-
larly, OR returns true if inputs A or B are true, so only returns
false if both A and B are false. These results can be summa-
rized in “truth tables,” with the example for the OR gate shown
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Table 7.1 Truth table for an

OR gate.

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

Figure 7.5 Circuit diagram symbol for a NOT gate.

in Table 7.1, but it’s often easier to just remember what these
gates do by their names.
Both AND and OR gates can be modified by inverting

either of the inputs or the output, which is symbolized with
a circular “bubble” on the circuit diagram. Alternatively, the
circuit element that inverts an input is called a NOT gate, and
looks like the symbol for an op-amp but with only one input
and a bubble on the output, as shown in Fig. 7.5.
In Boolean logic, inversion is represented with a bar: A.

Inverting the outputs to AND and OR gates gives so-called
NAND and NOR: it’s a possibly useful fact that all basic logic
gates can be constructed exclusively from combinations of
either NAND and NOR gates.
One final piece of trivia on which you may be tested is De

Morgan’s laws, which are stated in Boolean algebra as follows:

A · B = A+ B, (7.12)

A+ B = A · B. (7.13)

In other words, a NAND or NOR gate (left-hand side) is just
an OR or AND gate with inverted inputs (right-hand side),
respectively.

7.4 Radiation Detection and
Instrumentation

This section is based largely on the excellent book by Knoll,
mentioned in the Resources list at the very beginning of this
book. As always, we’ll be brief, but feel free to check out that
reference if you want more details.
A useful general concept when dealing with subatomic

particle interactions is the cross section (Fig. 7.6). Imagine
that you’re shooting a stream of bullets at a bowling ball of

Surface area of ball
4πR2 

Cross-sectional area of ball
πR2 

Incident particles

Figure 7.6 The effective scattering cross section of a ball of radius R
for incoming particles is the projected area of the ball in the plane
perpendicular to the direction of the incoming particles.

radius R. The surface area of the ball is 4πR2, but the sur-
face that the bullets “see” is the area of the shadow cast by
the ball, πR2. This effective area where collisions can take
place is called the cross section, and usually given the sym-
bol σ . Subatomic particles are point particles, so this analogy
breaks down in that regime, but we can still associate an
effective cross section with a collision event by taking into
account the quantum-mechanical probability for the collision
to occur. So whenever you see “cross section” in a problem
on the GRE, think of “effective collision probability.” Occa-
sionally you might be asked to compute a cross section, given
other numbers such as luminosity (number of particles per
unit time); this will always be pure dimensional analysis.

7.4.1 Interaction of Charged Particles with
Matter

Charged particles come in many different types, but for pur-
poses of the GRE, you really only need to know how electrons
and nuclei interact as they pass through bulk matter. Com-
mon nuclei could include protons, alpha particles (helium-4
nuclei), or heavier nuclei which are the byproducts of fission
reactions. For kinetic energies below the approximate binding
energy per nucleon of most elements (a few MeV), both elec-
trons and nuclei overwhelmingly interact with matter by the
electromagnetic force. If the interaction occurs with atomic
electrons, the electrons can either be excited to higher energy
levels (excitation) or be stripped from the atom (ionization),
both of which cause the incident particles to lose energy. The
fact that the masses of electrons and nuclei differ by several
orders of magnitude results in a variety of differences in the
interactions.

● Range. Nuclei are stopped faster than electrons: the aver-
age path length for an alpha particle is 10−5 m, while for a
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high-energy electron it is 10−3 m. Another way of stating
this is that dE/dx, the energy loss per unit length, is much
higher for nuclei than for electrons (for kinetic energies
� 1 GeV).

● Collision target. Nuclei interact almost exclusively with
atomic electrons; interactions of heavy particles with nuclei
are so rare that they can be ignored for most practi-
cal purposes, although historically they did play a role
in Rutherford’s gold foil experiment, which established
the existence of the nucleus from scattering by inci-
dent alpha particles. Electrons can interact with either
atomic electrons or atomic nuclei – the latter interac-
tion is still rare, but can lead to measurable effects in
detectors.

● Path shape. Nuclei tend to travel in straight lines, because
they interact primarily with the much lighter atomic elec-
trons (think of a bowling ball continuously colliding with
a sea of ping-pong balls). Electrons tend to bounce around
and scatter through wide angles much more often.

● Energy loss. Nuclei lose energy exclusively due to colli-
sions, rather than by emitting radiation. Since the mass
of an incident nucleus is very different than that of the
electrons with which it interacts, nuclei lose only a small
amount of energy in each collision. In other words, they
are continuously losing energy as they interact. On the
other hand, when incident electrons undergo collisions
with atomic electrons, the target has the same mass as
the incident particle, and so elementary kinematics implies
that the electron can lose a large fraction of its energy
from a single collision. Furthermore, unlike heavy par-
ticles, electrons can lose energy through bremsstrahlung
(literally “braking radiation”), where in the presence of
an electric field the electron emits a high-energy photon
(usually in the X-ray region), which carries off a large
fraction of its energy. This process is rare compared to
collisional losses, but occurs more often in materials with
high atomic number because the electromagnetic inter-
action that provokes bremsstrahlung is proportional to
nuclear charge. The rates of energy loss for both nuclei
and electrons are in general strongly dependent on the
initial energy, but at relativistic speeds all particles lose a
roughly similar amount of energy per unit distance traveled
(approximately 1 keV/cm in air). This value corresponds
to the minimum of the energy-loss curve for both heavy
and light particles, so a relativistic particle is referred to as
a minimum ionizing particle because it deposits the min-
imum possible amount of energy per unit distance in the
medium.

7.4.2 Photon Interactions

Photons are uncharged, so they don’t interact in quite the
same way that charged particles do. However, because they
mediate the electromagnetic force, they interact in various
ways with the other charged particles. Sometimes these under-
lying interactions produce more charged particles, which then
propagate through the detector as described above. Problems
involving a qualitative understanding of these interactions
appear frequently on the GRE. There are three important
types of underlying interaction:

● Photoabsorption (or photoelectric absorption). The pho-
ton is completely absorbed by an atom, and an electron
is emitted in its place, with energy Eγ − Eb, where Eγ is
the incident photon energy and Eb is the electron bind-
ing energy. This is the dominant process for low-energy
photons, up to a few keV. If the photon is absorbed on a
sample of bulk material rather than an isolated atom, there
are additional surface effects, collectively described by the
work function of the material, which carries units of energy.
The maximum energy that the emitted electrons can have
when light is shined on a material is then

Emax = Eγ − φ. (7.14)

Problems involving the work functions of various materials
occur often enough that this jargon and notation is worth
remembering.

● Compton scattering. The photon scatters elastically off an
atomic electron, and the scattered electron is ejected from
the atom. The wider the photon scattering angle, the more
energy it loses to the electron. This is the dominant pro-
cess for medium-energy photons (tens of keV to a few
MeV), and sometimes for low-energy photons as well if the
absorber has small atomic number. This is probably a good
time to bring up the Compton wavelength of a particle of
massm,

λ = h
mc

. (7.15)

Unlike the de Broglie wavelength (see Section 5.3.2), the
Compton wavelength doesn’t depend on the momentum of
the particle, but only on its mass. It shows up in the formula
for the wavelength shift of light due to Compton scattering:

�λ = h
mc

(1− cos θ). (7.16)

This formula is rather difficult to derive (although it’s a
good exercise in relativistic kinematics), so should be mem-
orized. You may also be asked for the energy shift of the
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scattered photon, for which you should use the Einstein
relation, E = h f = hc/λ.

● Pair production. If Eγ > 2mec2, the electric field near
a nucleus can induce the photon to produce an electron–
positron pair. This is the dominant process for high-energy
photons (tens of MeV and above).

Note that photoabsorption is an interaction with the entire
atom, Compton scattering is an interaction with atomic elec-
trons, and pair production is an interaction with the atomic
nucleus. The probabilities for all three processes are propor-
tional to powers of Z, the atomic number of the absorber,
since Z is also the number of atomic electrons available for
Compton scattering. More specifically, the probability of pair
production is roughly proportional to Z2, for Compton scat-
tering it is proportional to Z, and for photoabsorption it is
roughly proportional to Z4. The purpose of using high-Z
materials such as tungsten is to increase the likelihood these
kinds of interactions will occur, and the strong dependence of
the photoabsorption probability on Z explains its dominance
at low energies.

7.4.3 General Properties of Particle Detectors

By definition, particle detectors are designed to see incoming
particles. Once you know a particle is there, the next obvious
thing to do is measure its energy; devices that do this are often
called calorimeters. To measure energy, the detector takes
advantage of the natural process of energy loss in the material,
and uses the stuff that absorbs the energy (atomic electrons,
photoelectrons, produced electron–positron pairs, and so on)
to produce a signal. Since for charged particles the number of
interactions is usually proportional to the incident particle’s
energy, simply collecting the produced electrons, counting
their charge, and turning that into an electrical current may
be enough. Other times, it may be necessary to amplify the
signal somehow.
One common case where signal amplification is needed is

for photon detection, since only one electron is produced per
photon, so we will go through the operation of a generic pho-
ton detector in a little more detail because it covers lots of
subcomponents that might show up on the GRE. To increase
the photon interaction cross section, we want a high-Z mate-
rial – a common choice is NaI/Tl, sodium iodide doped with
thallium, with the iodine providing the high atomic number
of Z = 53. An incoming photon produces a single electron by
one of the three methods mentioned. It happens that NaI/Tl is
also a scintillator, which means that a passing charged particle

will produce visible light, with the intensity of light produced
roughly proportional to the electron energy. These visible
photons are then directed to a photomultiplier tube, which
uses a cascade of photoelectric effects to produce a macro-
scopic current of electrons. These electrons are finally read out
by some kind of analyzer, which converts the current to a digi-
tal voltage which becomes the raw data. In an ideal world, the
photon energy would be directly proportional to the output
voltage, and the detector could be calibrated by irradiating it
with a photon source of known energy.

7.4.4 Radioactive Decays

A substance that undergoes radioactive decay will have an
exponentially decaying number density.

N = N0e−t/τ , (7.17)

where τ is themean lifetime. The lifetime is related to the half-
life t1/2 by

t1/2 = τ ln 2. (7.18)

The half-life represents the average amount of time for half
the initial particles to remain, while the lifetime represents the
average amount of time for a fraction 1/e ≈ 0.37 of the initial
particles to remain.
Here is one piece of trivia that has shown up on recent

exams. If the substance can decay in several ways (through
multiple “decay channels”), then the total lifetime is related to
the individual lifetimes τ1, τ2, etc. by

1
τ
= 1

τ1
+ 1

τ2
+ · · · . (7.19)

7.5 Lasers and Interferometers

For some reason, questions about names and properties of
lasers have become increasingly common on the GRE, despite
the fact that the underlying physics of stimulated emission
belongs to time-dependent quantum-mechanical perturba-
tion theory and is outside the scope of the test.

7.5.1 Generic Laser Operation

Here’s a nontechnical outline of how a generic laser works.
Start with a quantum-mechanical system (the medium) with
at least two energy levels, a ground state and an excited state.
The medium could consist of free atoms, organic molecules,
or any number of more exotic substances, several of which
will be discussed below. Using some external power source
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(a) Three-level laser
1

1

0

2

2

3 3

(b) Four-level laser

Figure 7.7 Energy levels for three and four-level lasers. The solid arrows represent fast decays, and the dashed arrows represent slow decays
which result in laser light.

(an optical pump), excite more than half of the medium to
the excited state: this can be done with an electrical spark, for
example. With a majority of the medium in the excited state,
we say that population inversion has been achieved. Now, the
excited states will tend to decay down to the ground state by
spontaneous emission, emitting a photon in the process. If this
photon is absorbed by a particle in the ground state, it will
be excited, and there will be no net change in the system.
However, time-dependent perturbation theory shows that the
photon can also be absorbed by another excited state, which
will be “stimulated” to emit two photons and drop to the
ground state. This process of photons from decaying excited
states being absorbed by other excited states, called stimulated
emission, starts a chain reaction, the product of which is an
exponentially large number of photons, all with exactly the
same frequency and phase: this is laser light.
In a real laser, this idealized description must be modified

slightly. A careful stat-mech analysis shows that if the sys-
tem has only two levels, it is impossible to achieve population
inversion: once the populations of the ground and excited
states become equal, the processes of absorption and stimu-
lated emission exactly compensate each other, and there is no
chain reaction. Furthermore, the excited state usually decays
pretty fast, so we need a metastable state between the excited
state and the ground state. In Fig. 7.7, level 3 is the excited
state reached by pumping, level 2 is the metastable state, and
level 1 some other state between level 2 and the ground state.
The decay 3 → 2 is fast, but the slower decay 2 → 1 (dashed
arrows) produces the laser light. If level 1 is (or is very close
to) the ground state, the system is said to be a three-level laser,
but if level 1 is significantly above the ground state, we call it
a four-level laser.

7.5.2 Types of Lasers

Lasers are generally distinguished by their medium and how
the transfer between energy levels is achieved. The main

examples in the first three categories (indicated in parenthe-
ses) do tend to show up as GRE trivia, so you should at least
have a passing familiarity with each type.

● Solid-state lasers (Nd:YAG). The laser medium is a crystal
or glass, and the transitions are between atomic energy lev-
els. In a Nd:YAG laser, the crystal is Y2Al5O12 (yttrium alu-
minum garnet, or YAG), with some of the Y ions replaced
by Nd. The Nd atomic levels are split by the electric field of
the YAG crystal, giving a four-level system.

● Collisional gas lasers (He–Ne). The laser medium is a gas
or mixture of gases, and the transitions are due to collisions
between the atoms: an excited electron from one gas trans-
fers its kinetic energy to excite an electron in another gas
molecule. In a He–Ne laser, there are a huge number of pos-
sible laser levels, but a specific wavelength can be selected
by placing the laser in a resonant cavity, just as one excites
certain EM modes using a conducting cavity in ordinary
electrodynamics.

● Molecular gas lasers (CO2). The laser medium is again a
gas, and the transitions are vibrational energy levels. Car-
bon dioxide is a standard example because it’s cheap, widely
available, and its triatomic structure gives it a rather rich
vibrational spectrum.

● Dye lasers. The laser medium is a liquid, usually an organic
dye dissolved in water or alcohol. The transitions are
related to the electron-transfer properties along chains of
carbon atoms which give dyes their characteristic color.
Interestingly, the laser does not tend to operate at the wave-
length corresponding to the ordinary visible color of the
dye, but because the electron transport chain is extremely
efficient, laser operation is still possible at other frequen-
cies.

● Semiconductor or diode lasers. The laser medium is a
semiconductor (discussed in more detail in Section 8.2).
Here, the pumping process excites the conduction band,
and the transitions are electron–hole annihilation between
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electrons in the bottom of the conduction band and holes
at the top of the valence band. This gives rise to photons
(known as recombination radiation) which form the basis
of the laser light.

● Free electron lasers. As the name suggests, the laser
medium is simply a collection of electrons, not bound to
any atom or molecule. When forced to accelerate back and
forth in an external electric field, the electrons will emit
bremsstrahlung (see Section 7.4) at a frequency depend-
ing on their oscillation frequency. There are no discrete
energy levels here, so it’s a bit of a stretch to call this a
laser, although a semiclassical analysis shows that there is
amplification.

7.5.3 Interferometers

An interferometer is a device that takes advantage of the wave
properties of light to measure distances and velocities very
sensitively. Undoubtedly, the most famous interferometer is
the Michelson–Morley model, shown in Fig. 7.8, used to dis-
prove the idea of the ether in pre-special relativity days. This
is the type that will show up on the GRE if you’re asked
about interferometers, so we’ll confine our attention to this
model. Monochromatic light is shined on a half-silvered mir-
ror, which reflects half the light to the mirror marked A, and
lets the other half through to a second mirror marked B. The
light from both mirrors then bounces back to the half-silvered
mirror, which splits the incoming light again. The portion
that travels to the detector contains contributions from both
paths, which interfere with each other when they reach the
detector. If the optical path lengths along the two arms are
different, the detector will record a pattern of interference
fringes, as discussed in much more detail in Chapter 3. One
then counts the number of fringes visible on the screen: if this
number changes, it means that the optical path length dif-
ference between the two arms has changed, either by one of
the mirrors moving, a change in the index of refraction along
one of the arms, or both. By using the double-slit equation
d sin θ = mλ, the number of fringes crossing a certain posi-
tion on the detector (fixed θ) can be used to measure d given
λ, or vice versa.

7.6 Problems: Laboratory Methods

1. In radiation detection, the term “minimum ionizing par-
ticle” could refer to

(A) a photon with energy 10 keV
(B) a neutron with kinetic energy 1 MeV

A

B
Half-silvered

mirror

Light source

Light detector

Figure 7.8 Michelson–Morley interferometer.

(C) an alpha particle with kinetic energy 5 MeV
(D) a proton with kinetic energy 10 MeV
(E) an electron with kinetic energy 50 MeV

2. Event A is drawn from aGaussian probability distribution
with standard deviation σA, and event B is drawn from a
Gaussian with standard deviation σB. If A and B are inde-
pendent events, the probability distribution for the sum
of A and B is a Gaussian with standard deviation

(A) σA + σB

(B)
√

σAσB

(C)
√

σ 2
A + σ 2

B

(D)
1

1/σA + 1/σB
(E) none of these

3. Which of the following probability distributions best
describes the probability of obtaining heads 3 times when
a fair coin is flipped 10 times?

(A) Binomial distribution
(B) Gaussian distribution
(C) Student’s t distribution
(D) Log-normal distribution
(E) χ2 distribution

4. The numberN of radioactive atoms of a particular isotope
remaining in a sample as a function of time t is found to
obey N(t) = N0e−λt . What is the half-life of the sample
in terms of λ?

(A) λ ln 2

(B)
λ

ln 2
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(C)
ln 2
λ

(D)
1

λ ln 2
(E) λln 2

Input 1 Input 2 Result

0 0 1
0 1 1
1 0 1
1 1 0

5. The above “truth table” represents which of the following
logic gates?

(A) OR
(B) AND
(C) NOR
(D) NAND
(E) NOT

Vin
+

−

R

Vout

+

−

6. The circuit diagram on the left above is driven by an
alternating-current generator, whose input voltage Vin is
shown as a function of time in the plot on the right.
Which of the following best represents the shape of the
output voltage Vout?

(a)

(b)

(c)

(d)

(e)

7. A student holding a Geiger counter near a radioactive
sample hears five clicks in a 10-second time window.
Based on this measurement, what is the probability of
hearing exactly one click in a subsequent 10-second time
window?

(A) e−5

(B) 5e−5

(C) 5e−2

(D)
5e−2

2
(E) 24e−5

8. A narrow bandpass filter is centered at 1 MHz. What
combination of inductor and capacitor can be used to
create such a filter?

(A) 25 nF and 10 nH
(B) 250 nF and 100 nH
(C) 1 µF and 1 µH
(D) 20 µF and 10 µH
(E) 200 µF and 10 µH

9. AMichelson–Morley interferometer can be used to detect
gravitational waves, which compress and expand the arms
of the interferometer to give an effective path-length dif-
ference �L. If the interferometer arms have length L = 5
km and a laser of wavelength 1000 nm is used, at what
value of �L/L will the central interference maximum
become a minimum?

(A) 10−14

(B) 10−12

(C) 10−10

(D) 10−8

(E) 10−6

10. A semiconductor laser with a band gap of 4 eV will
produce which of the following kinds of light?

(A) Infrared
(B) Red
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(C) Green
(D) Ultraviolet
(E) X-ray

7.7 Solutions: Laboratory Methods

1. E – Minimum ionizing particles must be relativistic, and
only choice E has energy much greater than its mass.
Photons are never minimum ionizing particles because
they are neutral and their interactions are qualitatively
different from those of charged particles.

2. C – The sum of Gaussian random variables is also a
Gaussian random variable. For the same reason that
experimental uncertainties add in quadrature, the stan-
dard deviation of the probability distribution function for
the sum of two Gaussian variables is the quadrature sum
of the two distributions.

3. A – The binomial distribution describes any situation
where there are a fixed number of trials with binary out-
comes (though not necessarily equal odds), and it gives
the probability for obtaining n = 1, 2, 3, . . . successes.
The scenario of flipping a coin is completely analogous to
this. The Gaussian distribution is a good approximation
to the binomial distribution in the limit of large statis-
tics when the probability of success is near 50%. The
other three distributions are asymptotic distributions of
test statistics commonly used in hypothesis testing, and
they have nothing to do with flipping a coin.

4. C – You can obtain the answer quickly from equa-
tion (7.18), but in case you can’t remember where the ln 2
goes, it’s easy to derive the answer from scratch. We want
N(t) to drop by half, compared to (say) its value at t = 0,
so we solve:

N0

2
= N0e−λt1/2 .

Taking logs gives−ln 2 = −λt1/2, so t1/2 = ln 2/λ, choice
C.

5. D – It’s simplest to recognize that if we switch all the 1’s
and 0’s in the “Result” column, we end up with an AND
gate, so the given table must represent a NAND gate.

6. D – When Vin is positive, the diode is forward biased,
which means that the diode is effectively a wire and
Vout = 0. (Actually, because of the built-in 0.7 V bias of

silicon diodes, Vin must be greater than 0.7 V for for-
ward biasing to occur.) When Vin is negative, the diode
is reverse biased and effectively an open circuit, so Vout =
Vin. Thus, up to the 0.7 V diode bias effect, Vout keeps
only the negative portions of Vin.

7. B – This is a straightforward application of the Pois-
son distribution. The average number of events in a
10-second window is λ = 5, and the number of desired
events is n = 1, so plugging into (7.6) gives us B.

8. B – A circuit with an inductor and capacitor acts as a
bandpass filter since the inductor filters high frequencies
and the capacitor filters low frequencies. As an exam-
ple, the resonant frequency of a circuit containing just
an inductor and capacitor in series is given by ω =
1/
√
LC, or

f = 1
2π
√
LC

.

In order to have f = 1 MHz, we require

LC ∼ 1
3.6× 1013

∼ 3× 10−14 s2,

which is closest to B. We have used here the approxima-
tion of π = 3: a convenient trick for estimating order of
magnitudes.

9. C – If the central maximum becomes a minimum, the
path length has shifted by half a wavelength, so we solve
�L = λ/2 with λ = 1000 nm to find�L = 500 nm. Then
�L/L = 10−10, choice C. This is roughly how the LIGO
detector works; the sensitivity is increased by reflecting
the light many times to increase the effective arm length,
and by shifting the baseline path length by λ/2 so that
destructive interference occurs in the absence of gravita-
tional waves, allowing a small amount of light to serve as
a signal.

10. D – This is a tricky bit of trivia that may show up on the
GRE. Semiconductor lasers create laser light by electron–
hole recombination, with the energy of the photon on
the order of the band gap. Ultraviolet light corresponds
to photon energies of 3–100 eV. You can remember this
from the fact that the n = 2 to n = 1 transition in
hydrogen is in the ultraviolet, with an energy of 13.6 eV×(
1− 1

22

)
= 10.2 eV. This is also related to the 2014Nobel

Prize, see Section 8.4.

 



8 Specialized Topics

The Specialized Topics questions on the Physics GRE are
probably the most unique aspect of the test. It’s hard to think
of any other test (other than TV game shows) in which a full
10% is random assorted knowledge. This may seem daunting,
but with smart preparation, these questions actually offer a
huge advantage.
The special topics questions are almost entirely pure

knowledge recall, otherwise known as fact regurgitation. This
is the kind of knee-jerk memorization you probably hated in
high-school chemistry or biology. When confronted by a spe-
cial topics question, you’ll either know it or you won’t. If you
know it, that’s one question down in under 10 seconds, which
gives you a huge bonus on time for the more difficult calcula-
tional questions. If you don’t know it, you probably won’t be
able to figure out the answer just by reasoning through it, and
you may waste 5 or more minutes second-guessing yourself
when stuck between two equally appealing answer choices.
The optimum strategy, then, is to amass a basic knowledge of
as many areas of cutting-edge physics as possible, just enough
to make the associations between “buzzwords” and concepts
that will allow you to recall the required knowledge.
Luckily, this kind of studying is dead easy. Every couple

days, take a break from your normal Physics GRE practice
and just read. Pick up a basic textbook in an advanced subject
you’re unfamiliar with (for example, if you’re aiming towards
high-energy, choose an introductory solid-state physics or
electrical engineering textbook), and don’t bother working
any problems; just read the book as if it were a novel. You
might learn something new and interesting, but that’s not
really the point: by reading this way, you’ll be forming con-
nections and associations in your memory that you might not
even be aware of. It’s likely you won’t be able to remember

exactly what you read, but if prompted by a keyword that
shows up on the GRE, your memory will spring into action
with that feeling of “I’ve seen this somewhere before.” That’s
really all you need for these kinds of questions.
To give you a head start, we’ve collected here some of the

material that is most likely going to be tested in these kinds
of questions. The tone of this chapter will be much more
informal than the rest of the book, and some concepts are
purposefully not explained in gory detail: as mentioned above,
you won’t need to know these kinds of details, so consider this
leisure reading. When you’re sick of doing problems, revisit
this chapter and read a few paragraphs.

8.1 Nuclear and Particle Physics

8.1.1 The Standard Model: Particles and
Interactions

The modern description of the particles and forces found in
nature is a relativistic quantum field theory called the Stan-
dard Model. Relativistic quantum field theory is a framework
for reconciling quantum mechanics with special relativity.
This framework has the surprising result that each charged1

particle has an antiparticle, with identical mass but opposite
charges – the first particle such discovered was the anti-
electron, more commonly known as the positron. The spin-1
bosons of the StandardModelmediate the fundamental forces:
photons mediate the electromagnetic force,W± and Z bosons

1 Here “charged” is meant in a general sense and does not refer only to
electric charge: for example, the neutron is electrically neutral but carries
both weak charge and baryon number, and hence has an antiparticle, the
antineutron.
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mediate the weak nuclear force, and gluonsmediate the strong
nuclear force. (There are also hypothetical spin-2 gravitons,
which mediate the gravitational force, but because gravity is
so weak compared to the other three forces, individual gravi-
tons have not been experimentally observed.) The photon
and gluons are massless, whereas the W and Z bosons are
extremely heavy, about 90 times the mass of the proton. For
group-theoretical reasons, there are eight gluons. The pho-
ton and the Z are their own antiparticles, whereas the W+

is the antiparticle of the W−. The spin-1/2 fermions of the
Standard Model, collectively known as matter, can be orga-
nized in three generations. In each generation, there are two
quarks, one electron-type particle, and one neutrino. The first
generation contains the up quark (u), down quark (d), elec-
tron (e), and electron neutrino (νe); the second contains the
charm quark (c), strange quark (s), muon (μ), and muon neu-
trino (νμ); and the third contains the top quark (t), bottom
quark (b), tau (τ ), and tau neutrino (ντ ). Each generation is
successively heavier than the next, with the muon more than
200 times the mass of the electron, and the tau about 20 times
the mass of the muon. Because of the large mass hierarchy
between generations, third- and second-generation particles
will tend to decay to first-generation particles. Indeed, all the
stable matter in the universe consists of first-generation par-
ticles (plus all flavors of neutrinos floating around – more on
this later).
The quarks interact via the strong nuclear force, also known

as color. The mathematical description of the strong force
involves assigning one of three “colors” (red, green, blue) to
every quark, such that each generation really contains six
quarks (up-red, up-blue, up-green, etc.). Quarks also carry
electric charge: up-type quarks have charge +2/3, and down-
type have −1/3, in units of the magnitude of the electron
charge. In fact, they interact via the weak nuclear force as
well: emitting or absorbing a W-boson can change the fla-
vor of a quark, from an up-type to a down-type or vice versa,
and can also change its generation. The electron-type par-
ticles and neutrinos, collectively known as leptons, interact
via the electromagnetic and weak forces, but not the strong
force. The electron, muon, and tau all have charge −1, but
the neutrinos are electrically neutral. Antiparticles of the
quarks and leptons are usually either given the prefix “anti-”
or labeled by their opposite charge (μ+, pronounced “mu-
plus,” for the antimuon), with the exception of the positron,
mentioned above. Similarly, the quarks and neutrinos also
have antiparticles, usually denoted by putting a bar over each
particle’s symbol; for example: ū for up antiquark, or ν̄e for
electron antineutrino. Like the leptons, the antiquarks are
distinguished from the quarks by having the opposite charge.

Since the u has a charge of +2/3, for example, the ū has a
charge of−2/3.
The strong, weak, and electromagnetic forces vary widely

in their strengths and experimental signatures. As the name
suggests, the strong force is the strongest, causing strongly
interacting particles to decay with lifetimes on the order
of 10−23 seconds. Next is the electromagnetic force: parti-
cles that decay electromagnetically have lifetimes of about
10−18–10−16 seconds (note that longer lifetimes mean weaker
forces), and the telltale signature is the emission of a photon,
though this is not required. Finally, particles decaying by the
weak force have the longest lifetimes, about 10−10–10−8 sec-
onds, and the telltale signature is the emission of a neutrino,
though once again this is not always present. The weak decay
you’re probably most familiar with is beta decay (discussed
further below), which provided the first evidence for the neu-
trino, because the varying energy spectrum of the emitted
electron suggested a three-body rather than two-body decay.
Questions about which force is responsible for which process
are relatively common among special topics questions on the
GRE. As we’ve emphasized, it’s impossible to tell which force
is responsible just by looking at the decay products, or even
the lifetime: there are particles that conspire to have extraor-
dinarily long lifetimes despite decaying strongly, and particles
that can decay into the same final state by two different forces.
But the combination of these two factors is a useful guide: if
you see a particle with a lifetime of 10−17 seconds that decays
to two photons, you can be pretty sure electromagnetism was
responsible.

8.1.2 Nuclear Physics: Bound States

All ordinary matter in the universe is protons, neutrons, and
electrons. We’ve already addressed electrons above: these are
elementary particles. However, protons and neutrons (collec-
tively known as nucleons) are composite – in the framework
of quantum field theory, they are teeming seas of quarks and
gluons constantly popping in and out of existence. At low
energies, where nuclear physics is applicable, we can simplify
this description considerably using the quark model. Here, the
proton is considered a bound state of two up quarks and a
down quark, written uud, for a total charge of 2(2/3)− 1/3 =
+1, and the neutron is a bound state of two down quarks and
an up quark (udd), for a total charge of 2(−1/3) + 2/3 = 0.
Due to a property of the strong force called confinement, free
quarks cannot be seen in nature, and instead they collect
themselves into bound states such as protons and neutrons.
All of these bound states are color neutral, also referred to
as color singlets. If we collide strongly interacting particles

 



148 Specialized Topics

together at higher and higher energies, we can form all kinds
of different bound states, heavier than the proton and neu-
tron. Some may be thought of as excited states of nucleons:
for example, the first excited state of the proton is known as
the �+, which has the same quark content as the proton but
is so much heavier that it can be considered a distinct parti-
cle. In general, bound states of quarks fall into two categories:
mesons, made of a quark and an antiquark, and baryons,
made of three quarks. (Antibaryons have three antiquarks.)
Note that because of the rules for adding spins, mesons may
have either spin-1 or spin-0, whereas baryons may have spin-
3/2 or spin-1/2. In the 1960s, it was observed that mesons
and baryons made out of only the three lightest quarks (up,
down, and strange) arranged themselves into interesting pat-
terns, which Gell-Mann called the EightfoldWay. Historically,
mesons and baryons were the vehicles by which new gen-
erations of quarks were discovered: see Griffiths for more
information. Color was originally introduced as a descrip-
tion of the strong force in order to explain the quark content
of some of these baryons: a baryon made of three identi-
cal quarks, for example sss, would violate the Pauli exclusion
principle since it’s supposed to be a fermion but its wavefunc-
tion is symmetric. Putting the quarks in an antisymmetric
color state, the color singlet mentioned above, fixes this prob-
lem. The lightest baryons are the proton and the neutron.
The fact that the neutron is slightly heavier than the proton
means that the neutron can decay via n → p + e− + ν̄e.
Indeed, free neutrons do decay, with a lifetime on the order
of 15 minutes, but inside a nucleus the constant strong inter-
actions2 with protons keep them from decaying immediately.
In certain nuclei, though, the neutron can decay via quan-
tum tunneling, in a process better known as beta decay. As
the nuclei get bigger and bigger, the electromagnetic repul-
sion between protons starts to cancel the attractive effects of
the strong force, and whole chunks of the nucleus can break
off: this leads to alpha decay, emission of bound states of two
protons and two neutrons (in other words, helium-4 nuclei).
Speaking of nuclear sizes, a good fact to remember is that typ-
ical nuclear diameters are femtometers, or 10−15 m. The final
type of radiation, gamma radiation, is the emission of photons
from an excited state of a nucleus, which doesn’t change the
proton/neutron composition of the nucleus.
In addition to processes where nuclei can break apart (fis-

sion), sufficiently small nuclei can also join together through
fusion. This requires enormous temperatures and pressures in

2 In particle physics, reactions are sometimes written without the+ sign
for multiple particles in the initial or final state, so neutron decay may
also be written n→ pe−ν̄e.

order to overcome the electromagnetic repulsion between the
protons, but can also release enormous amounts of energy;
indeed, both the Sun and the hydrogen bomb are powered
by fusion reactions. In the Sun, successive protons are fused
onto larger and larger nuclei, with some being converted to
neutrons along the way, all the way up to 4

2He. In the standard
picture of the genesis of heavy elements in the early universe,
light nuclei continued to fuse as a result of supernovae, all the
way up to iron (atomic number 26), which is the most stable
nucleus. Heavier nuclei become progressively more and more
unstable, up to lead (atomic number 82), beyond which all
heavier nuclei will eventually decay.

8.1.3 Symmetries and Conservation Laws

The general rule of particle physics is that anything that can
happen, will happen, unless it is forbidden by a symmetry or
a conservation law. For example, the electron is the lightest
negatively charged particle (excluding quarks, which as we’ve
discussed can’t exist free in nature), so it is forbidden from
decaying by conservation of charge. But the proton is heavier
than the positron – why doesn’t it decay? To explain this, and
other similar observations, a new law called conservation of
baryon number was introduced. Baryons get baryon number
+1, antibaryons get −1, and everything else is assigned zero.
Similarly, the fact that an extra neutrino is always produced
in beta decay suggests conservation of lepton number, which is
really three separate conservation laws (conservation of elec-
tron number, muon number, and tau number), where in each
generation the lepton and its associated neutrino are given
lepton number +1 and corresponding antiparticles get −1.
See Example 8.1.
The connection between conservation laws and symmetries

is provided by Noether’s theorem, which states that each con-
served quantity is associated with a symmetry transformation
that leaves the Lagrangian invariant. In fact, you’ve already
seen this in classical mechanics: if a Lagrangian doesn’t
depend on a coordinate q, the associated conjugate momen-
tum ∂L/∂ q̇ is conserved. Noether’s theorem relates this to the
fact that the Lagrangian is invariant under changes of the
coordinate q. In quantum field theory, the symmetries asso-
ciated with charge, baryon number, and lepton number all
act by multiplication by a phase eiα . This transformation acts
the same everywhere in space, so it is called a global symme-
try. It’s also a continuous symmetry since the parameter α can
vary continuously across real numbers, each one correspond-
ing to a different symmetry transformation. A symmetry that
acts differently at different points, such as eiα(x) where α(x) is
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EXAMPLE 8.1

We can apply these rules to find the possible decay modes of the muon μ−. By conservation of muon number, we must
have a muon neutrino among the decay products. By conservation of charge, we must have a lighter negatively charged
particle: the only stable option is the electron. But by conservation of electron number, we must have an accompanying
neutral particle with electron number −1, namely the anti-electron-neutrino. This fixes one decay mode (in fact, the
dominant one) to be

μ− → e− + νμ + ν̄e.

Other decays are possible, but they must all contain extra pairs of particles with net charge and lepton number zero: for
example, a pair of photons, or an electron–positron pair. In fact, a general rule of thumb says that the dominant decay
mode will be the one with the fewest particles in the final state, because each final-state particle comes with a suppression
factor of 1/(2π)4 in the quantum-mechanical amplitude.

a function of position x, is known as a gauge symmetry, and
underlies the quantum formulation of electromagnetism.
There are also various discrete symmetries that are impor-

tant in nature. The symmetry operation P, or parity, reverses
the orientation of space, which is another way of saying P
takes a configuration of particles to its mirror image. The
symmetry operation C, charge conjugation, exchanges parti-
cles and antiparticles. Finally, T, or time reversal, does what
it sounds like. A very important theorem in quantum field
theory states that all Lorentz-invariant local quantum field
theories must be symmetric under the combined action of all
these operations, known as CPT. However, it is an important
and striking fact that the Standard Model does not respect
each of these symmetries individually. The weak interaction
is said to be maximally parity-violating: the classic exper-
iment that proved this looked at beta decay of cobalt-60,
and found that the decay products were preferentially pro-
duced in one direction relative to the spin of the nucleus.
In fact, the weak interaction doesn’t conserve CP either: the
main evidence for this comes from the neutral kaon system
(for the record, kaons are the lightest mesons that contain
strange quarks). By the CPT theorem, this means that T by
itself must also be violated, and there are various experiments
involving the precession of muon spins in a magnetic field to
demonstrate this.

8.1.4 Recent Developments

For the Standard Model to be mathematically consistent, it
must contain at least one additional particle: the Higgs boson,
whose discovery was at long last announced on July 4, 2012.
This particle is responsible for giving mass to all elementary

particles, via a mechanism known as spontaneous symmetry
breaking. For more details on both, see Section 8.4 below –
both the particle and the mechanism are important enough to
each deserve their own Nobel Prize! For the measured value
of the Higgs boson mass, 125 GeV, to be consistent with the
principles of quantum field theory, many physicists believe
that there must exist a further symmetry of nature known as
supersymmetry. If this is the case, each elementary particle has
a superpartner with exactly the same charges, but with spin
differing by 1/2. As of this writing, the Large Hadron Collider
is hot on the trail of these hypothetical particles, but none have
yet been discovered.
On firmer experimental footing is the discovery that neu-

trinos have mass. This was deduced by observing neutrino
oscillations, a phenomenon by which one flavor of neutrino
(say an electron neutrino) is emitted from a source, but later
detected as another flavor (say a tau neutrino). Unfortunately,
this kind of measurement only permits one to determine
mass differences, not absolute masses, but it is known that all
neutrinos are extremely light, with masses several orders of
magnitude less than the mass of the electron.

8.2 Condensed Matter Physics

8.2.1 Crystal Structure

An ideal crystal is constructed by the infinite repetition of
identical structural units in space. In the simplest crystals
the structural unit is a single atom, as in copper, silver, gold,
iron, aluminum, and the alkali metals. But for other materi-
als the smallest structural unit may contain many atoms or
molecules. For simplicity, we’ll call this unit an “atom” in
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(a) Simple cubic (b) Body-centered cubic (BCC)
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(c) Face-centered cubic (FCC)

Figure 8.1 Common crystal lattices.

everything that follows, just to keep from using too many
words. The examples below illustrate some common crystal
lattices.
The key here is repetition: the crystal structure is infinite,

so we have to define a repeating pattern, known as a unit cell.
The cubes drawn above are known as conventional unit cells,
and they make the cubic symmetry apparent by containing a
cube with atoms at every vertex, but some add extra points
to it: the body-centered cubic (BCC) contains an atom at the
center, and the face-centered cubic (FCC) contains atoms at
the centers of each of the faces. To construct the rest of the
crystal, you can tesselate space in all three dimensions using
these unit cells.
Despite making the symmetry manifest, it may be the case

that the conventional unit cell is not the smallest repeating
pattern, where smallest means “containing the least number
of atoms.” This smallest pattern is known as the primitive
unit cell. This is the case for the cubics: the primitive unit
cell for the BCC is an octahedron with half the volume of
the conventional cell, and the primitive unit cell for the FCC
is a parallelepiped with one quarter the volume of the con-
ventional cell. Similarly, the volumes of the conventional unit
cells are all equal, but the interatomic distances are all differ-
ent: for a cube of side a, the simple cubic has distance a, the
BCC has distance a

√
3/2, and the FCC has distance a

√
2/2. A

favorite GRE question type gives you the volume of a prim-
itive unit cell and asks for the interatomic distance or the
volume of the conventional unit cell. By the way, these lat-
tice structures are examples of Bravais lattices: there are 14 of
them, but the only ones that show up on the GRE with any
frequency are the three cubic types given above.
There are two other ideas associated with crystal lattices

that may show up on the exam. The reciprocal, or dual,
lattice is the Fourier transform of the original lattice. Just
like the Fourier transform of a collection of position vec-
tors x (position space) is a collection of momentum vectors
p (momentum space), the reciprocal lattice can also be con-
sidered a “space” in its own right. The vectors that make up
the dual lattice, called the reciprocal lattice vectors, are the

normal vectors to the planes formed by the original lattice.
This is rather complicated to visualize, but the following facts
are true:

● The simple cubic is its own dual lattice. For a lattice of side
length a, the dual lattice has side length 2π/a (the 2π comes
from the Fourier transform, and the 1/a since the lattice
vectors are supposed to have units of wavenumber).

● The body-centered cubic and face-centered cubic lattices
are dual to one another.

● The dual to a hexagonal lattice is another hexagonal lattice,
but rotated through a 30◦ angle.

The primitive unit cell of the reciprocal lattice is so important
that it is given its own name: the (first) Brillouin zone.

8.2.2 Electron Theory of Metals

In solid-state physics, the free electron model is a simple
model for the behavior of electrons in the crystal structure of
a metallic solid: the atomic nuclei and the core electrons are
pinned in place, and all the valence atomic electrons are delo-
calized, not belonging to any nucleus and free to roam around
the metal. Roughly speaking, this explains why metals con-
duct electricity. If electrons behaved according to the laws of
classical mechanics, at zero temperature they would just sit
still with zero energy. But electrons are quantum particles,
more specifically fermions, and according to the Pauli exclu-
sion principle, no two electrons can occupy the same quantum
state. So one electron can have zero momentum with spin up,
the next can have zero momentum with spin down, but any
additional electrons are going to have nonzero momentum.
Because of the exclusion principle, at zero temperature,

the electrons in the metal fill up a sphere in momentum
space, the Fermi sphere.3 The electrons which are free to roam
around the metal sit on the surface of this sphere (the Fermi
surface), with wavevectors |k| = kF , the Fermi wavevector.
(Everything in this business is named after Fermi.) Recalling

3 In real systems, the shape of the volume in momentum space is not
exactly spherical, so the general term is Fermi sea.
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the usual relations from quantum mechanics, this means the
Fermi momentum is pF = �kF , and the Fermi energy is
EF = �

2k2F/2m. The remaining ingredient is a formula for
kF in terms of the number density n of electrons:

kF = (3π2n)1/3. (8.1)

The details of this derivation involve lots of factors you don’t
want to worry about. Instead, let’s pause for a quick sanity
check: n has units 1/(length)3, so n1/3 has units of 1/length,
appropriate for a wavevector. The Fermi energy is then

EF = �
2

2m
(3π2n)2/3. (8.2)

The density of states is the number of possible free electron
states at a given energy E, given by

ρ(E) = V
√
2

π2�3
m3/2√E, (8.3)

where we have collected factors to emphasize the scaling
which the GRE will care about, ρ(E) ∝ m3/2√E. Note that
integrating the density of states should give the total number
of electrons,

N =
∫ EF

0
ρ(E) dE. (8.4)

Combining the expressions for the Fermi energy and the
density of states gives the density of states at the Fermi surface,

ρ(EF) = 3
2
N
EF

. (8.5)

Since most of the electrons are buried in the Fermi sphere, at
low temperatures, the number of conduction electrons NC in
the metal is not N, but instead is approximately

NC ≈ ρ(EF)(kBT) ∼ N
kBT
EF

, (8.6)

which represents the number of electrons close enough to the
Fermi surface to be able to escape due to thermal fluctua-
tions. In a typical metal, the Fermi energy is way above room
temperature, and often far above the melting point, so this is
very often a good approximation. As always, the prefactors
of π and 3 and such are not worth remembering (indeed, we
dropped the prefactor 3/2 in the heuristic discussion above),
but the power-law dependences (kF ∝ n1/3, EF ∝ n2/3) are
very standard GRE questions. As we noted above, a quick way
to remember this is to get kF from dimensional analysis, then
EF from the dispersion relation for a massive particle.

8.2.3 Semiconductors

A semiconductor has electrical conductivity intermediate in
magnitude between that of a conductor and an insulator.

Semiconductors differ from metals in their characteristic
property of decreasing electrical resistivity with increasing
temperature. This is evidence that the free electron approx-
imation doesn’t work in semiconductors, and, indeed, what
is happening is that most electrons are trapped in the Fermi
sea and are forbidden from being excited until they over-
come the band gap. At high temperatures, the thermal energy
of electrons increases, and more of them can overcome the
band gap. Free from the constraints of the exclusion princi-
ple, which traps their lower-energy brethren, they can conduct
electricity, thus increasing the conductivity (and decreasing
the resistivity) at high temperatures.
Current conduction in a semiconductor occurs via these

mobile or “free” electrons and holes (the not-so-creative name
for the absence of an electron), collectively known as charge
carriers. Electrons, of course, have negative charge, so the
absence of an electron (a hole) has positive charge; in semicon-
ductor physics, one thinks of the hole as an actual positively
charged particle in its own right. Adding a small number
of impurity atoms to the semiconductor, known as doping,
greatly increases the number of charge carriers within it.
There are two ways to do this:

● p-type doping. When a doped semiconductor contains
excess holes it is called p-type (the “p” stands for “positive”).
An example of p-type doping is on silicon: an atom from
group 13 of the periodic table, such as boron or aluminum,
is substituted into the crystal lattice for silicon.

● n-type doping. When a doped semiconductor contains
excess free electrons it is known as n-type (“n” for “neg-
ative”). The most common example for n-type doping is
atomic substitution in group 14 solids (silicon, germanium,
or tin), which contain four valence electrons, by group 15
elements (phosphorus, arsenic, antimony) which contain
five loosely bound valence electrons.

8.2.4 Superconductors

Superconductivity is a phenomenon where certain mate-
rials, when cooled below a characteristic critical tempera-
ture, have exactly zero electrical resistance. Superconductiv-
ity is a quantum-mechanical phenomenon, and cannot be
understood within the confines of classical electromagnetism.
There are two key aspects of superconductivity that are GRE
favorites:

● Meissner effect. The Meissner effect is an expulsion of a
magnetic field from a superconductor during its transition
to the superconducting state. In a weak applied field, a
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superconductor “expels” nearly all magnetic flux, meaning
that the magnetic field inside the superconductor is nearly
zero (more specifically, it falls off exponentially fast as a
function of distance from the surface). It does this by set-
ting up electrical currents near its surface. The magnetic
field of these surface currents cancels the applied magnetic
field within the bulk of the superconductor. As the field
expulsion, or cancellation, does not change with time, the
currents producing this effect (called persistent currents)
do not decay with time. Therefore the conductivity can be
thought of as infinite: a superconductor.

● Cooper pairs. Cooper pairs are part of the BCS theory,
which was used to explain superconductivity. A Cooper
pair is a specific state of two electrons, weakly bound to
each other, such that the pair has total energy lower than
the Fermi energy, which would be the energy of the elec-
trons at zero temperature. Thus it is energetically favorable
for the electrons to pair up. There are many more details,
but just remember that the Cooper pair is “responsible”
for superconductivity, and quantum mechanically this pair
of electrons behaves collectively like a boson, rather than a
fermion.

8.3 Astrophysics

Themost likely astrophysics topic you’ll be tested on is cosmo-
logical redshift, simply because there are some easy formulas
associated with it. Astrophysical evidence clearly indicates
that our universe is expanding, but that statement needs to be
made more precise for it to have any physics content. What
we mean is that the spacetime metric ds2, which defines what
we mean by distance, is not constant like we assume in special
relativity, but actually changes with time, and does so in such
a way that the distance between spacelike-separated points
grows with time. In equations,

ds2 = dt2 − a(t)2(dx2 + dy2 + dz2),

where a(t) is called the scale factor. The fact that space is
expanding is just the statement that a(t) is an increasing func-
tion of t. There’s not much we can do with this metric without
the tools of general relativity (which you certainly don’t have
to know for the GRE!), but we can write down a few facts
without derivation:

● Photons are redshifted by the scale factor. If λ0 is the
wavelength of a photon today, and λT was its wavelength
at a specific time T, then

λ0

λT
= a(today)

a(T)
. (8.7)

Since a(t) is an increasing function of time, this means that
the wavelength of a photon is increased by a factor of the
ratio of distances now to distances then: this is the origin of
the term redshift.

● Blackbody temperatures are inversely proportional to
the ratio of scale factors. This just follows from (8.7) and
Wien’s displacement law, λmax ∝ 1/T; as the universe
expands by a factor of 2, blackbodies cool by a factor of
2. The typical application of this result is to the cosmic
microwave background temperature, which to an excel-
lent approximation follows a perfect blackbody spectrum.
For more about the cosmic microwave background, see the
discussion of the 2006 Nobel Prize in Section 8.4.

● Hubble’s law: recession velocity is proportional to dis-
tance.Due to the expansion of space, distant objects appear
to be receding from us. If a galaxy appears to be moving
away from us with velocity v, then Hubble’s law states

v = H0D, (8.8)

where D is the measured distance between the distant
galaxy and us, andH0 is theHubble parameter.H0 is some-
times called the Hubble “constant,” but this is misleading,
because H0 actually changes with time. The details of this
are not important for the GRE: just remember that if a
galaxy is twice as far away, it will appear to be moving twice
as fast.

● Redshift can be used as a measure of time. This is just a
convention, but a very useful one. Define the redshift z by

z(T) = λ0

λT
− 1. (8.9)

In other words, z measures how much a photon has been
redshifted since time T. The−1 is to ensure that z(today) =
0. Thus, positive redshifts correspond to times in the past,
and negative redshifts to times in the future. It’s certainly
a funny way to measure time, but astronomers often refer
to events that happened “at redshift 3,” which just means
the time T such that λ0

λT
− 1 = 3; note that this means the

photon wavelength has actually been redshifted by a factor
of 4, not 3! This is a tricky convention which may well show
up on the test.

Finally, a couple of qualitative statements about the expanding
universe.

● Cosmological redshift is not a Doppler shift. It’s true that
the distances between galaxies are increasing as time goes
on, but that does notmean they are moving apart from each
other. This is a common misconception, and the picture
to keep in mind is an inflating balloon: if you glue coins
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to the surface, as the balloon inflates each coin will move
away from each other coin, but the coins are not actually
changing their position on the surface. Thus, there is no
motion of the source or the receiver to cause a Doppler
shift; cosmological redshift is due to the expansion of space
itself. That being said, there can be a component of red-
shift that comes from the motion of galaxies relative to
each other (known as peculiar velocities). On recent GREs
the wording of the relevant questions did not distinguish
between Doppler and cosmological redshift, but the mean-
ing should be clear from context. If you’re given or asked
for a speed, the question is asking about the relativistic
Doppler shift; if you’re asked about distances, the question
refers to cosmological redshift.

● Gravitationally bound systems are exempt. The metric
with the expanding factor a(t) only applies to the universe
on large scales, and is not the metric for every point in
space. Indeed, general relativity tells us that the presence of
matter changes the spacetime metric, and in particular sys-
tems that contain enough matter to become gravitationally
bound (like our solar system) do not undergo expansion. In
the picture above, the coins that we glued to the surface of
the balloon are not themselves expanding. Thus, distances
do not seem to expand within our solar system, although
we observe distant galaxies receding from each other.

We’ll end this section on a topic central to current research:
dark matter. Since 1933, astronomers have noticed a mis-
match between the amount of visible mass in galaxies, and the
mass inferred from applying Newtonian gravity and the virial
theorem to these galaxies. Specifically, galaxies were rotat-
ing too fast for their dynamics to be accounted for solely by
the light-emitting matter visible inside. Further astrophysi-
cal observations involving the expansion of the universe and
the cosmic microwave background radiation, as well as direct
observations of colliding galaxy clusters such as the Bullet
Cluster, strengthened the case for some kind of gravitating
but non-light-emitting matter, dubbed dark matter, whose
mass abundance in the universe is more than five times that
of ordinary matter. Because it doesn’t emit light (photons),
dark matter can’t be charged (if it is, it must have extraordi-
narily small electric charge, much smaller than the electron
charge), but it may interact with the weak nuclear force.
This is the model for the most popular candidate for dark
matter, the WIMP or “weakly interacting massive particle,”
though there are a huge number of other models. Dark mat-
ter has not yet been directly detected on Earth, nor has it been
unambiguously produced at particle accelerators, but many

experiments are underway to try to determine its mass and
interactions.

8.4 Recent Nobel Prizes

The Nobel Prizes in Physics provide an excellent source for
random trivia about current developments in physics. Anec-
dotally (though we don’t have enough data to back up this
claim), the GRE likes to throw in questions dealing with
recent Nobel Prizes, so here is a quick summary.

● 2017: Detection of gravitational waves. A fascinating pre-
diction of general relativity is that accelerating objects
should emit gravitational radiation, just as accelerating
charges emit electromagnetic radiation. Einstein calcu-
lated the emitted power from a test mass shortly after
developing general relativity and was firmly convinced it
would be too small to ever be detected; in a triumph of
physics and engineering, the LIGO (Laser Interferome-
try Gravitational-Wave Observatory) experiment observed
gravitational waves on Earth from the collision and merger
of two black holes. The 2017 Nobel Prize was given for the
direct detection of gravitational waves, but earlier, in 1993,
the Nobel Prize was awarded for the indirect detection of
gravitational radiation. There, the radiating system was a
pair of pulsars (neutron stars which emit observable elec-
tromagnetic radiation at regular intervals), whose orbits
lost a tiny bit of energy as gravitational waves were radi-
ated away over time. The energy loss rate exactly matched
the predictions of general relativity. By contrast, the direct
detection of such waves exploits the stretching and strain-
ing of spacetime when such a wave passes through the
Earth. LIGO used a two-armed interferometer (concep-
tually, just a Michelson-Morley interferometer) to look
for a signal where the distance along one interferome-
ter arm contracted slightly while the perpendicular arm
expanded. The actual distance perturbations were 10−18 m,
smaller than nuclear diameters, which (amazingly) could
be detected due to an accumulated phase shift when a laser
beam traversed the interferometer many times.

● 2016: Topological phases of matter. This is a fascinating
topic and the source of much cutting-edge research in con-
densed matter physics and theoretical physics in general,
but is far too advanced to find a place on the GRE.

● 2015: Neutrino oscillations. For many years after the
introduction of neutrinos to explain the spectrum of beta
decay, it was thought that neutrinos were exactly mass-
less. This would have provided a convenient explanation for
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why neutrinos are always detected with their spin opposite
to their direction of motion (all neutrinos are left-handed),
since massless spin-1/2 particles carry a fixed helicity, or
handed-ness. This turned out not to be the case: neutri-
nos do have (very tiny) masses, and that causes them to
undergo flavor oscillations. In any reaction involving the
weak force, neutrinos are produced with a definite flavor:
electron-type, muon-type, or tau-type. However, the free-
particle Hamiltonian does not commute with the weak
interaction Hamiltonian, and thus the flavor eigenstates
are not momentum or mass eigenstates. By the princi-
ples of ordinary quantum mechanics, a flavor eigenstate
will then evolve into a superposition of mass eigenstates,
with probabilities governed by the Schrödinger equation.
The detection proceeds by the weak Hamiltonian, so the
mass eigenstates get decomposed into flavor eigenstates
again, but after propagation a pure electron neutrino has a
nonzero probability of being detected as a muon neutrino.
This provided a solution to the puzzle of solar neutrinos,
where the pp chain, which worked so spectacularly well for
explaining fusion in the Sun, predicted far more electron
neutrinos than were detected on Earth. A similar effect was
detected using neutrinos produced from cosmic ray colli-
sions with the atmosphere. As a related bit of trivia, electron
neutrinos are typically detected with inverse beta decay,
νe + n→ p+ e.

● 2014: Blue LEDs. Light-emitting diodes (LEDs) are an
excellent practical example of a p–n junction. When a bias
voltage is applied across the junction, electrons from one
side recombine with holes from the other side, and pho-
tons are emitted with energy of order the band gap. This
causes the LED to shine light at a frequency given by the
photon energy. Red and green LEDs were relatively easy to
make because the required energies of 1–3 eV correspond
to band gaps in readily available doped semiconductors (1.4
eV for GaAs and 2.2 eV for GaP). Finding a material with a
so-called direct band gap of above 3 eV was difficult – early
attempts with materials such as ZnSe and SiC were ineffi-
cient since these materials had indirect band gaps, meaning
the recombination process had to be accompanied by the
emission or absorption of a phonon. The prize was given
for the fabrication of GaN, with a direct band gap of 3.4 eV,
in the ultraviolet.

● 2013: The Higgs mechanism and the Higgs boson. The
role of the Higgs boson has already been mentioned in
Section 8.1.4 above, but we can elaborate a little further.
A puzzling fact about the forces of the Standard Model is

that the W and Z bosons are massive, but all the other
force carriers (photons, gluons, and gravitons) are massless.
However, putting in a mass “by hand” for these particles
results in various inconsistencies, among them the nonsen-
sical prediction that the probability for certain scattering
processes is greater than 1! The Higgs mechanism resolves
this puzzle by postulating that theW and Z bosons start out
massless like the other force carriers, but inherit their mass
from the vacuum expectation value of the Higgs field, which
is constant but nonzero everywhere in space. The same
mechanism ends up giving mass to all the other Standard
Model matter particles, which also must start out massless
for the symmetry properties of the StandardModel to work
out correctly. Higgs’s insight was that there is an additional
particle, the Higgs boson, left over after this mechanism
has worked its magic. The Higgs boson couples to mat-
ter with strength proportional to the particle’s mass; this
means it couples most strongly to the heaviest Standard
Model particle, the top quark, providing the basis for some
of the search strategies that discovered the Higgs boson at
the Large Hadron Collider.

● 2012: Measuring and manipulating individual quantum
systems. Quantum systems are hard to study because a
measurement of the system typically changes the state of
the system. Worse, even if you try not to measure a system,
the environment that surrounds your system does the mea-
suring for you – this effect is known as decoherence, and
tends to destroy quantum correlations if the system is at
nonzero temperature. The 2012 Nobel Prize was given for
two experimental setups to delay this decoherence for as
long as possible, and permit certain nondestructive mea-
surements that do not change the state of the system. The
former goal is accomplished by cooling systems to very low
temperatures and trapping single atoms or photons, and
the latter goal uses the clever trick of encoding a measure-
ment of one quantity (for example, the number of photons
in a cavity) into the phase of another quantum system (an
atom traversing the cavity). A measurement of the phase of
the atom will of course destroy the atom’s quantum state,
but won’t touch the photon, allowing it to stay in the cavity
and be measured again.

● 2011: Accelerated expansion of the universe. We’ve
already talked about how the universe is expanding, with
a scale factor a(t) that grows with time, ȧ(t) > 0. The
2011 Nobel Prize was given for the discovery that ä(t) > 0;
in other words, the expansion of the universe is accelerat-
ing. The main evidence for this striking fact came from
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surveys of supernovae that correlated distance with reces-
sion velocity, using the more sophisticated time-dependent
version of Hubble’s law and the relationship between the
Hubble parameter and the scale factor. The discovery of
accelerated expansion has many important consequences,
including the fact that the main component of the energy
density of the universe today is not matter, nor dark matter,
but whatever substance is responsible for the acceleration,
called dark energy for lack of a better word. Most evidence
suggests that dark energy is actually a cosmological constant,
a homogeneous energy density throughout all of space with
the surprising properties that it exerts negative pressure and
does not dilute as the universe expands. But the jury is still
out on the nature of dark energy, which is considered one
of the most important unsolved problems in fundamental
physics today.

● 2010: Isolation of graphene.Two condensedmatter physi-
cists isolated graphene by ripping flakes of it off a lump
of graphite using sticky tape. Carbon occurs in many dif-
ferent forms in nature (charcoal, diamond, fullerenes, and
so forth), known as allotropes. Graphite is one of these,
and in fact is made up of a huge number of stacked
two-dimensional layers known as graphene. In graphene,
carbon atoms are arranged in a hexagonal lattice, which
results in highly unusual behavior of the covalently bonded
electrons: they behave like massless particles, with a lin-
ear dispersion relation ω ∝ k, rather than massive ones,
which have quadratic dispersion ω ∝ k2. This makes
graphene an excellent conductor, and the fact that it is
one atom thick gives rise to many possible engineering
applications.

● 2009: Optical fibers and charge-coupled devices. As you
probably know, optical fibers exploit total internal reflec-
tion to transmit light over large distances with very little
attenuation. The prize was given for amethod of fabricating
impurity-free glass fibers: this is probably too engineering-
heavy to find a place on the GRE.

● 2008: Spontaneously broken symmetry. One half of this
prize was awarded for “the discovery of the mechanism
of spontaneous broken symmetry in subatomic physics.”
To explain how this works in detail would be far beyond
what’s needed for the GRE, but a few buzzwords might
be useful. A system with a certain underlying symmetry
can have a ground state that does not respect that sym-
metry. The standard example is trying to balance a pencil
on its tip: even if there is no preferred direction for the
pencil to fall, it will fall eventually, and pick a direction in
doing so. A similar situation can happen in particle physics,

and any time the quantum-mechanical ground state does
not respect a symmetry that was originally present in the
theory, a massless spin-0 particle appears called a Nambu–
Goldstone boson. Nambu’s original application was to the
BCS theory of superconductivity, where gauge invariance
is spontaneously broken, giving rise to a massless phonon.
But the most well-known application is to the spontaneous
breaking of the SU(2) × U(1) gauge symmetry of ele-
mentary particle physics, for which the Nambu–Goldstone
boson is (the massless partner of) the Higgs boson. The
second half of the prize was awarded for an interesting tech-
nical result which implies that CP violation requires at least
three families of quarks.

● 2007: Giant magnetoresistance. Probably too specialized
to find a place on the GRE.

● 2006: CMB anisotropy. This prize was awarded for discov-
ering that the low-temperature bath of photons pervading
the universe, known as the cosmic microwave background,
has an almost perfect blackbody spectrum, and that the
deviations from this spectrum may be hints of structure
formation in the early universe. Shortly after the Big Bang,
the universe was so hot and dense that photons had an
extremely small mean free path. Hence we can’t use light to
determine anything about the very early universe, because
the photons didn’t travel in straight lines. After about
380,000 years, though, the universe expanded and cooled
enough that the photons hit a surface of last scattering, after
which they were free to stream through the universe unim-
peded. This coincided with the epoch of recombination,
when electrons and protons combined to form hydrogen
atoms. At this time, the temperature of the universe was
about 3000K, but since then the universe has expanded so
drastically that these photons are now highly redshifted, as
we discussed earlier. Their temperature today is 2.7 K, cor-
responding to a blackbody peak at a wavelength of 1.9 mm
– this is in the microwave region, hence the name. At a level
of about one part in 100,000, the spectrum of this radiation
bath deviates from the blackbody spectrum, correspond-
ing to density perturbations in the early universe; many of
these have been correlated with the positions of galaxies and
galaxy clusters today.

8.5 Problems: Specialized Topics

1. Which of the following is a possible decay mode of the
π+? (Note: ν denotes an antineutrino.)

(A) e+νe

(B) e+νe
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(C) μ+νμ

(D) μ−νe

(E) μ−νμ

2. A typical hadron has a lifetime of about 10−23 seconds.
A new particle is discovered with lifetime of 10−10 sec-
onds, and its principal decay mode includes a neutrino.
This new particle most likely decays due to the

(A) weak force
(B) strong force
(C) gravitational force
(D) electromagnetic force
(E) Higgs force

3. In the quark model, the �++, a spin-3/2 resonance of
charge +2, consists of which of the following combina-
tions of quarks?

(A) uuu
(B) uud
(C) udd
(D) ddd
(E) ud

4. The extreme uniformity of the temperature of the cosmic
microwave background radiation is evidence for which of
the following theories of the early universe?

(A) Quintessence
(B) Big Bang
(C) Inflation
(D) Modified Newtonian dynamics
(E) Scalar-tensor theory

5. The Meissner effect refers to the expulsion of magnetic
fields from a superconductor. The exponential decrease
in field strength inside the conductor can be modeled by
giving the photon an effective

(A) positive electric charge
(B) negative electric charge
(C) mass
(D) spin
(E) color charge

6. The electrical conductivity of a relatively pure semicon-
ductor increases with increasing temperature primarily
because:

(A) The scattering of the charge carriers decreases.
(B) The density of the charge carriers increases.
(C) The density of the material decreases due to volume

expansion.
(D) The electric field penetrates further into the material.

(E) The lattice vibrations increase in amplitude.

7. The electronic heat capacity of a metal in the Drude
model is given by the equipartition theorem Cel = 3

2nkB,
where n is the number density of electrons. In the Som-
merfeld model, Cel = 1

2π
2nkB(kBT/EF), which is in bet-

ter agreement with experiment. The difference between
the two formulas can be interpreted as saying:

(A) Only electrons near the Fermi surface participate in
heat conduction.

(B) Electron–electron collisions cannot be neglected.
(C) Conduction electrons are confined to the surface of

the metal.
(D) Ions also participate in heat conduction.
(E) Electrons in a metal can be treated as classical parti-

cles with a modified dispersion relation.

8. Energy levels in a periodic solid are labeled by a discrete
set of wavevectors. In a solid withN ≈ 1023 atoms, energy
levels can be labeled by a continuous wavevector in the
first Brillouin zone because:

I. Every vector in reciprocal space can be related to a
vector in the first Brillouin zone by addition of an
integer multiple of a reciprocal lattice vector.

II. The spacing between allowed wavevectors in the first
Brillouin zone is proportional to 1/N.

III. Eigenstates of the solid Hamiltonian are eigenstates
of the momentum operator i�∇ .

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I, II, and III

9. Metal A is twice as dense as metal B. Atoms of metal A
and metal B have an equal number of valence electrons. If
1 kg of both metals are held at the same temperature, the
ratio of the number of charge carriers in metal A to those
in metal B is

(A) 1
(B) 21/3

(C) 22/3

(D) 2
(E) 23/2

10. Nuclei are held together by the strong nuclear force. At
approximately what distance does the Coulomb repulsion
between two protons overtake the attractive strong force?

(A) 2× 10−6 m
(B) 2× 10−9 m
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(C) 2× 10−12 m
(D) 2× 10−15 m
(E) 2× 10−18 m

11. The top quark is not observed to form bound states
because:

(A) It does not interact with the strong force.
(B) It is electrically neutral.
(C) It is too heavy and decays before it can form bound

states.
(D) It has never been produced at particle colliders.
(E) Its bound states decay only to neutrinos, which are

invisible.
12. The Pound–Rebka experiment conclusively demon-

strated which of the following properties of light and
matter?

(A) Photons are exactly massless.
(B) Light is redshifted or blueshifted in a gravitational

potential.
(C) The speed of light in a solid is reduced by its index of

refraction.
(D) Semiconductors preferentially absorb light at discrete

frequencies.
(E) Gamma rays have greater penetration depth than

alpha particles.

13. Consider three radioactive isotopes N1, N2, and N3, with
atomic number, mass number, and atomic mass in MeV
given in the table above. Which of the following decays
are possible?

(A) N1 → N2 by beta emission
(B) N3 → N2 by positron emission
(C) N3 → N1 by alpha emission
(D) N3 → N2 by gamma emission
(E) N2 → N1 by electron capture

14. What is the value of the line integral
∮

1
z
dz, where

z is a complex number and the line integral is taken
around a counterclockwise path encircling the origin in
the complex plane?

(A) 0
(B) 1
(C) π i

Z A m (MeV)

N1 10 20 18.6
N2 11 20 18.0
N3 12 20 18.8

(D) 2π i
(E) −2π i

8.6 Solutions: Specialized Topics

1. B – The only decay that does not violate conservation of
lepton number or charge is B, with one anti-electron and
one electron neutrino, and a final charge of+1.

2. A – The presence of a neutrino is a dead ringer for the
weak force. The longer lifetime is also important, since
the weak force is (by its very name) weaker than the
strong force, but electromagnetic decays are also slow.

3. A – Recalling that the up quark has charge +2/3, the
only combination with charge+2 is uuu. This is also con-
sistent with spin-3/2, which is one possible state from
addition of spins applied to three spin-1/2 quarks.

4. C – Inflation was a period of exponential expansion of
the universe, responsible for “smoothing out” all inhomo-
geneities in the early universe. This manifests itself in the
fact that the cosmic microwave background has almost
the same temperature at diametrically opposite points on
the sky, despite the fact that light had no time to travel
between them at the surface of last scattering.

5. C –An exponentially decreasing force law is characteristic
of a massive particle. This is the same physics responsible
for the exponentially decreasing strong force outside the
nucleus due to exchange of massive pions.

6. B – The conductivity for a semiconductor increases
as the number of free electrons increases. The den-
sity of free electrons in the material is increased by
thermal excitation, as the thermal energy is enough to
excite some electrons across the gap into the conduction
band.

7. A – The Drude model treats the electrons as a classical
gas, while the Sommerfeld model incorporates quantum
effects, in particular the Fermi–Dirac distribution. The
ratio of the specific heats in the two models is approx-
imately kBT/EF , which is also how the number of con-
duction electrons scales in a metal. Only electrons near
the Fermi surface can be thermally excited and carry
current.

8. D – I is true by the definition of the Brillouin zone. II
is true by the Born–von Karman boundary conditions,
which are almost certainly beyond the scope of the GRE,
but the result should be intuitively clear because the num-
ber of states in the Brillouin zone must equal the number
of primitive unit cells in the crystal, which is proportional
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to N. Since the Brillouin zone has fixed volume, the spac-
ing between states must scale as 1/N, which for large N
means the states effectively form a continuum. Finally,
III is false because electrons in a periodic lattice satisfy
Bloch’s theorem, and Bloch functions are not in general
eigenstates of the free-space momentum operator.

9. B – Recall that the number of charge carriers NC in
a metal is proportional to NkBT/EF , where N is the
total number of valence electrons in the metal. We have
EF ∝ n2/3, and N ∝ n, where n is the number den-
sity of electrons, so for equal masses of materials with the
same number of valence electrons, NC ∝ n1/3, implying
choice B.

10. D – You should be familiar with the fact that the charac-
teristic range of the nuclear force is 1 fm, or 10−15 m.

11. C – The top quark is the heaviest quark and decays on
a timescale of 10−25 s, much shorter than the typical
lifetime 10−23 s of hadronic bound states.

12. B – The Pound–Rebka experiment demonstrated the
gravitational blueshift of light falling in a gravitational
potential, as predicted by general relativity.

13. A – Working by process of elimination, heavier isotopes
can only decay to lighter isotopes, so N2 → N1 is forbid-

den, eliminating E. C is forbidden both because the mass
difference between N3 and N1 is lighter than the mass of
an alpha particle (about 4 MeV), and because alpha emis-
sion must reduce the mass number of the nucleus by 4.
D is forbidden by charge conservation since N3 → N2

is effectively a proton converting into a neutron, which
must be accompanied by emission of a positively charged
particle. This leaves A and B. It turns out that positron
emission is forbidden for a somewhat subtle reason: the
mass difference of the atoms mN3 − mN2 must be greater
than 2me ≈ 1 MeV, because after the emission of a
positron with mass me, N2 is an ion N−

2 with an extra
electron. It must shed this extra electron to transition
to the neutral atomic state with mass mN2 , so the tran-
sition N3 → N2 actually requires the emission of two
particles of massme (plus neutrinos, which are effectively
massless). This leaves only choice A.

14. D – You are unlikely to encounter any complex analysis
on the GRE, but because the Specialized Topics descrip-
tion includes “mathematical methods,” we included this
problem as an example of a basic math fact you might
have to know. Cauchy’s theorem tells you the value of this
integral is 2π i.

 



9 Special Tips and Tricks for
the Physics GRE

One of the main reasons we wanted to write a Physics GRE
review book is that none of the existing review materials
address both general test-taking strategies and strategies spe-
cific to physics problems. We’ll make some general sugges-
tions applicable for multiple-choice tests at the end of this
chapter, but we’ll start with several important and physics-
specific tips and tricks.

9.1 Derive, Don’t Memorize

If you’re just beginning your GRE preparation, and you’ve
started looking through your freshman year textbook, you’re
probably overwhelmed by the sheer number of formulas. If
you’re like most physics students, you probably don’t even
remember learning many of them! But for better or for worse,
the Physics GRE is a test of outside knowledge, and you need
to know certain formulas to answer many of the questions.
And the formula sheet provided at the beginning of the test
is worse than useless: numerical values of constants you’ll
never need, a couple random definitions, and three moments
of inertia. Obviously we’re going to need an efficient way to
remember all the missing formulas.
Richard Feynman (famous twentieth-century physicist and

co-inventor of quantum electrodynamics) has a wonderful
piece of advice on this sort of thing: “knowledge triangula-
tion.” No one can possibly remember all the formulas, but if
you can remember a few key facts, you can reconstructmost of
the rest of your knowledge, and “triangulate” unknown facts
from known ones. The key to this is remembering the basic
steps in the important derivations in all the key areas tested
on the Physics GRE.

Try this: divide up your formulas into categories based
on how involved the derivations are. Class 1 would be the
absolute basics, such as F = ma, expressions for kinetic
energy ( 12mv2 for translational, 1

2 Iω
2 for rotational), the rest

energy E0 = mc2 of a particle, and so on. These are essentially
definitions of important physical quantities, rather than actual
formulas. Class 2 would be formulas that you could quickly
derive in a couple steps from the Class 1 formulas. This might
include formulas for recoil velocities in one-dimensional elas-
tic collisions where one mass is at rest (apply conservation
of momentum and energy) and the cyclotron frequency of a
charged particle in a magnetic field (use the fact that the mag-
netic field provides the centripetal force required for uniform
circular motion). Class 3 would be any formula or equa-
tion that you expect will take more than two or three lines
of algebra to derive, such as normal mode frequencies for
a pair of coupled springs or second-order energy shifts in
quantum-mechanical perturbation theory.
Now, focus your attention on memorizing the Class 1

formulas, and the steps in the derivations that lead to the
Class 2 formulas. Start a formula sheet containing the Class
3 formulas, adding them as you come across them in your
studying, and memorize them as you go. Also, include
a sketch of the derivations of the Class 2 formulas, but
don’t include the formula itself. Your notes might look like
this:

EM boundary conditions at a conductor: apply Maxwell’s
equations using infinitesimally thin pillboxes and loops

That way, every time you review your formula sheet, you’ll
force yourself to rederive these formulas. If you find you can’t
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do this after several tries, promote it to a Class 3 formula and
write it down.
Of course, this classification is a very individual process,

and will depend strongly on which subjects you consider your
strengths or weaknesses. But a good target is to have no more
than ten Class 3 formulas for the major subjects (classical
mechanics, electricity and magnetism), and no more than
five Class 3 formulas for each of the smaller subject areas.
Anything else is probably overkill, assuming you’re famil-
iar enough with the basics to know the Class 1 formulas by
heart. And despite what the GRE formula sheet may suggest,
moments of inertia are not worth memorizing. We would
consider the formula I = mr2 for a point mass a Class 1 for-
mula, and everything else Class 2 (just integrate, or use the
parallel axis theorem).
You can go even further and develop mnemonics for mem-

orizing Class 3 formulas by treating them as Class 2 formulas,
and doing a quick-and-dirty “derivation.” Here are a couple
of examples. The formula for the Bohr radius of the hydrogen
atom, a0 = 4πε0�

2/mee2, is both completely ubiquitous in
quantum mechanics and a huge mess. But instead of memo-
rizing the expression, you can cheat slightly and derive it using
mostly classical mechanics and a little quantum mechanics.
Apply the uncertainty principle in the form �r�p ∼ � to the
Bohr model of the hydrogen atom, where we assume the elec-
tron executes uniform circular motion in the Coulomb field
of the proton. Putting �r = r and �p = p, and turning the
∼ sign into an = sign, we obtain precisely the Bohr radius.
(Try it yourself!) Strictly speaking, of course, this derivation is
completely bogus: the p appearing in the uncertainty relation
should really be the radial momentum, the right-hand side
should be �/2, and setting �r = r is dubious at best. How-
ever, if you just treat this derivation as a mnemonic, you have
a two-line derivation of a Class 3 formula, which takes it off
your list of formulas to memorize. A simpler example, but one
that may be a little too advanced for the Physics GRE, is the
Schwarzschild radius of a black hole. Treat light like a “parti-
cle” of mass m and kinetic energy 1

2mv2, and find the starting
radius R for which the escape velocity from a body of massM
is the speed of light v = c. You’ll find the massm cancels out,
and that light can only escape to infinity for R > 2GM/c2, the
Schwarzschild radius. Again, the right answer for the wrong
reasons, but it’s quick and it works.
Keep an eye out for mnemonics like this, and you should

be able to keep your formula sheet to a manageable size. That
way you can devote more of your study time to reviewing and
doing practice problems, rather than cramming your brain
full of formulas.

9.2 Dimensional Analysis

Physical quantities have units. This may not seem like a pro-
found statement, but it is an extraordinarily powerful tool
for getting order-of-magnitude answers to physical questions,
without ever doing involved computations. On the GRE,
it offers an interesting alternative problem-solving method
thanks to the multiple-choice format. The very first thing you
should do when you see a tough-looking question is to scan
the answer choices to see if they all have the same units. If not,
there’s a decent chance that only one of the answer choices
has the correct units, and by identifying the units you want
for the problem in question, you can get to the correct answer
by dimensional analysis alone.
Here are some answer choices similar to those that

appeared on a 2008 ETS-released test:

(A) h/f
(B) hf
(C) h/λ
(D) λf
(E) hλ

Without even knowing the question, only one of these
choices can possibly be correct, because they all have differ-
ent units. A question this easy is relatively rare, but you might
expect to see a few problems on each test that can be solved
with dimensional analysis.
A somewhat more common example is:

(A) R
√
l/g

(B) R
√
g/l

(C) R
√
2l/g

(D) Rg/l
(E) R2l/2g

Assuming R and l stand for lengths (g always has its usual
meaning of gravitational acceleration), a quick scan shows
that A and C have the same units, while all the others are
different. So once we know which units we’re looking for, at
best we’ve solved the problem, and at worst we’re down to two
choices, A and C.
Because dimensional analysis can at least be used as a check

on the answers of many problems on the GRE, it’s an excel-
lent fallback tool in case you forget exactly how to approach a
problem or draw a complete blank. It pays to get very comfort-
able with computing units for quantities, so here’s Example 9.1
to practice with.
Since this kind of dimensional analysis comes up so often,

we strongly recommend coming up with your own method
for solving these dimensional equations. Some combination
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EXAMPLE 9.1

Which of the following gives the uncertainty �x2 for the ground state of the harmonic oscillator?

(A)
�

2mω

(B)
�
2

mω

(C)
�ω

m
(D)

ω

2�m

(E)
�ω

m2

We’re looking for a quantity with units of (length)2. First, let’s do the dimensional analysis the straightforward
way, listing the dimensions of all the variables as powers of mass M, length L, and time T, the three fundamental
units in the SI system:

● �:ML2T−1
● m:M
● ω: T−1

The most general combination we can form is �
ambωc, and we want this to have units of L2, so we get a system of

linear equations in a, b, and c that we can solve:

a+ b = 0

2a = 2

−a− c = 0.

It’s straightforward to see that a = 1, b = −1, and c = −1; in other words, �/mω, choice A. We’re off by a factor
of 2, but who cares: only choice A has the correct units. In fact, writing down the linear equations was probably a
waste of time, since we could have just as easily stared at the list of units for �, m, and ω and determined that the
quantity we were looking for was �/mω right away.
For an alternate method, we could have avoided the ugly units of � by remembering that �ω has nice units of

energy. One form of energy is kinetic energy, 12mv2, so to get units of L2 we need to divide energy by one power of
M and multiply by two powers of T. This gives

�ω × 1
m
× 1

ω2 =
�

mω
,

as before. Note howmuch faster this was than actually computing the uncertainty for the harmonic oscillator, either
by using operator methods or the position-space wavefunction!

of memorizing the MLT units for common constants,
remembering useful combinations of constants with nice
units like q2/ε0, and mnemonic methods would be an excel-
lent start.

9.3 Limiting Cases

A careful analysis of limiting cases is one of the most effi-
cient ways to check your work on physics problems. This is

especially true for the GRE, where you’ll often be able to hone
in on the correct answer choice by considering limiting cases,
even when dimensional analysis fails.
What exactly constitutes a “limiting case,” of course,

depends on the problem. Some of the more common ones
include letting a quantity such as a mass, velocity, or energy
go to zero or infinity, and seeing if the result makes sense in
this limit. Here’s a simple example: say you have a block of
massm on an inclined plane at an angle θ from the horizontal,
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EXAMPLE 9.2

Consider the classic problem of a wheel of mass M and radius R up against a ledge of height h, shown in Fig. 9.1.
What horizontal force F do you have to apply at the axle to roll the wheel up over the ledge? (Try this problem
yourself before reading the rest of the discussion.)

F
R

h

R − h α

Figure 9.1 A wheel being pushed up a ledge.

This problem is solved most simply by considering the torques about the contact point with the ledge; the ledge
exerts some complicated force on the wheel, but we can ignore this entirely because it exerts no torque about the
contact point. The wheel will roll up if the torque due to the horizontal force exceeds the torque due to gravity:

τg = RMg sinα = Mg
√
R2 − (R− h)2,

τF = RF sin(π/2− α) = RF cosα = F(R− h),

τF > τg =⇒ F > Mg
√
2Rh− h2

R− h
.

Now, let’s say we made a mistake calculating sinα, and wrote sinα =
√
R2 − h2

R
. This gives F > Mg

√
R+ h
R− h

.

This sort of looks right: it has the right dimensions, and it goes to infinity as h → R, which makes sense (you’re
never going to be able to push the wheel over the ledge using just a sideways force if the ledge is as high as the
radius). However, taking the limiting case of h→ 0, we find F > Mg. This certainly doesn’t make sense: if the ledge
disappears, then any force, however small, will allow the wheel to keep rolling. So we know we’ve made a mistake
somewhere.

and you can’t remember whether the component of the
gravitational force along the ramp is mg cos θ or mg sin θ .
Instead of fussing around with similar triangles, just consider
what happens when θ is either 0 or π/2. In the first case, the
ramp is horizontal, so the block doesn’t slide; in other words,
gravity doesn’t act at all along the direction of the ramp. In
the second case, the ramp is vertical, so the entire force of
gravity mg acts downwards and the block just falls straight
down. Either of these tell you immediately that the force we’re
looking for ismg sin θ .
Checking limiting cases is an extremely powerful strategy if

you’re running out of time at the end of the test. For sets of
answer choices that contain algebraic expressions differing by
more than just numerical factors, checking the limiting behav-
ior of the answers usually will let you eliminate some choices.

Remember that eliminating even one answer choice gives you
a positive expected value for that question. If you can quickly
identify the relevant limiting cases, and check them against
the answer choices, you can often eliminate up to three wrong
answers in under a minute. See Example 9.2.

9.4 Numbers and Estimation

Broadly speaking, there are two kinds of physicists: theo-
rists and experimentalists. If you’re a theorist, you’re probably
more comfortable with formulas than numbers, and you
might not remember the last time you had to calculate an
explicit temperature, energy, or pressure. But a large part
of the Physics GRE requires you to think like an experi-
mentalist, estimating rough orders of magnitudes for various
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physical quantities. Here we’ll talk about some strategies for
doing so.
First of all, there are some numbers you should just know

cold. These are the numbers that show up so often in real
physics problems that if you haven’t alreadymemorized them,
you will have after less than a fewmonths of graduate research
in the relevant field. Perversely, many of these are not the
numbers that show up on the Table of Information on the
first page of the GRE. Here’s the most important example: the
binding energy of hydrogen is 13.6 eV. You could memorize

the formula for the Bohr energies, En = − 1
n2

mee4

2(4πε0)2�2
,

plug in all the constants given in the table, and find E1 after
a ton of arithmetic . . . or you can memorize this one number.
Actually, this number tells you quite a lot: if you remem-

ber that the mass of the electron is about 0.5 MeV/c2 (another
number to memorize – see below), this means that you can
treat the hydrogen atom nonrelativistically, because the elec-
tron’s binding energy is much less than its mass. If you know
that X-rays have energies of the order of keV, you know that
hydrogen atom transition energies are safely below this range,
in the ultraviolet. And you know that atoms close to hydrogen
in the periodic table will have roughly similar ionization ener-
gies: more specifically, the binding energy of each electron
increases as the square of the nuclear charge Z, so the ground
state energy of helium is about (13.6)(22)(2) ≈ 110 eV, and
the binding energy of lithium is about (13.6)(32)(3) ≈ 370 eV.
To be clear, these numbers are just approximations – you’ve
probably treated the helium atom using the variational prin-
ciple in your quantum mechanics class, and you’ve seen the
ground state energy is somewhat less than 110 eV. But these
rough estimates are plenty for the GRE – in fact, estimating
the binding energy of lithium is a practice question on the
Sample Question set released by ETS.
Other important numbers show up as commonly used

combinations of fundamental constants. If you’re like us, you
probably had to memorize the value for h in high school
chemistry – but when’s the last time you actually had to use
the value for h by itself in a calculation? If you’re calculat-
ing anything in quantum mechanics, you use �, and if you’re
doing anything relativistic, you use �c. For speed, these com-
binations are worthmemorizing, because they’re the ones that
you’ll actually need. But note that they are currently listed in
the GRE formula sheet in case you forget. Similarly, Boltz-
mann’s constant kB is almost never used by itself, but always
in combination with temperature. But if you remember that
room temperature is about 300K ≈ 1

40 eV, you can get the
value if you need it. When dealing with combinations of

constants, equally important is remembering the units: �c ≈
200MeV · fm has units of energy × distance, which tells you
that the characteristic distance associated with an object with
energy 0.5 MeV is (200/0.5) × 10−15 m, or about 4 × 10−13

m: this is a rough estimate of the Compton wavelength of the
electron. (Actually, this is off by a factor of 2π , but who cares?
It’s good enough as an order of magnitude.)
Based on our experience reviewing past GREs, here is a

list of the top five numbers to memorize (in order of impor-
tance):

● 13.6 eV – energy of the ground state of hydrogen
● 511 keV – mass of the electron in units of c2

● 1.22 – coefficient appearing in the Rayleigh criterion,
D sin θ = 1.22λ

● 2.9× 10−3 m·K –Wien’s displacement law constant
● 2.7 K – temperature of the cosmic microwave background

You can almost certainly get by with just these numbers.
Not included in this list are other numbers you can derive in
one or two short steps from numbers given in the Table of
Information, such as �c as discussed above.1

9.5 Answer Types (What to Remember in a
Formula)

The Physics GRE is tricky. Compared to other tests of simi-
lar subject matter, such as the AP Physics test or the Physics
section of the MCAT, the testmakers throw in answer choices
that are deliberately designed to mislead you. Being aware of
the common patterns of answer choices can help you avoid
these traps, and can often suggest the most efficient approach
to a problem. In order of increasing difficulty, here are some
patterns you should be aware of.

● Answer choices with different dimensions. This was cov-
ered in Section 9.2 above, and these problems are some of
the easiest because of the possibility of eliminating many
answer choices without actually doing any calculations.

● Order of magnitude. This was touched on in Section 9.4,
and similar to dimensional analysis questions, one can get
pretty far just by knowing rough orders of magnitude for
common physical situations. See Example 9.3.

● “Which power of two?” This pattern is best illustrated by a
couple of examples:

1 Be careful! The most recent GRE included hc on the formula sheet, but
often �c is the more useful quantity.
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EXAMPLE 9.3

The average intermolecular spacing of air molecules in a room at standard temperature and pressure is closest to

(A) 10−12 cm
(B) 10−9 cm
(C) 10−6 cm
(D) 10−3 cm
(E) 1 cm

While you could try to calculate this quantity exactly, using the fact that one mole of gas occupies 22.4 L at STP and
so on, it’s best just to recognize that A is the scale of nuclear diameters, B is the scale of atomic diameters, and E is
macroscopic, which just seems incorrect. So, by common sense, we’ve narrowed it down to C and D.

1. (A) 2
(B) 4
(C) 8
(D) 16
(E) 32

2. (A) 0
(B) a/3
(C) a/

√
3

(D) a
(E) 3a

While the first set is numeric and the second set is symbolic,
they’re both testing the same thing: do you know the correct
power law for a given variable in a certain formula? Often
these answer choices will all have the same dimensions, so
dimensional analysis won’t help you. But the fact that the
choices almost always involve nice numbers suggests that
memorizing the various constants that accompany formu-
las is mostly useless: all that matters is the dependence on
the various parameters in the problem. As we’ve empha-
sized many times, this is especially apparent in the formula
for the Bohr energies, where the dependence on reduced
mass, nuclear charge, and principal quantum number are
all important. On a similar note, if a formula has a simple
power-law dependence, such as the Rayleigh formula for
small-particle scattering, it’s worth simply committing it to
memory without asking too many questions about where it
came from.

● Same units, different limiting cases. This pattern might
come from a problem with an angle that can range from
0 to 90◦, two unequal masses m and M, or two springs
with different spring constants k1 and k2. But in any case,
while dimensional analysis isn’t helpful, taking limiting

cases as discussed in Section 9.3 can often help narrow
down the answer choices. This pattern lies right on the bor-
der between trying to do the problem from the beginning,
and forgoing any calculations and just using limiting cases
instead. Use your best judgment based on which method
you think will be the fastest based on your own strengths
and weaknesses.

● Same units, different numerical factors. This pattern,
which looks like

(A) cos(l/d)
(B) cos(2l/d)
(C) cos(l/2d)
(D) cos(l2/d2)
(E) cos(l2/2d2)

is tricky, because dimensional analysis is useless, and lim-
iting cases are almost useless. Worse, many of the answer
choices only differ by dividing instead of multiplying,
increasing the possibility that you land on a trap answer
choice by an arithmetic mistake. This pattern is a clue to
slow down, work through the problem carefully, and try
not to refer to the answer choices at any point during your
calculation.

● Random numbers. Sometimes, you’ll have to work out a
problem numerically, and all the answer choices will be
numbers with no obvious relation to one another. This
arises most often in basic kinematics and mechanics prob-
lems, where luckily the physics is not an issue – the strategy
is just to work slowly and make sure you don’t make
an arithmetic mistake. Equally as important, many of the
wrong answer choices are likely correct answers to an inter-
mediate step in the calculation, so, just as mentioned above,
try not to refer to the answer choices until you’re absolutely

12
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through calculating. This reduces the chance you’ll get
distracted by a trap answer.

9.6 General Test-Taking Strategies

● Don’t practice with a calculator! You won’t be allowed a
calculator for the GRE, and the arithmetic required for each
problem has been deliberately simplified to avoid messy
long division. Resist any temptation to practice with a cal-
culator. We have tried to make the problems in this book as
similar as possible to GRE problems, so you should get used
to the kinds of arithmetic simplifications you might see on
the real test: square roots and factors of π will either be
given in the answer choices or be close to whole numbers,
and so on.

● Don’t study the night before the exam. In particular, don’t
try to cram formulas. Remember, you can derive most of
the ones you need from simpler formulas, which should be
intimately familiar to you since you’ve been studying hard
for the past several months.

● Consider working problems symbolically first, only plug-
ging numbers in at the end. Many GRE problems have
extraneous information. If you feel comfortable with alge-
braicmanipulation, it may be a good idea to assign variables
to given numbers (if a radius is given as 5 cm, just call it R),
find the solution algebraically, and plug in numbers only at
the end. Not only will this reduce the amount of arithmetic
you have to do, but it may eliminate mistakes because you
can check the dimensions of your answer easily. You may
also find that you didn’t need to use all the information
given, or that some factors canceled out.

● Always guess. Unlike some other multiple-choice tests,
the current version of the GRE does not penalize wrong
answers. (You may see different instructions in older ver-
sions of the test released by ETS, but the most recently
released test from 2017 has the new instructions.) There-
fore, it is always to your advantage to guess. However,
random guessing should be a last resort, and the tips and
tricks detailed above will sometimes make it possible to
narrow down the answer choices completely without ever
actually sloving the problem from first principles!

● Avoid time sinks. Feel free to take a first pass through the
test doing only the problems you feel you know how to
answer immediately. On your second pass through the test,
you can tackle themore calculation-heavy problems, but try
not to spend more than 5 minutes on any particular prob-
lem. You should be averaging 1.7 minutes per problem, so
it may be worth making a note of the time when you start

your second pass to make sure you have enough time to fin-
ish the problems that are left. If it looks like you’re getting
stuck in a time sink, look over the answer choices and see if
limiting cases or dimensional analysis can help you narrow
down the answer choices. You can always come back to the
really tough problems in the last half hour before the test
ends.

9.7 Problems: Tips and Tricks

1. Optical phonons in a solid can be excited by infrared light.
The typical energy of optical phonons is

(A) 10−4 eV
(B) 0.1 eV
(C) 100 eV
(D) 100 KeV
(E) 100 MeV

2. A capacitor filled with a dielectric of dielectric constant ε is
connected to a battery of fixed voltage. If ε is doubled, the
energy stored in the capacitor is multiplied by a factor of

(A) 1/4
(B) 1/2
(C) 1
(D) 2
(E) 4

3. In nuclearmagnetic resonance experiments, a nucleus with
magnetic moment μ in an external magnetic field B will
resonantly absorb radiation of frequency

(A) μB/�

(B) μ�/B
(C) μ/(B�)
(D) μ�B
(E) B/(μ�)

4. Metal A has a Fermi energy of 5 eV and a density of 3
g/cm3. Metal B has the same number of valence electrons
as metal A, but a density of 24 g/cm3. The Fermi energy of
metal B is approximately

(A) 2.5 eV
(B) 5 eV
(C) 10 eV
(D) 20 eV
(E) 40 eV

5. A particle of mass m is attached to a spring with spring
constant k and feels a frictional force F = bv propor-
tional to its velocity. The particle starts at position x0 at
time t = 0 and is observed to undergo oscillatory motion.
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Which of the following could describe its position x as a
function of time?

(A) x0 e−
m
2b t

(B) x0e
−
√

k
m t cos

(√
k
m t
)

(C) x0 e−
b
2m t sin

(√
m
k − m

b t
)

(D) x0 e−
b
2k t cos

(√
b
m − k2

2m2 t
)

(E) x0 e−
b
2m t cos

(√
k
m − b2

4m2 t
)

9.8 Solutions: Tips and Tricks

1. B – Knowing that the binding energy of hydrogen is 13.6
eV (one of your numbers to memorize) tells you that
energy transitions in hydrogen are at the eV scale. Since
some of the hydrogen transition lines are in the infrared
spectrum, this means that infrared photons have energies
close to an eV.

2. D – Inserting a dielectric into a capacitor multiplies its
capacitance by ε. The energy stored in the capacitor can be
written as U = 1

2CV
2, which is useful because we are told

the capacitor is at constant voltage. Therefore, the energy
scales linearly with C, and hence linearly with ε, choice D.
This is a classic “which power of 2” problem.

3. A – All the answer choices have different units, so dimen-
sional analysis is the way to go here. Rather than deal with
the messy units of electromagnetism, we can remember

that the energy of a dipole (anti)aligned with a mag-
netic field is U = μB. So μB has units of energy, but
so does �ω, which is the energy of a photon of angu-
lar frequency ω. This tells us that μB/� has units of
frequency.

4. D – Since the answer choices resemble a “which power of
2” problem, we knowwe are not interested in the constants
that appear in the formula for the Fermi energy, so this is a
good candidate for “derive, don’t memorize.” Electrons in
a metal fill up a Fermi sphere with radius pF and volume
proportional to p3F . The total number of electrons is pro-
portional to the density ρ, so pF ∝ ρ1/3. The Fermi energy
is EF = p2F/2me, so EF ∝ ρ2/3, which is the relation we
need to solve this problem. If the density is increased by
a factor of 8, the Fermi energy is increased by a factor of
82/3 = 4, which gives choice D.

5. E – A direct solution of this problem by solving the
second-order differential equation for a damped harmonic
oscillator would be a time sink. Instead, we can use limit-
ing cases and dimensional analysis. A useful limit to take is
b→ 0, the case of an undamped oscillator. In that case, we
know that the amplitude should be constant and the angu-
lar frequency should be ω = √k/m. Only choice E satisfies
those criteria. Even if you didn’t remember that formula
for ω, choices A, C, and D have incorrect units in the expo-
nentials and trig functions. B has correct units, but the fact
that it is independent of b is suspicious, since as b→ 0 the
amplitude should stay constant.
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Sample Exam 1

TABLE OF INFORMATION

Rest mass of the electron me = 9.11× 10−31 kg

Magnitude of the electron charge e = 1.60× 10−19 C

Avogadro’s number NA = 6.02× 1023

Universal gas constant R = 8.31 J/(mol · K)
Boltzmann’s constant k = 1.38× 10−23 J/K

Speed of light c = 3.00× 108 m/s

Planck’s constant h = 6.63× 10−34J · s = 4.14× 10−15 eV · s
� = h/2π

hc = 1240 eV · nm
Vacuum permittivity ε0 = 8.85× 10−12 C2/(N ·m2)

Vacuum permeability μ0 = 4π × 10−7 T · m/A

Universal gravitational constant G = 6.67× 10−11 m3/(kg · s2)
Acceleration due to gravity g = 9.80 m/s2

1 atmosphere pressure 1 atm = 1.0× 105 N/m2 = 1.0× 105 Pa

1 angstrom 1 Å = 1× 10−10 m = 0.1 nm

Prefixes for Powers of 10

10−15 femto f

10−12 pico p

10−9 nano n

10−6 micro µ

10−3 milli m

10−2 centi c

103 kilo k

106 mega M

109 giga G

1012 tera T

1015 peta P

Rotational inertia about center of mass

Rod
1
12

M�2

Disk
1
2
MR2

Sphere
2
5
MR2

 



 



SAMPLE EXAM 1
Time— 170 minutes

100 questions

Directions: Each of the questions or incomplete statements below is followed by five suggested answers or completions. Select
the one that is best in each case and then fill in the corresponding space on the answer sheet.

1. A centrifuge can be used to simulate large gravitational
forces. Consider a centrifuge consisting of an arm of
length 4 meters, rotating about a fixed pivot at con-
stant speed. What must this speed be to simulate a
gravitational acceleration of 9g? (

√|g| = √
9.8)

(A) 2
√|g|m/s

(B) 3
√|g|m/s

(C) 6
√|g|m/s

(D) 18
√|g|m/s

(E) 36
√|g|m/s

2. A block of mass m moving with velocity v collides with
a heavier block of mass 4m, initially at rest. If the colli-
sion is perfectly elastic, what is the velocity of the heavier
block after the collision?

(A) 4v
(B) (1/4)v
(C) v
(D) (5/2)v
(E) (2/5)v

3. An LC circuit, consisting of a solenoid and a parallel-
plate capacitor, has resonant frequency ω. If the linear
dimensions of all circuit elements are doubled, the new
resonant frequency is

(A)
√
2ω

(B) 2ω
(C) ω

(D) ω/2
(E) ω/

√
2

4. A point dipole with dipole moment p = pẑ is placed at
the center of a thin spherical conducting shell of radius
R. What is the electric field outside the shell?

(A)
1

4πε0

p
r2R

r̂

(B) 0

(C)
1

4πε0

3(p · r̂)r̂− p
r3

(D) − 1
4πε0

p
r2R

r̂

(E) − 1
4πε0

3(p · r̂)r̂− p
r3

5. The ground state energy of helium is 79 eV. If the
ground state wavefunction of helium were a simple
product of 1s wavefunctions, �100(r1)�100(r2), the pre-
dicted ground state energy would be 108 eV.What is the
MAIN factor that accounts for this discrepancy?

(A) Electron–electron Coulomb repulsion
(B) Nonzero orbital angular momentum in the ground

state
(C) Spin–spin coupling between the orbital electrons
(D) Spin–spin coupling between the nucleons
(E) None of these

6. The energy of gamma rays from a transition of a nucleus
from the first excited state to its ground state is mea-
sured. Which of the following is true of the measure-
ment?

(A) Gamma rays from this transition are part of a con-
tinuum of gamma rays from the de-excitation of
low-lying states.

(B) The measured mean energy must correspond to the
energy of a vibrational state of the nucleus.

(C) The measured width of the spectral peak must be
�/(2τ ), where τ is the lifetime of the excited state.

(D) The measured mean energy is greater than the true
transition energy.

(E) The measured mean energy is less than the true
transition energy.
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7. A system of electrons is in a box of fixed volume. If the
number of electrons in the box is doubled, the Fermi
energy is multiplied by a factor of

(A) 2−1/2

(B) 21/2

(C) 22/3

(D) 2
(E) 23/2

8. A gas of electrons is confined to a two-dimensional sur-
face at z = 0 but is otherwise free to move in the x-
and y-directions. An external magnetic field is applied
so that the electrons feel a harmonic oscillator potential,
U = 1

2mω2(x2 + y2). The temperature of the system is
well above the Fermi temperature. What is the specific
heat per particle of the electron gas?

(A) 1
2k

(B) k
(C) 3

2k
(D) 2k
(E) 5

2k

9. A particle with massm and angular momentum lmoves
in a constant central potential U(r) = −k/r, with k > 0.
What, if any, is the radius of its stable circular orbit?

(A) The particle has no allowed stable circular orbit.

(B)
l2

mk

(C)
l2

2mk

(D)
2l2

mk

(E)
2l2

3mk

X

h R

10. Two identical disks shown in the figure above, each of
thickness h, radius R, and mass M, are rigidly attached
at a point on their edges. What is the moment of inertia
of the pair of disks about an axis X, perpendicular to the
plane of the disks, which passes through the point where
the disks are connected?

(A) MR2

(B) 3
2MR2

(C) 3MR2

(D) 6MR2

(E) 3
2MRh

11. A distant galaxy is located at redshift 2. What is the
observed wavelength of the 21 cm hyperfine transition
line of hydrogen originating from the galaxy?

(A) 7 cm
(B) 10.5 cm
(C) 21 cm
(D) 42 cm
(E) 63 cm
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12. A quantum system is prepared in a state |�〉, which is
a superposition of three energy eigenstates. The first two
states in |�〉 have energies E0 and 2E0, and they are mea-
sured with probabilities 1/4 and 1/2, respectively. If the
energy expectation value in the state |�〉 is 9

4E0, what is
the energy of the third eigenstate in |�〉?
(A) 3

4E0
(B) E0
(C) 2E0
(D) 4E0
(E) 43

16E0

13. The Planck mass is given by which of the following
expressions?

(A)
√

�G
c3

(B)
√

�G
c5

(C)

√
�c3

G

(D)

√
�c5

Gk2

(E)
√

�c
G

14. A spaceship traveling at 0.6c towards a planet trans-
mits a signal at 1 GHz to the planet’s inhabitants. What
frequency is the signal when it is received on the planet?

(A) 1GHz
(B) 2 GHz
(C) 2.5 GHz
(D) 4 GHz
(E) 8 GHz

15. How much work is required to move a point charge q
from infinity to a distance d above an infinite conducting
plane?

(A) − 1
4πε0

q2
4d

(B) − 1
4πε0

q2
2d

(C) 1
4πε0

q2
4d

(D) 1
4πε0

q2
2d

(E) 0

16. An initially uncharged 10-µF parallel-plate capacitor is
charged with a constant current of 1 mA. What is the
potential difference between the plates after one second?

(A) 0.01 V
(B) 1 V
(C) 10 V
(D) 100 V
(E) 1000 V

17. A particle in a one-dimensional infinite square well
between x = 0 and x = L is subject to the following
perturbation:

δV(x) =
{

V0, x < L/2,
0, otherwise.

What is the leading-order shift in the energy of the first
excited state? Recall that the wavefunction for the first
excited state is

ψ(x) =
√
2
L
sin

2πx
L

.

(A) −V0

(B) V0

(C) V0/4
(D) 0
(E) V0/2

18. Which of the following is NOT true about the isothermal
expansion phase of a Carnot cycle?

(A) The free energy of the gas increases.
(B) The entropy of the gas increases.
(C) The isothermal expansion phase is reversible.
(D) The expansion takes place at the temperature of the

“hot” reservoir.
(E) The gas does work on its surroundings.
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19. Monochromatic blue light of wavelength 450 nm is
shined on a slit of width a. A diffraction pattern is
observed on a screen 10 m away. What must a be such
that the width of the central diffraction maximum is 100
times the width of the slit?

(A) 45 nm
(B) 450 nm
(C) 0.045 mm
(D) 0.21 mm
(E) 0.30 mm

a

m

g

b

Questions 20 and 21 refer to a particle of mass m, con-
fined to the surface of a torus with central radius a and
cross-sectional radius b, oriented such that the Earth’s
gravitational field points perpendicular to the plane of
the circle of radius a. Letting φ and θ be the angular
coordinates on the circles of radii a and b, respectively, a
Lagrangian for this system is

L = 1
2
m(a+ b cos θ)2φ̇2 + 1

2
mb2θ̇2 −mgb sin θ .

20. What is the conjugate momentum to φ?

(A) 1
2mφ̇(a+ b cos θ)2

(B) mφ̇(a+ b cos θ)2

(C) 1
2mb2θ̇

(D) mb2θ̇
(E) mgb cos θ

21. Which of the following quantities represents the total
energy?

(A) L
(B) L+mgb sin θ

(C) L−mgb sin θ

(D) L+ 2mgb sin θ

(E) L− 2mgb sin θ

22. A resistor with resistance R and an inductor with induc-
tance L are in series with a voltage source. For t < 0,
the voltage is 0. For t > 0, the voltage source is V . What
time t does it take for the voltage across the inductor to
drop to half of its initial level?

(A)
L ln 2
R

(B)
L
R

(C)
L

R ln 2

(D)
2L
R

(E) 0

I
i

23. A straight wire carrying current I passes through the
center of a circular wire carrying current i. If the circu-
lar loop of wire has radius R, what is the tension on the
circular wire due to the field produced by the straight
wire?

(A)
μ0iI
2πR2

(B)
μ0I2

2πR

(C)
μ0i2

2πR

(D)
μ0iI
2πR

(E) 0
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h g

r

θ

24. A uniform cylinder of height h and radius r is placed on
a flat surface and tipped at an angle θ from the vertical.
Find θ0 such that, when the cylinder is released from θ >

θ0, it falls over.

(A) arctan(2r/h)
(B) arctan(r/h)
(C) arctan(r/2h)
(D) arccos(2r/h)
(E) arccos(r/h)

25. Consider a beam of muons with energy 3GeV. The
muon’s mass is approximately 100 MeV/c2, and its life-
time at rest is 2 × 10−6 s. What is the muon lifetime
measured by an experimenter in the lab?

(A) 67 ns
(B) 20 µs
(C) 60 µs
(D) 20 ms
(E) 60 ms

26. Graphene, a two-dimensional allotrope of carbon, dis-
plays unusual electronic properties. In particular, the
dispersion relation for conduction electrons in graphene
is

(A) ω ∝ √|k|
(B) ω ∝ |k|
(C) ω ∝ |k|2
(D) ω ∝ |k|3
(E) ω ∝ |k|4

27. An electron placed in a one-dimensional harmonic
oscillator potential V = 1

2kx
2 is subject to a uniform

electric field E = E0x̂. For small E0, the lowest-order,
nonzero correction to the ground state energy is

(A) independent of E0
(B) proportional to E0
(C) proportional to E20
(D) proportional to E30
(E) proportional to E40

5 cm

2 cm

BA

28. In the optical arrangement shown above, converging
lenses A and B both have focal length 5 cm. An object
is placed 2 cm to the left of lens A. Where is the image of
the object located?

(A) 5 cm to the right of B
(B) 6.25 cm to the right B
(C) 12.5 cm to the left of B
(D) 12.5 cm to the right of B
(E) No image is formed.

29. A star of mass m orbits a galaxy of mass M in a circu-
lar orbit. The MOND theory postulates that, at small
accelerations, Newton’s Second Law is replaced by the
force law F = ma2/a0, where a0 is a constant with
dimensions of acceleration. Assuming the MOND force
law and Newton’s Law of Gravity, what is the relation
between the velocity v of the star and the radius of its
orbit r?

(A) v is independent of r
(B) v is proportional to r−1/2

(C) v is proportional to r1/4

(D) v is proportional to r−1

(E) v is proportional to r2

30. Which values of spin quantum numbers are NOT pos-
sible for a system consisting of a spin-1 particle and a
spin-2 particle?

(A) s = 3,ms = 3
(B) s = 1,ms = 0
(C) s = 2,ms = 1
(D) s = 2,ms = 0
(E) s = 0,ms = 0
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31. The radial wavefunction of the 2p state of hydrogen is

R21(r) = 1√
24

a−5/20 r exp(−r/2a0),

where a0 is the Bohr radius. What is the most probable
value of r in this state?

(A) a0/2
(B) a0
(C) 2a0
(D) 4a0
(E) 6a0

32. Mass spectrometry uses which of the following physical
properties of ions to determine the chemical makeup of
a substance?

(A) Dipole moment
(B) Nuclear spin
(C) Charge-to-mass ratio
(D) Atomic number
(E) Electronegativity

33. A musician tuning a violin to a tuning fork at 440 Hz
hears a beat frequency of 3 Hz. What is the frequency of
the note produced by the violin?

(A) 428 Hz
(B) 434 Hz
(C) 437 Hz
(D) 443 Hz
(E) It is impossible to tell from the given information.

34. A spaceship is traveling directly towards a planet at
speed 0.5c. When the ship is a distance of 1 light-hour
away from the planet (as measured in the frame of the
planet), it fires a missile at the planet with speed 0.5c.
An observer on the planet sees the flash of light from the
missile at time t1, followed by the missile impact at time
t2. What is t2 − t1?

(A) 0 min
(B) 10 min
(C) 15 min
(D) 30 min
(E) 60 min

35. An ice skater is spinning with arms extended at an angu-
lar velocity of 5.0 radians/second. After drawing her
arms in, her new angular velocity is 8.0 radians/second.
If the skater’s moment of inertia with arms extended was
I, her moment of inertia with arms drawn in is

(A) I
(B) 3I

(C)
8
5
I

(D)
5
8
I

(E)
√
5
8
I

36. Suppose that a particle in a one-dimensional system has
a Lagrangian L with a potential that is constant in time
and such that

∂L
∂t

= 0,

∂L
∂x

= 0.

Which of the following must be true?

I. Energy is conserved.
II. Linear momentum is conserved.
III. The potential is nonzero.
IV. The Euler–Lagrange equations are not satisfied.

(A) I only
(B) II only
(C) I and II
(D) I, II, and III
(E) I, III, and IV

37. A beam of particles with luminosity 1022 cm−2 s−1 is
incident upon a target with scattering cross section
10−20 cm2. Assuming a detector has an efficiency of 0.5
for detecting products of the scattering process, how
many events will the detector see if the experiment runs
for 1 day? Recall that 1 day = 8.64× 104 seconds.

(A) 4.20× 102 events
(B) 4.00× 104 events
(C) 7.20× 105 events
(D) 4.32× 106 events
(E) 8.64× 106 events
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38. An electron in a cyclotron moves in a circular orbit at a
fixed radius in the presence of a constant magnetic field
B. If the strength of the magnetic field is tripled, by what
factor must the electron’s momentum change to keep it
orbiting at the same radius?

(A)
√
3

(B) 3
(C) 1/

√
3

(D) 1/3
(E) 3/2

a

b
I

I

39. Two circular loops of wire of radii a and b are oriented
concentrically in the same plane, and they each carry a
current I circulating in opposite directions, as shown in
the figure above. What is the magnetic field at the center
of the loops?

(A) μ0I
2
( 1
a − 1

b
)
, pointed out of the page

(B) μ0I
2
( 1
a − 1

b
)
, pointed into the page

(C) μ0I
4
( 1
a − 1

b
)
, pointed into the page

(D) μ0I
2

1
a , pointed out of the page

(E) 0

40. Which of the following is true about the total orbital
angular momentum operator, L2, of a particle subjected
to an arbitrary force?

I. Always commutes with Lx, Ly, Lz
II. Always commutes with the total angular momen-

tum J2

III. Always commutes with the Hamiltonian

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I, II, and III

41. A quantum system has a Hamiltonian given by

H =
⎛
⎜⎝ a 0 0

0 0 −ib
0 ib 0

⎞
⎟⎠ ,

where a, b, c are real positive constants. What are the
possible results of a measurement of the energy of the
system?

(A) b,±a
(B) a,±b
(C) a, b, a+ b
(D) a,±√ab
(E) a,±b2

42. If magnetic monopoles existed, which of the follow-
ing expressions would be proportional to the “magnetic
charge” of themonopole? Youmay assume that there are
no other sources of electric or magnetic fields present.

(A)
∫
(∇ · E) dV

(B)
∫
(∇ · B) dV

(C)
∫ |E|2 dV

(D)
∫ |B|2 dV

(E)
∫
(E · B) dV

E
v R

L

43. A beam of nonrelativistic protons (mass m, charge q) of
velocity v enters a region of length Lwith an electric field
E perpendicular to the direction of the beam. At the end
of the region of length L is a circular target of radius R.
Assuming that the diameter of the beam is much smaller
than R, what is the minimum electric field E needed to
deflect all protons before they strike the target?

(A)
mLv2

2qR2

(B)
2mLv2

qR2

(C)
mRv2

q2L2

(D)
2mRv2

qL2

(E)
4mLv2

qR2

 



178 Sample Exam 1

44. Put the following in chronological order, starting with
the earliest.

I. Epoch of reionization
II. Nucleosynthesis
III. Inflation

(A) I, II, III
(B) I, III, II
(C) II, I, III
(D) III, I, II
(E) III, II, I

45. For a monoatomic ideal gas, which of the following is
constant during adiabatic changes of state?

(A) PV1/2

(B) PV
(C) PV5/3

(D) PV7/5

(E) PV9/7

R

m

g

M

46. A string of length L and negligible mass is completely
wound around a solid cylinder of uniform density, of
mass M and radius R, and it has a small weight of mass
m attached to its end. If the weight is released from rest
under the influence of gravity, what is its velocity when
the string is entirely unwound?

(A)
√

4mgL
M + 2m

(B)

√
2mgL−MR2

2m

(C)
√
2gL

(D)

√
2(m+M)gL

m

(E)

√
2mgL− 2MR2

m

47. An object is placed at rest in a potential fieldU(x, y, z) =
x+ y2 − cos z. What is the force on the object?

(A) F(x, y, z) = −x̂− 2yŷ− sin zẑ
(B) F(x, y, z) = xx̂+ 2yŷ− cos zẑ
(C) F(x, y, z) = −xx̂− 2yŷ+ cos zẑ
(D) F(x, y, z) = −x̂− 2yŷ+ cos zẑ
(E) F(x, y, z) = x̂+ 2yŷ+ sin zẑ

48. Consider a system with three energy levels −ε, 0, ε, and
degeneracies d(−ε) = 2, d(0) = 1, d(ε) = 3. What is
the energy of the system as T →∞?

(A) ε/5
(B) ε/6
(C) 5ε/6
(D) 0
(E) ε

49. In process 1, a monoatomic ideal gas is heated from
temperature T to temperature 2T reversibly and at con-
stant volume. In process 2, amonoatomic ideal gas freely
expands from V to 2V . Which is the correct relationship
between the change in entropy �S1 in process 1 and the
change in entropy �S2 in process 2?

(A) 0 < �S1 < �S2
(B) 0 < �S1 = �S2
(C) 0 = �S1 < �S2
(D) 0 < �S2 < �S1
(E) �S1 = �S2 < 0

50. An electromagnetic wave propagates in vacuum with
electric field E0 cos(kx− ωt)ẑ. What is the average mag-
nitude of the Poynting vector in SI units, where the
average is taken over one period of oscillation?

(A)
4E20
cμ0

(B) 0

(C)
E20
cμ0

(D)
E20
2cμ0

(E) − E20
2cμ0
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51. An observation of the reaction e+e− → γ would
necessarily violate which of the following conservation
laws?

(A) Lepton number
(B) Baryon number
(C) Energy–momentum
(D) Angular momentum
(E) Charge conservation

52. The nucleus can bemodeled as a degenerate Fermi gas. If
the Fermi momentum of nucleons in the carbon nucleus
is measured to be 40MeV/c, which of the following is an
approximate lower bound on the nuclear radius?

(A) 1 nm
(B) 10 pm
(C) 100 fm
(D) 1 fm
(E) 0.01 fm

53. Which of the following does NOT obey Bose–Einstein
statistics?

(A) Neutrinos
(B) Photons
(C) 4He nuclei
(D) 4He atoms
(E) Pions

54. The observation of a sharp line of gamma rays of energy
511 keV from the center of our galaxy is most naturally
explained by which of the following processes?

(A) Helium hyperfine transitions
(B) Hawking radiation
(C) Ammonia maser transitions
(D) Electron–positron annihilation
(E) Supernovae

Cannon

Enemy250 m

420 m

55. A soldier can fire a cannon horizontally from the top of
a 250 m cliff. He wants to hit an enemy encampment at a
420 m horizontal distance from the cliff. What must the
initial velocity of his cannonball be in order to strike the
encampment, neglecting air resistance?

(A) 22.4 m/s
(B) 39.6 m/s
(C) 58.8 m/s
(D) 94.9 m/s
(E) 134.2 m/s

56. A rocket traveling at constant speed v in empty space
instantaneously expels 10% of its mass in fuel, which is
ejected at speed v/2 relative to the rocket. What is the
final speed of the rocket? You may assume v� c.

(A) v/18
(B) 21v/20
(C) 19v/18
(D) 11v/10
(E) 3v/2

5 V

40 kΩ

10 kΩ 20 kΩ

S

57. Consider the circuit shown in the diagram.When switch
S is open, the current through the 10 k	 resistor is I1.
After switch S is closed, the current through the same
resistor is I2. What is I2/I1?

(A) 1/4
(B) 5/7
(C) 1
(D) 15/14
(E) 2
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Support wire

Pivot

d

v

α

58. A rod of length d and massM is attached to a pivot and
suspended at an angle α from the vertical using a sup-
port wire, as shown in the diagram. A lump of clay of
mass m is fired at the end of the rod with a velocity v.
Just before the clay makes contact with the rod, the wire
is cut. Assuming the clay and rod stick together after
collision, what is the angular velocity in radians of the
rod–clay system? (You may treat the lump of clay as a
point mass.)

(A)
mv cosα
(M +m)d

(B)
3mv sinα

(M +m)d

(C)
3mv cosα
(M + 3m)d

(D)
3mv

(M + 3m)d

(E)
3mv
Md

B
R

L

ω

59. A square loop of wire of side length L, containing a load
resistor R, is oriented perpendicular to the xy-plane and
rotates about the z-axis at angular frequency ω in the
presence of a uniform magnetic field B = B0x̂, as
shown in the diagram. If L = 10 cm, B0 = 2 tesla, and
R = 100.0 	, what must ω be so that the average power
dissipated in the resistor is 0.5 W?

(A) 25 rad/s
(B) 50 rad/s
(C) 314 rad/s
(D) 354 rad/s
(E) 500 rad/s

60. In calculating the entropy of a microcanonical ensem-
ble, the inverse temperature β = 1/kT can be viewed
as a Lagrange multiplier enforcing the constraint of
fixed total energy. Similarly, the chemical potential μ is
related to the Lagrange multiplier for

(A) fermion number
(B) particle number
(C) pressure
(D) volume
(E) magnetization
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61. A spin-1/2 particle interacts with a magnetic field B =
Bẑ through a Hamiltonian H = (−μBgB/2�)σz, where
μB is the Bohr magneton and g is the particle’s gyromag-
netic ratio. Consider a system of these spin-1/2 particles
in equilibrium at temperature T. Let A be the ratio of
the number of spin-up particles to spin-down particles.
If the strength of the magnetic field is doubled, the new
ratio of spin-up to spin-down particles is

(A) A−2

(B) A
(C) A2

(D) eA

(E) A exp(μBgB/�kT)

62. Which of the following is equivalent to ∇2(1/r)?

(A) −4πδ3(r)
(B) 4πδ3(r)
(C) 0
(D) 4π
(E) −4π

63. The mass of the proton is 1.67× 10−27 kg. Which of the
following is closest to the Compton wavelength of the
proton?

(A) 10−15 m
(B) 10−13 m
(C) 10−12 m
(D) 10−10 m
(E) 10−9 m

Questions 64 and 65 refer to the following scenario. A
K0 of mass mK and energy E in the lab frame decays to
a π+ and a π−, both of massmπ . The π+ is observed to
be emitted parallel to the K0 momentum.

64. What is the speed of the π+ in the K0 rest frame?

(A) (1− 4m2
K/m2

π )1/2c

(B) (1− 4m2
π/m2

K)
1/2c

(C) (1−m2
K/m2

π )1/2c

(D) (1−m2
π/m2

K)
1/2c

(E) 2(m2
π/m2

K)
1/2c

65. What must be the initial K0 energy such that the π− is
stationary in the lab frame?

(A)
m2

π c2

2mK

(B)
mKc2

2

(C)
mπ c2

2

(D)
(m2

K +m2
π )c2

2mπ

(E)
m2

Kc
2

2mπ

66. A clarinet can be treated as a half-open pipe, where
sounds are produced by standing pressure waves. For
a clarinet of length 0.6 m, which of the following is a
possible wavelength of a standing wave?

(A) 0.3 m
(B) 0.6 m
(C) 0.8 m
(D) 1.2 m
(E) 1.5 m

67. A sphere has a polarization of P(r) = Cr2r̂. What is
the electric field inside the sphere? (You may find the
following fact useful: ∇ · (v(r)r̂) = 1

r2
d
dr (r

2v(r)).)

(A) −4Cr2

ε0
r̂

(B)
2Cr2

ε0
r̂

(C) −Cr2

ε0
r̂

(D)
Cr2

4πε0
r̂

(E) 0

68. Suppose an electromagnetic plane wave propagating in
vacuum in the +ẑ-direction has a polarization with the
electric field in the +x̂-direction immediately before it
strikes a perfect conductor at normal incidence. What
are the directions of the E and B vectors of the transmit-
ted wave?

(A) E in+x̂-direction & B in+ŷ-direction
(B) E in−x̂-direction & B in+ŷ-direction
(C) E in+x̂-direction & B in−ŷ-direction
(D) E in−x̂-direction & B in−ŷ-direction
(E) There is no transmitted wave in a perfect conductor.
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69. What is the value of the following commutator?[[[
Lx, Ly

]
, Lx
]
, Lx
]

(A) −i�3Lz
(B) i�3Lz
(C) −i�3Ly
(D) i�3Ly
(E) −i�3Lx

70. The vibrational frequency of diatomic oxygen is approx-
imately 5 × 1013 Hz. The temperature at which the
vibrational modes of O2 will begin to be excited is closest
to

(A) 20 K
(B) 200 K
(C) 2,000 K
(D) 20,000 K
(E) 2× 105 K

71. Which of the following does NOT represent a possi-
ble observable, written in the position basis, for a free
particle in three dimensions?

(A) −i�∇
(B) x2∂/∂y
(C) x∂2/∂y2

(D) x2y2z2

(E) xyz

72. The BCS theory of superconductivity explains the super-
conducting properties of metals at low temperature by
supposing that a macroscopic number of metallic elec-
trons all lie in the same ground state. Why does this not
violate the Pauli exclusion principle?

(A) BCS theory is incorrect.
(B) Electrons pair off into Cooper pairs, which behave

as bosons.
(C) Spin–spin coupling prevents electrons from being

in the same state.
(D) The Pauli exclusion principle does not apply to

systems at low temperature.
(E) Electrons are not fermions.

Ω

R
m

73. A hoop of radius R rotates at constant angular velocity
	. A small bead of mass m is attached to the hoop, with
a frictional force on the bead proportional to the differ-
ence in velocity between the bead and edge of the hoop,
F = k(R	− Rω), where ω is the angular velocity of the
bead. If the bead begins at angular velocity ω0, which of
the following describes its subsequent motion?

(A) ω(t) = ω0e−kt/m

(B) ω(t) = 	− ω0e−kt/m

(C) ω(t) = 	− ω0e−mt/k

(D) ω(t) = 	(1− e−kt/m)
(E) ω(t) = 	− (	− ω0)e−kt/m

R
M

h

θ

74. Consider a cylinder of radius R, mass M, and density
ρ(r) = Arα that starts at rest and rolls without slipping
down an inclined plane of height h at an angle θ . Assum-
ing no rolling friction, the final velocity of the cylinder at
the bottom depends ONLY on

(A) θ and α

(B) M and R
(C) h andM
(D) h and θ

(E) h and α
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75. The� is a spin-3/2 bound state of three spin-1/2 quarks.
The spin part of the wavefunction of the state with m =
+3/2 is |�〉 = |↑↑↑〉. What is the spin part of the
wavefunction with definite spinm = −1/2?
(A) |↑↓↓〉
(B) 1√

3
(|↑↓↓〉 + |↓↑↓〉 − |↓↓↑〉)

(C) 1√
3
(− |↑↓↓〉 + |↓↑↓〉 − |↓↓↑〉)

(D) 1√
3
(|↑↓↓〉 + |↓↑↓〉 + |↓↓↑〉)

(E) |↓↓↓〉
76. What is true of the electromagnetic field at a p-n junc-

tion at equilibrium with zero bias voltage applied?

(A) The electric field points toward the p-type semicon-
ductor.

(B) The electric field points toward the n-type semicon-
ductor.

(C) The electric field is parallel to the interface between
the p-type and n-type semiconductors.

(D) There is no electromagnetic field.
(E) There is no electric field, but there is amagnetic field

pointing toward the n-type semiconductor.

77. In an inertial frame S, two events E1 and E2 occur
at (t, x, y, z) = (3, 4, 1, 1) and (1, 3, 0, 1), respectively
(in units where c = 1). In another inertial frame S′,
which of the following could an observer measure as the
spacetime 4-vector between E1 and E2?

(A) (1, 0.5, 1, 1)
(B) (2, 1, 0, 0)
(C) (3, 2,

√
3, 0)

(D) (2, 0,
√
3, 0)

(E) None of these

78. A dark matter experiment takes data for a time T and
observes no events. What is the 90% confidence level
upper limit that one can place on the event rate in the
detector?

(A) One cannot place a limit at the 90% confidence level
for this experiment.

(B) −(1/T) ln 0.9
(C) −(1/T) ln 0.1
(D) (1/T) ln 0.9
(E) 0

79. If the proton were a spin-0 particle, which of the follow-
ing features of the hydrogen energy spectrum would be
absent?

(A) Lyman series
(B) Balmer series
(C) 21 cm hyperfine transition
(D) Lamb shift
(E) fine-structure splitting of the 2p state

80. An electron neutrino emitted from the Sun may be
detected as a tau neutrino on Earth because:

(A) Conservation of lepton number does not apply to
tau neutrinos.

(B) Electron neutrinos from the Sun can annihilate and
be reemitted as a pair of tau neutrinos.

(C) Electron neutrinos interact with the Earth’s mag-
netic field.

(D) A freely propagating neutrino is a superposition of
electron and tau neutrinos.

(E) Electron neutrinos decay faster than tau neutrinos.

81. A pair of electrons is trapped in a “quantum dot.” A
magnetic field is applied along the z-direction so that
the singlet state has energy −ε, and the triplet state has
energies −ε/2, −ε, and −3ε/2 for spins +�, 0, and
−� along the z-axis, respectively. What is the prob-
ability of finding the electrons in the triplet state, at
temperature T?

(A) 0
(B) 1

(C)
2

2+ eε/2kT + e−ε/2kT

(D)
eε/2kT + e−ε/2kT

2+ eε/2kT + e−ε/2kT

(E)
1+ eε/2kT + e−ε/2kT

2+ eε/2kT + e−ε/2kT
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m

m

y1

y2

82. The diagram above illustrates a system consisting of a
block of mass m hanging from a spring of spring con-
stant k, with another block of mass m hanging from the
first block by another spring of spring constant k. What
is the total energy of this system?

(A) 1
2m(ẏ12+ ẏ22)+ 1

2k(y
2
1 + (y2 − y1)2)−mg(y1 + y2)

(B) 1
2m(ẏ12+ ẏ22)+ 1

2k(y
2
1 + (y2 − y1)2)+mg(y1 + y2)

(C) 1
2m(ẏ12+ ẏ22)− 1

2k(y
2
1 + (y2 − y1)2)+mg(y1 + y2)

(D) 1
2m(ẏ12+ ẏ22)− 1

2k(y
2
1 + (y2 − y1)2)−mg(y1 + y2)

(E) − 1
2m(ẏ12+ ẏ22)− 1

2k(y
2
1+ (y2−y1)2)−mg(y1+y2)

83. A particle of mass m is in the ground state of an infinite
square well of size a, with energy E. The well suddenly
expands to size 2a. What is E′/E, where E′ is the expec-
tation value of the energy of the particle after this sudden
expansion?

(A) 0
(B) 1
(C) 1/

√
2

(D) 1/2
(E) 1/4

84. A particle of mass m and energy E is incident from
the left on a delta-function barrier, V(x) = αδ(x) with
α > 0. Which of the following gives the coefficient of
reflection for the system?

(A) α2

(B) α2E

(C)
α

�

√
m
2E

(D)
1

1+ 2�2E/mα2

(E)
1

1+mα2/2�2E

85. Which of the following is NOT true about the 2s → 1s
transition in the hydrogen atom?

(A) The dominant decay mode is two-photon emission.
(B) It violates �l = ±1.
(C) It violates �m = ±1 or 0.
(D) It cannot occur in the electric dipole approximation.
(E) None of these.

86. Measurements of the electric dipole moment of the neu-
tron provide sensitive tests of fundamental physics. If
the neutron were found to have a nonzero electric dipole
moment, one could directly conclude that which of the
following symmetries is violated?

I. Parity
II. Charge conjugation
III. Time reversal

(A) I
(B) II
(C) III
(D) I and II
(E) I and III
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c
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b

87. The figure above shows the total cross section for pho-
ton scattering on a Pb atom as well as the cross sections
for several individual process. Why does curve b drop
quickly near 1 MeV?

(A) Penetration depth of low-energy photons is small.
(B) Interactions with electrons become significant.
(C) 1.022 MeV threshold for pair production.
(D) Pb has no absorption lines below 1 MeV.
(E) Conservation of angular momentum.
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88. Let f (x) = x for x ∈ [−π ,π]. What is the coefficient a1
of the cos x term in the Fourier series for f (x)?

(A) 0
(B) π

(C) 1
(D) 2
(E) 4

89. Suppose that the magnetic field in a region of space is
given by B = B0(x̂+ 2xẑ). Which of the following could
be the vector potential?

(A) B0(xŷ+ x2ẑ)
(B) −B0(xŷ+ x2ẑ)
(C) −B0(x2ŷ+ yẑ)
(D) B0(y2x̂+ zŷ)
(E) B0(x2ŷ+ yẑ)

a

Q

90. Consider a charge configuration consisting of a ball of
chargeQ surrounded by a thin conducting shell of radius
a. The conductor initially has no net charge, but is then
connected to ground (the potential at infinity). What is
the change in energy of the configuration?

(A) − Q2

4πε0a

(B)
Q2

4πε0a

(C)
Q2

8πε20a2

(D) − Q2

8πε0a

(E)
Q2

8πε0a

91. Without the hypothesis of quark color, the quark model
would be unable to explain the existence of which of the
following spin-3/2 baryons? Youmay assume the quarks
have zero relative orbital angular momentum.

(A) udd
(B) uud
(C) uuu
(D) uds
(E) All of the above baryons are allowed.

92. In tabletop atomic spectroscopy experiments using free
nuclei, the difference between the frequencies of emit-
ted and absorbed photons driven by the same electronic
transition is due to

(A) measurement error
(B) nuclear recoil
(C) gravitational redshift
(D) time dilation
(E) none of these

93. A sequence of NAND gates can create which of the
following effective logic gates?

(A) AND
(B) OR
(C) NOT
(D) NOR
(E) all of the above

94. A particle moving in one dimension has the following
Lagrangian:

L = 1
2
Aq̇2 − Bq2.

What is the equation of motion of the particle?

(A) q̇ = 2B
A
q

(B) q̇ = −2B
A
q

(C) q̈ = 2B
A
q

(D) q̈ = 2A
B
q

(E) q̈ = −2B
A
q
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R

r

95. A toroidal solenoid of radius R and cross-sectional
radius r � R hasN winds and carries currentR. The vol-
ume enclosed by the torus is 2π2Rr2. What is the energy
stored in the toroidal solenoid?

(A) 0

(B)
μ0NI2r2

4πR3

(C)
μ0N2I2r2

4πR3

(D)
μ0NI2r2

4R

(E)
μ0N2I2r2

4R
96. Which of the following is true about a longitudinally

polarized wave in three dimensions?

I. There are two linearly independent polarization
vectors.

II. The polarization vector(s) is/are perpendicular to
the wavevector.

III. The polarization vector(s) is/are parallel to the
wavevector.

(A) III only
(B) II only
(C) I only
(D) I and II
(E) I and III

97. Deep water waves obey the dispersion relation ω =
A
√
k, where A is a constant. What is the correct rela-

tionship between phase velocity and group velocity for
deep water waves?

(A) vphase = 1
2vgroup

(B) vphase = vgroup
(C) vphase = 2vgroup
(D) vphasevgroup = A4t2

(E) none of these

98. When light of 5000 Å is shined on a thin film of oil (n =
1.5) that sits on top of a mediumwith n = 2.0, the inten-
sity of reflected light is minimized. What is the thickness
of the oil?

(A) 4× 10−8 m
(B) 8.33× 10−8 m
(C) 1.67× 10−7 m
(D) 1.25× 10−7 m
(E) 5.0× 10−7 m

99. Suppose a particle has a normalized wavefunction ψ(x)
given by

ψ(x) =
{ √

3(1− x), 0 < x < 1,
0, otherwise.

What is the expectation value of the position of this
particle?

(A) 0
(B) 1
(C) 1/12
(D) 1/4
(E) 1/2

100. What are the energy levels of a quantized system con-
sisting of a massless rigid rod of length a connecting two
massesm, where n is a non-negative integer?

(A)
�
2n(n+ 1)
ma2

(B)
�
2n(n+ 1)
2ma2

(C)
�
2n

2ma2

(D)
�
2n

ma2

(E)
�
2(n+ 1)
ma2
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TABLE OF INFORMATION

Rest mass of the electron me = 9.11× 10−31 kg
Magnitude of the electron charge e = 1.60× 10−19 C

Avogadro’s number NA = 6.02× 1023

Universal gas constant R = 8.31 J/(mol · K)
Boltzmann’s constant k = 1.38× 10−23 J/K

Speed of light c = 3.00× 108 m/s
Planck’s constant h = 6.63× 10−34J · s = 4.14× 10−15 eV · s

� = h/2π
hc = 1240 eV · nm

Vacuum permittivity ε0 = 8.85× 10−12 C2/(N ·m2)
Vacuum permeability μ0 = 4π × 10−7 T · m/A

Universal gravitational constant G = 6.67× 10−11 m3/(kg · s2)
Acceleration due to gravity g = 9.80 m/s2

1 atmosphere pressure 1 atm = 1.0× 105 N/m2 = 1.0× 105 Pa
1 angstrom 1 Å = 1× 10−10 m = 0.1 nm

Prefixes for Powers of 10

10−15 femto f

10−12 pico p

10−9 nano n

10−6 micro µ

10−3 milli m

10−2 centi c

103 kilo k

106 mega M

109 giga G

1012 tera T

1015 peta P

Rotational inertia about center of mass

Rod
1
12

M�2

Disk
1
2
MR2

Sphere
2
5
MR2

 



 



SAMPLE EXAM 2
Time— 170 minutes

100 questions

Directions: Each of the questions or incomplete statements below is followed by five suggested answers or completions. Select
the one that is best in each case and then fill in the corresponding space on the answer sheet.

1. A ball of mass m is dropped from a tall building, and
experiences a velocity-dependent air resistance force
F = bv. What is its terminal velocity?

(A)
b
mg

(B)
mb
g

(C) eb/m

(D)
mg
b

(E)
mg
b
(1− e−b/m)

2. A charged particle moving in the direction n̂ = 1√
2
(x̂+

ŷ) enters a region of uniform magnetic field B = B0x̂.
The path of the particle after it enters the field is a

(A) circle
(B) cycloid
(C) helix
(D) straight line
(E) logarithmic spiral

l
m

3. A massless rope of length l, attached to a fixed pivot at
one end and with a mass m at the other end, is held
horizontally and then released, as shown in the diagram.
When the mass is at its lowest point, the tension in the
rope is

(A) 0
(B) gl/2
(C) mg
(D) 2mg
(E) 3mg

4. A particle of charge q and mass m is suspended from
a massless string. A constant electric field of known
magnitude is turned on, perpendicular to the direction
of gravity, and the rope forms some angle α with the
vertical. A measurement of α determines which of the
following quantities?

(A) m
(B) q
(C) q/m
(D) qm
(E) none of the above

5. A hydrogen atom transitions from the n = 3 to n = 2
states by emitting a photon. What is the wavelength of
the photon?

(A) 347 nm
(B) 657 nm
(C) 985 nm
(D) 2.32 µm
(E) 1.34 mm

6. For a quantum operator to represent a physical observ-
able, it must be

(A) Hermitian
(B) positive-definite
(C) finite-dimensional
(D) symmetric
(E) none of the above

7. If the net force on an object is zero, which of the
following MUST be true?

I. Its angular momentum is constant.
II. Its velocity is zero.
III. Its acceleration is zero.

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I and III
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8. Fluorine is not naturally found as free atoms, but rather
in compounds as the ion Fl−. The electron configuration
of a neutral fluorine atom is

(A) 1s2 2s1

(B) 1s2 2s2

(C) 1s2 2s2 2p1

(D) 1s2 2s2 2p5

(E) 1s2 2s2 2p6

C

L

9. In the circuit shown in the diagram, the capacitor is
initially charged, and the switch is closed at t = 0.
Assuming all circuit elements have negligible resistance,
the peak magnitude of the current is achieved at

(A) t = π

4

√
L
C

(B) t = π√
LC

(C) t = 2π
√
LC

(D) t = π

2
√
LC

(E) t = π

2
√
LC

A

B

C

D

3200 kPa

100 kPa

1m3 8 m3 10 m3

V

P

Questions 10 and 11 refer to the P–V diagram of an
ideal gas undergoing the Brayton cycle. Steps A and C
are isentropic, and steps B and D are isobaric.

10. What is the approximate work done by the gas over one
cycle?

(A) −6,200 kJ
(B) −3,100 kJ
(C) 0
(D) 3,100 kJ
(E) 6,200 kJ

11. The gas used in the cycle is most likely

(A) monoatomic
(B) diatomic
(C) triatomic
(D) ionized
(E) heteronuclear

 



Sample Exam 2 191

12. The oscilloscope trace shown in the diagram is an exam-
ple of

(A) frequency modulation
(B) amplitude modulation
(C) pulse-code modulation
(D) single-sideband modulation
(E) clipping

13. Two exoplanets, A and B, are discovered orbiting a star
much more massive than either planet. The semimajor
axes of the orbits of A and B are found to be a and a/2,
respectively. What is the ratio of the area enclosed by
the orbit of planet A to the area enclosed by the orbit of
planet B?

(A) 1/4
(B) 1/(2

√
2)

(C) 1/2
(D) 2

√
2

(E) It cannot be determined from the information
given.

14. A spin-1/2 particle has the angular wavefunction

ψ(θ ,φ) = 1√
2

(
Y0
3 (θ ,φ)+ Y1

2 (θ ,φ)
)
,

where Ym
l (θ ,φ) are the normalized spherical harmonics.

Which of the following is a possible result of measuring
the particle’s total spin quantum numbers j andmj?

(A) j = 3, mj = 0
(B) j = 2, mj = 1/2
(C) j = 7/2, mj = −1/2
(D) j = 7/2, mj = 3/2
(E) j = 9/2, mj = −1/2

15. The normalized energy eigenfunctions of the infinite

square well of size L are ψn(x) =
√

2
L sin(nπx/L). The

expectation value of energy of the state

� = 1√
2
ψ2 + 1√

3
ψ3 + 1√

6
ψ4

for a particle of massm is

(A)
4π2

�
2

3mL2

(B)
8π2

�
2

3mL2

(C)
17π2

�
2

4mL2

(D)
14π2

�
2

3mL2

(E)
23π2

�
2

6mL2

16. An ideal gas is maintained at a temperature of 250 K
through contact with a thermal reservoir and is free to
expand against a piston. If 5000 J of heat is slowly added
to the gas, what is the change in entropy of the gas?

(A) 10 J/K
(B) 10 ln 2 J/K
(C) 20 J/K
(D) 40 J/K
(E) 500 J/K

17. The photoelectric effect provides direct experimental
evidence for which of the following properties of light?

I. It has two linearly independent polarization states.
II. It carries kinetic energy proportional to its fre-

quency.
III. It travels at a constant speed c in vacuum.

(A) I only
(B) II only
(C) I and II
(D) II and III
(E) I, II, and III

18. The Hamiltonian H = eE0z, describing an atomic elec-
tron of charge −e interacting with a uniform electric
field in the z-direction, is responsible for

(A) the Zeeman effect
(B) the Lamb shift
(C) hyperfine splitting
(D) the Stark effect
(E) stimulated emission
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19. A block of mass m1 moving with velocity v collides
elastically with a block of mass m2 at rest. If m1 contin-
ues moving in the same direction as it did prior to the
collision, one can conclude

(A) m1 > m2

(B) m1 = m2

(C) m1 < m2

(D) momentum was not conserved in this collision
(E) none of the above

20. A 20 cm tall slice of a spherical mirror is oriented such
that the image of a 2-meter tall person 1 meter away
from the ATM will just fill the surface of the mirror.
What must the radius of curvature R and convexity of
the mirror be?

(A) R = 22 cm, convex
(B) R = 40 cm, concave
(C) R = 80 cm, concave
(D) R = 4.5m, convex
(E) R = 18m, convex

21. The quantized vibrations of a crystal lattice are called

(A) photons
(B) anyons
(C) phonons
(D) vibrons
(E) rotons
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2R

–Q

+3Q

R

22. Shown in the diagram are two concentric thin spherical shells of radii R and 2R, the outer one carrying charge +3Q and
the inner one carrying charge −Q. Setting the electric potential equal to zero at infinity, which of the following graphs best
represents the electric potential as a function of r, the distance from the center of the shells?

R 2R

V

r

(A)

R 2R

V

r

(C)

R 2R

V

r

(E)

R 2R

V

r

(B)

R 2R

V

r

(D)
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23. The force-carrying particle responsible for binding the
quarks in the proton is called the

(A) photon
(B) gluon
(C) W boson
(D) Z boson
(E) Higgs boson

24. A charge −e at the origin is subject to a uniform elec-
tric field E = −Ex̂. After traveling to (3, 4), what is the
change in potential energy of the charge?

(A) −3Ee
(B) 3Ee
(C) −5Ee
(D) 5Ee
(E) −7Ee

25. Which of the following are true statements about Gauss’s
law for magnetism, ∇ · B = 0?

I. It implies that magnetic monopoles do not exist in
nature.

II. It is incompatible with the continuity equation for J.
III. It allows the magnetic field to be written in terms of

a vector potential as B = ∇ × A.

(A) I only
(B) II only
(C) III only
(D) I and II
(E) I and III

26. A relativistic particle of massm has momentum p = mc.
What is the particle’s energy?

(A) mc2

(B)
√
2mc2

(C) 2mc2

(D) 4mc2

(E) none of the above

27. The hot, dense gas of electrons and positive ions known
as a plasma is capable of supporting charge density
waves known as plasma oscillations. Let ne be the num-
ber density of electrons, e the charge of the electrons, and
m∗ an effective mass of the electrons in the plasma. The
frequency of plasma oscillations is

(A) ω = ε0

nee2m∗

(B) ω = m∗e2

neε0

(C) ω = e2

neε0

(D) ω =
√
nee2m∗

ε0

(E) ω =
√

nee2

m∗ε0

m

M

aa/4

28. A planet of mass m orbits a star of mass M in an
elliptical orbit with semimajor axis a, as shown in the
diagram. The distance of closest approach to the star is
a/4. Assuming m � M, the ratio of the planet’s speed
at perigee (when the planet is closest to the star) to
the planet’s speed at apogee (when the planet is furthest
away from the star) is

(A) 1/4
(B) 1/3
(C) 4
(D) 7
(E) 16
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29. Two identical sailboats race across a lake, starting from
rest. Boat 1 reaches the finish line first with velocity v1,
and boat 2 arrives later with velocity v2 > v1. Let Ft1 and
Ft2 be the average force per unit time on boats 1 and 2,
respectively, and let Fd1 and Fd2 be the average force per
unit distance on boats 1 and 2. Which of the following
MUST be true?

(A) Ft1 > Ft2
(B) Ft1 < Ft2
(C) Fd1 > Fd2
(D) Fd1 < Fd2
(E) none of the above

30. The first two normalized position-space energy eigen-
functions of the harmonic oscillator Hamiltonian H =
p2
2m + 1

2mω2x2 are

ψ0(x) =
(mω

π�

)1/4
e−mωx2/2�,

ψ1(x) =
√
2
(mω

π�

)1/4
xe−mωx2/2�.

A delta-function perturbation V(x) = εδ(x) is added to
the harmonic oscillator Hamiltonian. What are the new
energies E0 and E1 to first order in perturbation theory?

(A) E0 = �ω/2, E1 = 3�ω/2
(B) E0 = �ω/2+ ε

(mω
π�

)1/4, E1 = 3�ω/2

(C) E0 = �ω/2+ ε
√

mω
π�

, E1 = 3�ω/2

(D) E0 = �ω/2+ ε
√

mω
π�

, E1 = 3�ω/2+ 2ε
√

mω
π�

(E) E0 = �ω + ε
√

mω
π�

, E1 = 2�ω

31. At sufficiently high temperature T, which of the fol-
lowing contributes to the total energy of a diatomic
molecule?

I. Translational kinetic energy
II. Rotational kinetic energy
III. Vibrational potential energy

(A) I only
(B) II only
(C) I and II
(D) I and III
(E) I, II, and III

32. During the adiabatic expansion phase of a Carnot cycle,
one mole of gas expands to twice its original size. The
change in entropy of the gas during this process is

(A) R ln 2
(B) −R ln 2
(C) 2R
(D) −2R
(E) 0

d

d

+q

–q

33. A particle of charge +q is placed at the point (0, 0, d),
between an infinite grounded conducting plate at z = 0
and a stationary charge −q at (0, 0, 2d), as shown in the
diagram. What is the force on the charge+q?

(A) − q2

8πε0d2
ẑ

(B) − 7q2

24πε0d2
ẑ

(C)
11q2

72πε0d2
ẑ

(D)
25q2

72πε0d2
ẑ

(E)
31q2

144πε0d2
ẑ

Questions 34 and 35 refer to the following scenario. A
new star is discovered with an optical telescope, from
which it is deduced that the star emits most of its
power in the orange region of the visible spectrum, at
wavelength approximately 600 nm.

34. Assuming the star behaves as a blackbody and neglecting
possible redshift, what is its approximate temperature?

(A) 200 K
(B) 5000 K
(C) 6× 104 K
(D) 3× 106 K
(E) 2× 109 K
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35. It is later discovered that the star is receding at a peculiar
velocity of 0.2c. The ratio between the true temperature
Ttrue and the measured temperature Tmeas is

(A) 1/5
(B) 2/3
(C) 3/2
(D)

√
2/3

(E)
√
3/2

36. A one-dimensional system has Lagrangian

L(q, q̇, t) = Aq̇2 + sin(q/L− ωt)

for constants A, L, and ω. What is the Euler–Lagrange
equation of motion?

(A) q̇ = ω

2AL
sin(q/L− ωt)

(B) q̇ = −ω

A
cos(q/L− ωt)

(C) q̇ = − ω

2A
cos(q/L− ωt)

(D) q̈ = 1
2AL

cos(q/L− ωt)

(E) q̈ = − 1
AL

cos(q/L− ωt)

z

m

g

α

θ

37. A particle of massm is constrained to move on a cone of
opening angle α, oriented as shown in the diagram. The
Hamiltonian for this system is given by

H = p2z
2m

cos2 α + p2θ
2mz2

cot2 α +mgz.

What are Hamilton’s equations for the coordinate z?

(A) ṗz = pz
m cos2 α −mg; ż = p2z

2mz2 cot
2 α

(B) ṗz = p2θ
2mz cot

2 α −mg; ż = pz
m cos2 α

(C) ṗz = pz
m cos2 α; ż = p2θ

mz cot
2 α −mg

(D) ṗz = p2θ
mz3 cot

2 α −mg; ż = pz
m cos2 α

(E) ṗz = − p2θ
mz cot

2 α +mg; ż = − pz
m cos2 α

38. The specific heat at constant volume, CV , of a solid is
observed at low temperatures T to follow the Debye law
CV = AT3, with A a constant. What is the internal
energy of the solid U(T) as a function of temperature,
assuming U(0) = 0, in the regime of validity of the
Debye law?

(A) 3AT2

(B) AT3

(C) 1
3AT

3

(D) 1
4AT

4

(E) AT4

39. Let |n〉 denote a set of real, orthonormal energy eigen-
functions of a Hamiltonian Ĥ in one dimension, with
energies En. Let p̂ denote the momentum operator.
Which of the following must be true?

I. 〈m|n〉 = m+ n
II. |n〉 is an eigenfunction of p̂
III. 〈m|Ĥ|n〉 = δmnEn

(A) I only
(B) II only
(C) III only
(D) I and II
(E) II and III

40. The Meissner effect refers to the tendency of supercon-
ductors to

(A) develop a surface charge density
(B) expel magnetic fields
(C) acquire a finite resistance at a critical temperature

Tc

(D) spontaneously develop an internal electric field
(E) have persistent currents

41. The hydrogen isotope tritium, 3H, contains one proton
and two neutrons and has a half-life of approximately 12
years. The binding energy of tritium is closest to

(A) 8.5 eV
(B) 8.5 keV
(C) 8.5 MeV
(D) 8.5 GeV
(E) 8.5 TeV
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42. A positive muon stopped by matter can attract an elec-
tron to form an exotic bound state known as muonium,
where the muon (which has the same charge as the pro-
ton) acts as the nucleus. Letmμ be themass of themuon,
me the mass of the electron, andmp the mass of the pro-
ton. What is the Bohr radius of muonium, in terms of
the Bohr radius of ordinary hydrogen a0 and the masses
of the particles?

(A) a0
mp

mμ

(B) a0
mμ

mp

(C) a0
(
mμ

mp

)2

(D) a0
mp(me +mμ)
mμ(me +mp)

(E) a0
mp(me +mp)
mμ(me +mμ)

43. Let x̂ and p̂ be the quantum-mechanical position and
momentum operators, respectively. The commutator
[x̂, p̂2] is equivalent to which of the following?

(A) 0
(B) i�
(C) −i�x̂
(D) 2i�p̂
(E) 2i�

2 m

44. A block of mass 2 kg slides down a ramp in the shape of a
quarter-circle of radius 2 m, as shown in the diagram. If
the block reaches the bottom of the ramp with velocity
4 m/s, then, ignoring air resistance, the work done by
friction during the slide down the ramp is most nearly

(A) 0 J
(B) 8 J
(C) 12 J
(D) 24 J
(E) 40 J

45. Consider an infinite charge-carrying wire, of charge per
unit length λ. Setting the zero of electric potential at dis-
tance a from the wire, what is the electric potential as a
function of the distance r from the wire?

(A)
λ

2πε0
ln(a/r)

(B)
λ

4πε0
ln(a/r)

(C)
λ

2πε0
ln(r/a)

(D)
λ

4πε0r

(E)
λ(r − a)
4πε0r

46. An ideal beam-splitter is an optical device that lets part
of an incident beam of light pass through and reflects the
remainder, with no absorption taking place in the beam-
splitter. Let the incident beam have complex amplitude
E, the reflected beam have amplitude Er , and the trans-
mitted beam have amplitude Et . Which of the following
MUST be true?

(A) Er = E/
√
2

(B) Er = E/2
(C) E = Er + Et
(D) |E|2 = |Er|2 + |Et|2
(E) |E|4 = |Er|4 + |Et|4

47. The Hamiltonian operator for a free particle of mass m
moving in three dimensions is

(A) −�
2∇2

m

(B) −�
2∇2

2m
(C) −i�∇
(D)

�
2∇2

2m
(E) 0

48. In proton therapy, medium-energy protons are directed
at a cancer patient’s tumor in order to irradiate it. Which
of the following pieces of information would be MOST
useful in determining the correct energy and angle with
which to fire the protons?

(A) The charge-to-mass ratio of the proton
(B) The distance traveled in human tissue as a function

of energy
(C) The cross section for proton scattering on carbon

nuclei
(D) The mean lifetime of the proton
(E) The binding energy of the proton
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A

B

Baseball

(Top view)

2 m

49. Student A, of mass 100 kg, stands 2 meters from the
center of a circular platform which is free to rotate on
frictionless bearings. Student B, not standing on the plat-
form, tosses student A a baseball of mass 0.09 kg, which
reaches student A with a velocity of 20 m/s directed per-
pendicular to the line joining student A and the center
of the platform. If the platform has moment of inertia
200 kg·m2, what is its approximate angular velocity after
student A catches the baseball?

(A) 0.006 rad/s
(B) 0.009 rad/s
(C) 0.018 rad/s
(D) 0.067 rad/s
(E) 0.1 rad/s

50. In Compton scattering, the change in wavelength of the
scattered light is given in terms of the electron mass me

and the scattering angle θ by which of the following?

(A)
h

mec
(1− cos θ)

(B)
me

hc
(1+ cos θ)

(C)
h

mec
(1+ sin θ)

(D)
me

hc
sin2 θ

(E)
1

hcme
(1− sin θ)

51. The binding energy of the electron in the Li++ ion is
approximately

(A) 1.51 eV
(B) 13.6 eV
(C) 40.8 eV
(D) 122.4 eV
(E) 1102 eV

52. Which of the following statements is NOT consistent
with the three laws of thermodynamics?

(A) The entropy of a perfect crystal of a pure substance
must approach zero at absolute zero.

(B) The entropy of an isolated system can sometimes
decrease.

(C) The ground state degeneracy of a system determines
its entropy.

(D) Absolute zero can never be reached in experiments.
(E) The entropy of a system can be nonzero at absolute

zero.

2q

q q
L

x

y

53. Questions 53 and 54 refer to the diagram above, with
charges q, q, and 2q placed at the corners of an equi-
lateral triangle of side length L, and the x̂- and ŷ-axes
oriented as shown. What is the electric field at the center
of the triangle?

(A)
q

4πε0L2
(x̂+√

3ŷ)

(B) − 3q
4πε0L2

ŷ

(C)
4q

3πε0L2
ŷ

(D) − q
πε0L

√
3
ŷ

(E) 0

54. What is the electric potential at the center of the triangle,
relative to infinity?

(A)
q
√
3

πε0L

(B)
q
√
3

4πε0L

(C)
4q
√
3

3πε0L

(D)
4q

3πε0L2
(E) 0
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55. A car engine operates between a cold reservoir at tem-
perature 27 ◦C and a hot reservoir at 127 ◦C. What is
the minimum amount of heat the engine must absorb
from the hot reservoir in a period of 1 minute to obtain
a power output of 100 kW?

(A) 1,500 kJ
(B) 6,000 kJ
(C) 8,000 kJ
(D) 18,000 kJ
(E) 24,000 kJ

m

k

h

56. A brick of mass m falls onto a massless spring with
spring constant k from a height h above it. What is the
maximum distance the spring will be compressed from
its equilibrium length?

(A)
mg
k

(B)
mk
2gh

(C)
k
mg

(
1+

√
mg
kh

)

(D)
mg
k

(
1+

√
2kh
mg

)

(E)
mg
k

(
1+

√
1+ 2kh

mg

)

T1

T2

T3

20 kg

15 kg

5 kg

57. Three weights are suspended from a ceiling using mass-
less ropes, as shown in the diagram. The tensions in the
ropes are T1, T2, and T3. What is T1/T3?

(A) 0.25
(B) 1
(C) 3
(D) 4
(E) 8

58. A particle’s normalized spin wavefunction has the form

ψ(θ ,φ) =
√

3
2π

sin θ cos 2φ sinφ.

What is the expectation value of the particle’s z-
component of orbital angular momentum Lz?

(A) 0
(B) −3�/2π
(C) 3�/2π
(D) −3�/π

(E) 3�/π
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V(r)

E

a b r

59. The strong nuclear force binding an alpha particle to a nucleus can be modeled by the potential shown in the diagram.Which
of the following plots best illustrates the radial wavefunction of an alpha particle with energy E that tunnels out of the nucleus
in alpha decay?

a b r

ψ(r)
(A)

a b
r

ψ(r)
(C)

a

b

r

ψ(r)
(E)

a b r

ψ(r)
(B)

a b r

ψ(r)
(D)
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4 mm 60°

60. A coherent beam of monochromatic light of wavelength
500 nm is directed towards two very thin slits separated
by a distance 4 mm. Far behind the slits is a screen cov-
ering an angular region of 60◦, as shown in the diagram.
Approximately how many bright interference bands are
visible on the screen?

(A) 0
(B) 4,000
(C) 6,800
(D) 8,000
(E) 13,600

61. A stationary telescopemonitoring a rocket ship observes
the ship emitting flashes of light at 1-second intervals.
If the ship begins moving toward the telescope at speed
0.6c, with what period does the telescope observe the
light flashes?

(A) 0.5 s
(B) 0.8 s
(C) 1 s
(D) 1.2 s
(E) 2 s

62. A particle moving at speed 0.8c enters a tube of length
30 m and hits a target at the end of the tube. How far
away is the target when the particle enters the tube, in
the reference frame of the particle?

(A) 18 m
(B) 24 m
(C) 30 m
(D) 50 m
(E) 60 m

63. The volume of the first Brillouin zone of a simple cubic
lattice of lattice spacing a is

(A) a3

(B) 1/a3

(C) (a/2π)3

(D) (2π/a)3

(E) a3/2π
64. Early observations of beta decay of the neutron showed

that the emitted electron had a broad energy spectrum,
rather than a fixed energy. This was taken as evidence
for the existence of the

(A) neutrino
(B) positron
(C) muon
(D) strange quark
(E) pion

M3
M 1

M 2

α

65. Blocks of masses M1, M2, and M3 are arranged on a
frictionless inclined plane at angle α as shown in the
diagram. The pulley at the top of the plane is friction-
less and massless, and the system is in static equilibrium.
What is α in terms ofM1,M2, andM3?

(A) tan−1
(
M3
M1

)
(B) sin−1

(
M3

M1+M2

)
(C) sin−1

(
M1+M2

M3

)
(D) cos−1

(
M1+M2

M3

)
(E) cos−1

(
M3

M1+M2

)
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5 Ω

5 Ω

5 Ω

5 Ω

5 V

5 Ω

66. A 5V battery supplies the emf for the circuit shown in
the diagram, where all resistors are 5	. What current
flows through the circuit? (You may assume the wires
are resistanceless and the battery has negligible internal
resistance.)

(A) 0.2 A
(B) 0.5 A
(C) 1 A
(D) 2 A
(E) 5 A

67. Questions 67 and 68 refer to the Pauli matrices:

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

σz =
(
1 0
0 −1

)
.

What is the determinant of the matrix

M = σ 2
x + σ 2

y + σ 2
z ?

(A) 0
(B) 1
(C) 3
(D) 4
(E) 9

68. The state of a spin-1/2 particle is described by the spinor

η = N
(

i
2− i

)

whereN is a normalization constant. What is the expec-
tation value of Sx, the spin projection onto the x-axis, in
the state η?

(A) −�

(B) −�/3
(C) −�/6
(D) 0
(E) �/2

69. Which of the following could represent the displacement
of a standing wave?

(A) cos(kx− ωt)
(B) sin(kx− ωt)
(C) (x− vt)2

(D) sin kx cosωt
(E) ωt sin2 kx

12.5 cm
20 cm

A B

F

70. A converging lens A and a diverging lens B, both with
focal length 10 cm, are arranged so that the midpoint
between the lenses F coincides with both lenses’ foci. An
object is placed 12.5 cm to the left of A. Which of the
following gives the correct position and orientation of
the image?

(A) 5 cm to the right of A, inverted
(B) 5 cm to the right of A, upright
(C) 7.5 cm to the right of A, inverted
(D) 30 cm to the right of B, inverted
(E) 30 cm to the right of B, upright
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71. A parallel-plate capacitor with capacitance C is at rest in
frame S , with the plates of the capacitor parallel to the
xy-plane. In frame S , moving in the positive x̂ direction
at speed v, what is the new capacitance in terms of C?

(A) C
(B) C

√
1− v2/c2

(C)
C√

1− v2/c2

(D) C(1− v2/c2)

(E)
C

1− v2/c2

72. In underground particle detection experiments, the
main source of naturally occurring ionizing radiation at
energies above 200 MeV is

(A) thermal radiation
(B) cosmic ray muons
(C) solar neutrinos
(D) seismic noise
(E) solar flares

x

l

m

M

θ

73. A point massm is attached with a massless rod of length
l to a pivot of massM, which is free to slide along a fric-
tionless bar. Letting x be the position of the pivot and
θ the angle of the rod, what is a possible Lagrangian for
this system?

(A) L = 1
2Mẋ2 + 1

2ml2θ̇2 −mgl cos θ

(B) L = 1
2 (M +m)ẋ2 + 1

2ml2θ̇2 +mgl cos θ

(C) L = 1
2 (M+m)ẋ2+ 1

2ml2θ̇2+mlẋθ̇ cos θ+mgl cos θ

(D) L = 1
2 (M+m)ẋ2+ 1

2ml2θ̇2+2mlẋθ̇ sin θ−mgl cos θ

(E) L = 1
2Mẋ2+ 1

2ml2θ̇2 sin2 θ+mlẋθ̇ cos2 θ−mgl cos θ

A1

A2

v

74. A pipe has cross-sectional area A1 at one point, but sub-
sequently narrows to a cross-sectional area A2. If the
pressure of an incompressible fluid of density ρ flowing
toward the narrow end is p in the first region, and its
velocity is v, what is the pressure in the second narrow
region?

(A) p

(B)
1
2
A2
2

A2
1
ρv2

(C) p+ 1
2

(
A2
2

A2
1
− 1
)

ρv2

(D) p+ 1
2

(
1− A2

1
A2
2

)
ρv2

(E) p+ 1
2

(
A2
2

A2
1
+ 1
)

ρv2

75. A particle in three dimensions has normalized radial
wavefunction

ψ(r) =
{

0, 0 ≤ r ≤ a√
a/r2, r > a.

What is the probability the particle will be found
between r = a and r = 2a?

(A) 1/3
(B) 1/2
(C) 1/

√
3

(D) 1/
√
2

(E) 1
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t t

vx vy

76. The diagram above shows plots of components of veloc-
ity vx and vy versus time t, with identical scales on
both plots. Gravity acts in the −ŷ-direction. Ignoring
air resistance, these plots could represent which of the
following scenarios?

(A) A ball dropped from the top of a high building
(B) A rock thrown from a high building at an angle of

45◦ below the horizontal
(C) A brick thrown from ground level at an angle of 60◦

above the horizontal
(D) A golf ball on an elevated tee struck at an angle of

30◦ above the horizontal
(E) A mass attached to a vertical spring which is com-

pressed and then released

77. A boater wearing sunglasses with the polarization axis
vertical observes that the intensity of sunlight reflected
off the water and transmitted through her sunglasses
gradually decreases once the Sun is overhead, and goes
to zero when the Sun is 30◦ above the horizon. What is
the index of refraction of the water? Youmay assume the
index of refraction of air is 1.

(A) 1/2
(B) 1
(C)

√
2

(D)
√
3

(E) 2

78. A body of mass m and charge q at the origin is sub-
jected to an electric field E(t) = E0 sin(ωt)x̂ for a time
T � 2π/ω. Which of the following will cause the
average power radiated by the charge to decrease?

(A) Increasingm
(B) Increasing q
(C) Increasing E0
(D) Decreasing ω

(E) Decreasing T
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79. A positively charged particle q is traveling at constant (nonrelativistic) velocity in the +ẑ-direction and passes through the
center of a loop of wire lying in the xy-plane, at t = 0. Which of the following plots best illustrates �(t), the electric flux
through the loop as a function of t? Assume that the normal to the loop is parallel to the velocity vector of the charge.

Φ(t)

t

(A)

Φ(t)

t

(C)

Φ(t)

t

(E)

Φ(t)

t

(B)

Φ(t)

t

(D)
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80. For an ideal gas in a container of fixed volume, the most
probable speed of the gas molecules as a function of
pressure P is proportional to

(A) P−1/2

(B) P1/2

(C) P
(D) P5/3

(E) P2

81. An ambulance with its siren blaring at constant fre-
quency f drives in a straight line at constant speed
directly toward an observer. Which of the following is
true of fobs, the siren frequency heard by the observer?

(A) fobs = f .
(B) fobs is constant and greater than f .
(C) fobs is constant and less than f .
(D) fobs continuously increases as the ambulance

approaches the observer.
(E) fobs continuously decreases as the ambulance

approaches the observer.

82. A photon of energy 25 MeV collides head-on with an
electron of energy 50MeV in the laboratory frame.What
is the velocity of the photon in the center-of-momentum
frame of the electron and photon?

(A) 0.33c
(B) 0.5c
(C) 0.66c
(D) 0.95c
(E) c

83. In the quark model, mesons such as the pion are com-
posed of

(A) two quarks
(B) two antiquarks
(C) a quark and an antiquark
(D) three quarks
(E) two baryons

84. Which of the following is the MAIN factor that prevents
neutron stars from gravitationally collapsing?

(A) Pauli exclusion principle
(B) Angular momentum
(C) Tidal forces
(D) Spin-down
(E) Strong nuclear force

85. A capacitor C is in an RC circuit with an initial charge
Q0. When the circuit is closed, the energy dissipated in
the resistor is used to heat a material of specific heat
cp and mass m, with an efficiency ε. Assuming that the
material is thermally isolated from everything except the
resistor and that the heat capacity of the resistor is neg-
ligible compared with the material, what is the change
in temperature of the material a long time after the
capacitor is discharged?

(A)
Q2
0ε

2mcpC

(B)
Q2
0ε

mcpC

(C)
2Q2

0ε

mcpC

(D)
Q2
0

2εmcpC

(E)
Q2
0

εmcpC

86. Two infinite wires a distance d apart carry equal current
I in opposite directions. The force per unit length of one
wire acting on the other

(A) has magnitude μ0I2
2πd and is attractive

(B) has magnitude μ0I2
2πd and is repulsive

(C) has magnitude μ0I2
4πd2 and is attractive

(D) has magnitude μ0I2
4πd2 and is repulsive

(E) is zero
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87. A system of two spin-1/2 particles is subject to the
Hamiltonian H = −AS1 · S2, with A > 0. What is the
degeneracy of the ground state of this system?

(A) 1
(B) 2
(C) 3
(D) 4
(E) This system does not have a ground state.

88. When ultraviolet light of wavelength 350 nm is shined
on a container of gas whose molecules have diameter
1 nm, the intensity of the scattered light is I. If the exper-
iment were repeated with the same incident intensity
of red light (wavelength 700 nm), the intensity of the
scattered light would be

(A) I/64
(B) I/16
(C) I
(D) 2I
(E) 16I

89. The principal decay mode of the 3s state of hydrogen is
to

(A) 1s
(B) 2s
(C) 2p
(D) 3p
(E) nothing; the 3s state is stable

90. A new particle’s mass is measured in a high-energy
physics experiment, and the value reported as 5.43 GeV±
0.08 GeV ± 0.06 GeV, where the first error is system-
atic and the second is statistical. The total error on the
measurement is

(A) 0.0048 GeV
(B) 0.01 GeV
(C) 0.02 GeV
(D) 0.10 GeV
(E) 0.14 GeV

91. A Geiger counter monitoring a radioactive sample
records 64 counts in a 1-minute window. The fractional
uncertainty on the counting rate is

(A) 1/64
(B) 1/8
(C) 1/4
(D) 1/2
(E) not determinable from the information given

e−

E

92. An electron is ejected from a metal sheet in the direc-
tion normal to the sheet with kinetic energy of 10 eV. A
uniform electric field of 100 V/m is applied normal to
the sheet, as shown in the diagram. What is the maxi-
mum height above the sheet achieved by the electron?
You may ignore the effects of gravity.

(A) 1 mm
(B) 1 cm
(C) 10 cm
(D) 1 m
(E) The electron accelerates off to infinity.

93. A bullet of mass 5 g is fired at a block of wood of mass
1 kg, which is hanging from a massless rigid rod of
length 0.4 m. The block is thick enough to stop the bul-
let entirely inside. Which of the following is closest to
the minimum velocity of the bullet such that the block
makes a complete vertical revolution?

(A) 200 m/s
(B) 400 m/s
(C) 800 m/s
(D) 1000 m/s
(E) 1600 m/s
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94. A radio telescope is trained on a binary star system
whose angular separation on the sky is 0.061 radians.
What is the minimum diameter of the telescope in order
to resolve both stars in the binary by observing radio fre-
quency radiation at 200 MHz? (Ignore any atmospheric
effects.)

(A) 0.11 m
(B) 1.5 m
(C) 13.3 m
(D) 20 m
(E) 30 m

95. An electron–positron collider creates muons through
the reaction

e+ + e− → μ+ + μ−.

In the center-of-momentum frame, what is the mini-
mum speed of the electron for this reaction to occur,
in terms of the masses me and mμ of the electron and
muon?

(A) (1−me/mμ)c

(B)
(√

1−me/mμ

)
c

(C)
(√

1−m2
e/(2m2

μ)
)
c

(D)
(√

1−m2
e/m2

μ

)
c

(E) This process can occur at any speed.

1 μF 4 μF

3 MΩ2 MΩ

96. What is the time constant of the circuit shown in the
diagram?

(A) 2 s
(B) 4 s
(C) 6 s
(D) 10 s
(E) 25 s

97. The self-inductance of an ideal solenoid is L. If the num-
ber of coils per unit length is tripled while all other
parameters remain the same, the new self-inductance is

(A) L/9
(B) L/3
(C) L

√
3

(D) 3L
(E) 9L

98. Free electron lasers produce coherent light through
which of the following mechanisms?

(A) Spontaneous emission
(B) Synchrotron radiation
(C) Population inversion
(D) Optical pumping
(E) Electric dipole transitions

99. What is the magnetic field due to an infinite surface
current K = K0ŷ flowing along the xy-plane?

(A) −μ0K
2

ẑ for z < 0,
μ0K
2

ẑ for z > 0

(B)
μ0K
2

ẑ for z < 0,−μ0K
2

ẑ for z > 0

(C) −μ0K
2

x̂ for z < 0,
μ0K
2

x̂ for z > 0

(D)
μ0K
2

x̂ for z < 0,−μ0K
2

x̂ for z > 0

(E) −μ0K
2

ŷ for z < 0,
μ0K
2

ŷ for z > 0

0.75 m

30˚

100. A sphere of radius 20 cm and mass 45 g is placed atop a
ramp of height 0.75 m and inclination angle 30◦. If the
ramp were frictionless, the sphere would slide down the
ramp in a time t. With friction, the sphere would roll
without slipping down the ramp, and reach the bottom
in a time t′. What is t′/t?

(A)
√
2/5

(B)
√
7/10

(C) 1
(D)

√
7/5

(E)
√
3
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TABLE OF INFORMATION

Rest mass of the electron me = 9.11× 10−31 kg

Magnitude of the electron charge e = 1.60× 10−19 C

Avogadro’s number NA = 6.02× 1023

Universal gas constant R = 8.31 J/(mol · K)
Boltzmann’s constant k = 1.38× 10−23 J/K

Speed of light c = 3.00× 108 m/s

Planck’s constant h = 6.63× 10−34J · s = 4.14× 10−15 eV · s
� = h/2π

hc = 1240 eV · nm
Vacuum permittivity ε0 = 8.85× 10−12 C2/(N ·m2)

Vacuum permeability μ0 = 4π × 10−7 T · m/A

Universal gravitational constant G = 6.67× 10−11 m3/(kg · s2)
Acceleration due to gravity g = 9.80 m/s2

1 atmosphere pressure 1 atm = 1.0× 105 N/m2 = 1.0× 105 Pa

1 angstrom 1 Å = 1× 10−10 m = 0.1 nm

Prefixes for Powers of 10

10−15 femto f

10−12 pico p

10−9 nano n

10−6 micro µ

10−3 milli m

10−2 centi c

103 kilo k

106 mega M

109 giga G

1012 tera T

1015 peta P

Rotational inertia about center of mass

Rod 1
12M�2

Disk 1
2MR2

Sphere 2
5MR2

 



 



SAMPLE EXAM 3
Time— 170 minutes

100 questions

Directions: Each of the questions or incomplete statements below is followed by five suggested answers or completions. Select
the one that is best in each case and then fill in the corresponding space on the answer sheet.

x

y

h

1. A bath of water has a hole in the bottom of one side,
as shown in the figure. At what horizontal distance x
from the edge of the bath does the draining water land?
Neglect effects due to viscosity and surface tension.

(A)
√
2hy

(B)
√
hy
2

(C) 2
√
hy

(D)
h
2

(E)
2h2

y

2. When monochromatic blue light of wavelength 450 nm
is shined on a sample of hydrogen atoms, the intensity
of the scattered light is I0. If the Bohr radius of hydrogen
were doubled, what would be the approximate intensity
of scattered light?

(A) I0/16
(B) I0/4
(C) 4I0
(D) 16I0
(E) 64I0

3. Two objects in the sky have angular separation
1 arcminute, and emit a broad spectrum of radiation.
A telescope with aperture diameter 1 cm could resolve
the objects by observing which of the following kinds
of radiation? Note that 1 arcminute is approximately
3× 10−4 rad.

I. Radio
II. Visible
III. X-ray

(A) I only
(B) II only
(C) III only
(D) I and II
(E) II and III

4. A block slides frictionlessly on ice at a constant veloc-
ity of 10 m/s. The block suddenly encounters a rough
patch where its coefficient of kinetic friction suddenly
increases from 0 to 0.5. How far does the block slide
before stopping?

(A) 5 m
(B) 10 m
(C) 15 m
(D) 20 m
(E) 100 m

5. The Euler–Lagrange equations are valid for systems with
which of the following properties?

I. Systems with time-dependent potentials
II. Systems without rotational symmetry
III. Systems acted on by only conservative forces

(A) II
(B) III
(C) I and II
(D) I and III
(E) I, II, and III
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6. Order the following corrections to the Bohr energies of
hydrogen from smallest to largest.

I. Fine structure
II. Hyperfine splitting
III. Lamb shift

(A) I, II, III
(B) I, III, II
(C) II, III, I
(D) III, II, I
(E) III, I, II

7. What is the difference in energy between the n = 5
and the n = 1 states of the one-dimensional quantized
harmonic oscillator?
(A) �ω

(B) 2�ω

(C) 4�ω

(D) 8�ω

(E) 16�ω

(Top view)

ω

Δθ

8. A person stands at the center of a frictionless disk of
radius R rotating at angular velocity ω, and pushes a
puck radially outwards at velocity v. What is the angle
�θ between the point on the edge of the disk where the
puck was aimed and the point on the edge of the disk
where the puck actually arrives?

(A) v/(ωR)
(B) ωR/v
(C) 2ωR/v
(D) ωR/(2v)
(E) 0

9. Two parameters x and y were measured with uncorre-
lated uncertainties �x and �y. What is the uncertainty
of the quantity z = x/y?

(A)
√
(�x/x)2 + (�y/y)2

(B)
√
(�x/x)2 − (�y/y)2

(C) z
√
(�x/x)2 + (�y/y)2

(D) z
√
(�x/x)2 − (�y/y)2

(E) z
√
(�x/x)2 + 2(�y/y)2

10. A circuit made only of which of the following circuit
elements may function as a bandpass filter?

(A) One resistor, one inductor, and one capacitor
(B) One resistor and one inductor
(C) One resistor and one capacitor
(D) Two resistors
(E) Two capacitors

11. Consider a planet of mass m that orbits a star of mass
M � m. For a fixed orbital angular momentum L,
what is the relationship between the energies of the three
possible orbit shapes: circular (Ecir), elliptical (Eell), or
hyperbolic (Ehyp)?

(A) Ecir < Eell < Ehyp

(B) Eell < Ehyp < Ecir

(C) Ehyp < Ecir < Eell

(D) Ecir < Ehyp < Eell

(E) Eell < Ecir < Ehyp

12. For a system of electrons at zero temperature, the energy
of the highest occupied quantum state is called the

(A) zero-point energy
(B) Einstein energy
(C) Fermi energy
(D) Bose energy
(E) binding energy

13. A beam is made up of particles that have a lifetime of
10−8 s at rest. If the beam travels at 0.8c, at what loca-
tion down the beamline is there only a fraction 1/e of
the particles remaining?

(A) 6.2 m
(B) 4.0 m
(C) 3.6 m
(D) 2.7 m
(E) 2.2 m
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14. An atom has electron configuration 1s22s22p3. A mea-
surement of the total orbital angular momentum of the
outermost electron in the ground state could return
which of the following?

(A) �

(B) �
√
2

(C) 2�
(D) �

√
6

(E) 3�

15. Which of the following nuclei were produced during Big
Bang nucleosynthesis?

I. 3He
II. 7Li
III. 55Fe
(A) I
(B) III
(C) I and II
(D) I and III
(E) I, II, and III

A1

A2

v

16. A horizontal tube has a wide section of cross-sectional
area A1 and a narrow section with cross-sectional area
A2, as shown in the diagram. If an incompressible fluid
of density ρ moves with velocity v through the wide part
of the horizontal tube, what is the velocity of the fluid in
the narrow section of the tube?

(A) v
(B) vA1

A2

(C) vA2
A1

(D) vA
2
1

A2
2

(E) vA
2
2

A2
1

17. A car accelerates from rest at 5 m/s2. What is its speed
after traveling 40 m?
(A) 9.7 m/s
(B) 15 m/s
(C) 20 m/s
(D) 30 m/s
(E) 54.2 m/s

18. A bullet of mass m is fired at velocity v into a block of
mass M at rest on a table, where it stops and is embed-
ded. If there is a coefficient of friction μ between the
block and the table, how much time does it take for the
block to come to rest?

(A)
Mv

μg(m+M)

(B)
μmv

g(m+M)

(C)
v

μg

(D)
mv

μgM

(E)
mv

μg(m+M)

19. Thermal fluctuations produce voltage fluctuations in all
resistors. Which of the following is the spectral density
(units of V Hz−1/2) of voltage fluctuations in a resistor
at temperature T and of resistance R?

(A)
√
4kT/R

(B)
√
4kR/T

(C)
√
4kTR

(D)
√
kT

(E)
√
4R
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R d
v

x

20. A metal bar is pulled at constant velocity vx̂ along two
metal rails a distance d apart connected by a resis-
tor of resistance R, as shown in the diagram. There is
a constant magnetic field, pointing into the page, of
magnitude B. At time T, how much energy has been
dissipated in the resistor thus far, as a function of T?

(A)
2BvdT

R

(B)
2(Bvd)2T

R

(C)
BvdT
R

(D)
(Bvd)2T

R
(E) (Bvd)2TR

21. If the rms velocity of H2 gas at 300K is v, which of the
following is closest to the rms velocity of helium gas at
the same temperature?

(A) v/8
(B) v/4
(C) v/2
(D) v/

√
2

(E) 2v

22. A circuit consists of a capacitor C, a resistor R, and an
inductor L all in series. The circuit is driven by an AC
generator at frequency ω. What is the driving frequency
at which the current through the circuit is maximized?

(A)

√
1
LC

−
(

R
2L

)2

(B)

√
1
LC

−
(

1
2RC

)2

(C)

√
1
LC

−
(
R
L

)2

(D)
√

1
LC

(E)

√
1
LC

−
(

1
RC

)2

23. A pipe with two open ends is 20 cm long. What is the
fundamental frequency of the pipe? (You may assume
the speed of sound is 343 m/s.)

(A) 1715 Hz
(B) 858 Hz
(C) 563 Hz
(D) 429 Hz
(E) 205 Hz
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a

I

b

i
y

x

z

24. A current loop of radius a carrying current I is centered
at the origin and lies in the xy-plane. Another loop, car-
rying current i � I, and of radius b � a, is centered at
the origin and lies in the xz-plane. What is the torque on
the smaller loop about its center?

(A)
μ0π iIb2

a

(B)
μ0π iIb2

2a

(C)
μ0π iIb3

2a2

(D)
μ0π iIb2

4a2

(E)
3μ0π iIb2

2a2

25. A merry-go-round of radius R rotates at an angular
velocity of 	. A ball A is released at radius R/2, initially
at rest, by a person standing on the merry-go-round. An
identical ball B is released at radius R, also at rest. In the
noninertial reference frame of the rotating merry-go-
round, what is the ratio of the acceleration experienced
by ball A to ball B immediately after they are released?

(A) 0
(B) 1/2
(C) 1
(D) 2
(E) 4

a b

c

26. A ball of uniform charge density and radius a is sur-
rounded by a conducting shell of inner radius b and
outer radius c. Which could be the potential as a func-
tion of radius?

(A)

(B)

(C)

(D)

(E)
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C L

R

27. A charged capacitor is in series with a resistor and induc-
tor, as in the diagram. Which of the following could be a
graph of the current when the switch is closed?

(A)

(B)

(C)

(D)

(E)

28. A beam of electrons (mass m and charge q) with uni-
form velocity enters a region of constantmagnetic field B
perpendicular to the beam direction. Assuming that the
electrons are able to follow a circular path completely
within the field, how long does it take for the beam to
make one complete revolution?

(A) 2πm/(qB)
(B) πm/(qB)
(C) m/(2πqB)
(D) m/(πqB)
(E) m/(qB)

29. Photons of wavelength 10 nm are incident on a crystal
with interatomic space 80 nm. At what angle is the first-
order maximum in the diffraction pattern?

(A) 7.2◦

(B) 3.6◦

(C) 2.4◦

(D) 1.8◦

(E) 0.9◦

R
Qd

x

30. A charge Q is brought to a distance d from the center of
a grounded conducting sphere of radius R. What is the
electric potential at a distance x > R from the center
of the sphere along the axis between the charge and the
sphere?

(A)
Q

2πε0

(
1∣∣x− d
∣∣ − d∣∣xd − R2

∣∣
)

(B)
Q

4πε0

(
1∣∣x− d
∣∣ − R∣∣xd − R2

∣∣
)

(C)
Q

4πε0

(
1∣∣x− d
∣∣ − 1

|2x− R|

)

(D)
Q

4πε0

(
1∣∣x− d
∣∣ − 1

|x|

)

(E) 0
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31. What type of lattice is the reciprocal lattice to a simple
cubic lattice in three dimensions?

(A) Face-centered cubic
(B) Simple cubic
(C) Body-centered cubic
(D) Simple hexagonal
(E) None of the above

32. The magnetic vector potential in a region of space is
given by

A(x, y) = Ay2x̂+ Cx2ẑ,

where A and C are constants. What is the magnetic field
in this region?

(A) −2Cxŷ− 2Ayẑ
(B) 2Cxŷ+ 2Ayẑ
(C) 0
(D) −Cxŷ− Ayẑ
(E) Cxŷ+ Ayẑ

33. The CMB has a temperature of 2.7 K and has a peak
intensity at a wavelength of approximately 1 mm. If the
CMB were at 5 K, what would be the wavelength with
the maximal intensity?

(A) 1 mm
(B) 0.54 mm
(C) 0.32 mm
(D) 5.3 mm
(E) 57 mm

34. Which of the following decays is allowed in the Standard
Model?

(A) μ− → e− + νe

(B) π− → γ

(C) �+ → p+ n
(D) π+ → 2γ
(E) K+ → μ+ + νμ

35. A nearby star is moving away from the Earth with pecu-
liar velocity 0.1c. It appears to have an effective black-
body temperature of 104 K. What is its true effective
blackbody temperature? (Assume a negligible cosmolog-
ical redshift.)

(A) 0.6× 104 K
(B) 0.9× 104 K
(C) 104 K
(D) 1.1× 104 K
(E) 1.4× 104 K

36. A two-level system has energies±ε. What is the average
energy of the system as the temperature T →∞?

(A) −2ε
(B) −ε

(C) 0
(D) ε

(E) 2ε

37. An ideal gas is confined to half of a rigid box with vol-
ume 2V . If a valve is opened suddenly, letting the gas
suddenly fill the full volume of the box, which of the
following is unchanged?

I. Internal energy U
II. Temperature T
III. Entropy S

(A) I
(B) III
(C) I and II
(D) I and III
(E) I, II, and III

38. Suppose a heat engine that transfers heat from a warm
bath at temperature TH to a cold bath at TC has an
efficiency

e = TH + TC

TH + 2TC
.

Which of the following must be violated?

(A) Conservation of energy
(B) First Law of Thermodynamics
(C) Second Law of Thermodynamics
(D) Third Law of Thermodynamics
(E) Postulate of equal a priori probabilities
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39. Two spaceships pass each other. Spaceship A moves rel-
ative to a nearby planet at velocity v1, while spaceship B
moves at velocity v2 relative to the planet. How fast does
spaceship A move relative to spaceship B?

(A)
v1 − v2

1+ v1v2/c2

(B)
|v1 + v2|

1− v1v2/c2

(C) |v1 − v2|
(D)

v1 + v2
1+ v1v2/c2

(E)
|v1 − v2|

1− v1v2/c2

r

r r

r

A

B

40. Consider the network of resistors with resistance r,
shown in the figure. What is the equivalent resistance
between terminals A and B?

(A) r/3
(B) 2r/3
(C) r
(D) 4r/3
(E) 5r/3

41. An ideal monoatomic gas initially at pressure P under-
goes adiabatic expansion from a volume V to a volume
2V . What is the final pressure of the gas?

(A) P
(B) P/2
(C) P/4
(D) 2−5/3P
(E) 2−7/3P

42. What is the expectation value of Lz for the following
wavefunction:

ψ(θ ,φ) = 1√
2

(
Y−11 (θ ,φ)+ Y0

1 (θ ,φ)
)
,

where Ym
l (θ ,φ) are the spherical harmonics?

(A) −�

(B) −�/2
(C) 0
(D) �/2
(E) �

43. Which of the following statements is true in general for
one-dimensional spin-0 quantum mechanical systems?

(A) All states are energy eigenstates.
(B) Energies are always quantized.
(C) Eigenvalues of Hermitian operators are real.
(D) All states have real-valued wavefunctions in the x

basis.
(E) None of the above.

m

v

M

L

44. A mass m moves at speed v perpendicular to a rod of
uniform density, mass M, and length L on a frictionless
table. Supposem� M. If the mass collides with the end
of the rod and sticks to it, at what angular speed does
the rod begin to rotate? (You may treat the mass m as a
point particle.)

(A)
3mv
2ML

(B)
3mv
ML

(C)
6mv
ML

(D)
12mv
ML

(E)
Mv
2mL

45. An electron is in a magnetic field and has a Hamiltonian
H = αS · B. If the electron is aligned with the magnetic
field at t = 0, what is its time-dependent wavefunction?
(|+〉 represents a spinor aligned with themagnetic field.)

(A) exp(−iαBt/2) |+〉
(B) exp(+iαBt/2) |+〉
(C) exp(−iαBt) |+〉
(D) exp(+iαBt) |+〉
(E) exp(−2π iαBt/�) |+〉
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46. Which of the following is true of observables in quantum
mechanics?

I. They are represented by Hermitian operators.
II. Multiple observables can never be simultaneously

measured.
III. The operators representing observables must have

real eigenvalues.

(A) I only
(B) II only
(C) I and II
(D) I and III
(E) I, II, and III

47. A mass attached to a spring oscillates at frequency f . If
the mass attached to the spring triples and the spring
constant doubles, what is the new frequency of oscilla-
tion of the system?

(A) (
√
2/3)f

(B) (2/3)f
(C) (4/9)f
(D) (

√
1/2)f

(E) (1/2)f

48. A quantum particle has normalized wavefunction
ψ(x) = √

5x2 on the interval [0, 1]. What is the prob-
ability that the particle is found at 0 ≤ x ≤ 1/2?

(A) 1/2
(B) 1/4
(C) 1/8
(D) 1/16
(E) 1/32

49. A spin-1/2 particle is in a state

|ψ〉 =
√
2
3
|m = 1/2〉 +

√
1
3
|m = −1/2〉 .

What is the expectation value of the z-component of its
spin?

(A) 3�
(B) �

(C) �/2
(D) �/3
(E) �/6

50. Which of the following physical processes is responsible
for producing the photons from a carbon dioxide laser?

(A) Pair annihilation
(B) Bremsstrahlung
(C) Transitions of nuclear energy levels
(D) Transitions between vibrational molecular energy

levels
(E) Photoelectric effect

51. A car of massM pulls a trailer of mass m by a cord. The
car’s engine exerts a force F on the car. Suppose that the
trailer has a coefficient of rolling friction μ, but neglect
the coefficient of friction of the car. What is the tension
in the cord between the car and trailer?

(A)
m(F − μMg)

M −m

(B)
m(F + μMg)

M +m

(C)
m(F − μMg)

M +m

(D)
μm(F −Mg)

M +m

(E)
m(F + μMg)
μ(M +m)

52. A spin-2 particle has orbital angular momentum l = 4.
What is the smallest possible value of its total angular
momentum quantum number j?

(A) 6
(B) 5
(C) 4
(D) 3
(E) 2

53. An element with a ground state electron configuration
of 1s22s22p6 is best characterized as a(n)

(A) alkali metal
(B) rare earth metal
(C) semiconductor
(D) halogen
(E) noble gas
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54. The ground state wavefunction for the harmonic oscil-
lator is

ψ0(x) =
(mω

π�

)1/4
e−mωx2/(2�).

Consider a perturbation to the Hamiltonian given by

δV(x) = αe−βx2 .

What is the first-order correction to the ground state
energy? Note that∫ ∞

−∞
e−x2/c2 = c

√
π .

(A) α

√
β�

mω

(B) α

√
mω + β�

mω

(C) α

√
mω

mω + β�

(D) α

√
2mω + β�

mω

(E) α

√
mω

2mω + β�

55. Let γ be the path in the xy-plane that traverses the square
with vertices (0, 0), (1, 0), (1, 1), and (0, 1), in that order.

What is the line integral
∮

γ

f ·dl of the function f(x, y) =
yx̂+ xŷ?

(A) −2
(B) −1
(C) 0
(D) 1
(E) 2

56. Magnetic flux is quantized in type II superconductors.
What is the unit of magnetic flux quanta?

(A) 2eh
(B)

e
2h2

(C)
h
2e

(D)
h
2e2

(E)
e2

2h

57. Positronium is a bound state of an electron and a
positron. Which of the following are true facts about
positronium?

I. It obeys Bose–Einstein statistics.
II. Its binding energy is−6.8 eV.
III. It can decay into a single photon.

(A) I only
(B) III only
(C) I and II
(D) I and III
(E) I, II, and III

58. A billiard ball m rolls without slipping with velocity v
on a pool table. After striking the wall of the table in an
elastic collision, the ball has velocity v′. The change in
the ball’s momentum is�p.Which of the followingmust
be true?

I. |v′| = |v|
II. v′ = −v
III. |�p| = m|v′ − v|
(A) I only
(B) I and II
(C) I and III
(D) II and III
(E) I, II, and III

59. Which of the following transitions of the hydrogen atom
is allowed in the electric dipole approximation? (The
entries in parentheses are (n, l,m).)

(A) (2, 1, 0)→ (1, 0, 0)
(B) (2, 0, 0)→ (1, 0, 0)
(C) (3, 2, 0)→ (1, 0, 0)
(D) (3, 2, 2)→ (2, 1, 0)
(E) (3, 0, 0)→ (2, 0, 0)

60. Suppose that a satellite orbiting the Sun can be approx-
imated as a perfect blackbody. Assuming the body is in
equilibriumwith its surroundings, what is the ratio of its
blackbody temperature at radius 2R from the Sun to the
blackbody temperature at radius R from the Sun?

(A) 2−3/2

(B) 2−1

(C) 2−1/2

(D) 2−1/3

(E) 2−1/4
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61. Gas A consists of atoms of mass m, and gas B consists
of diatomic molecules where each atom has mass m/2.
Which of the following best describes the rms speeds vA
and vB of the particles of gases A and B at temperatureT?
You may assume T is less than the temperature at which
gas B dissociates.

(A) vA < vB at low T, vA > vB at high T
(B) vA > vB at low T, vA < vB at high T
(C) vA = vB at low T, vA > vB at high T
(D) vA < vB for all T
(E) vA = vB for all T

62. A merry-go-round can be approximated as a disk of
uniform density with radius r, and massM. A merry-go-
round is spinning at angular velocity ω before a person
steps onto it. What is the change in angular velocity
after a person of mass m steps onto the edge of the
merry-go-round?

(A)
2ωm

M + 2m

(B)
ωM

M + 2m

(C)
2ω(m+M)
M + 2m

(D)
2ωm
M +m

(E)
ωm

M +m

63. The He+ ion experiences an atomic transition from the
n = 2 state to the n = 1 state. What is the energy of the
emitted photon?

(A) 10.2 eV
(B) 13.6 eV
(C) 27.2 eV
(D) 31.4 eV
(E) 40.8 eV

64. A string of mass density μ = 1 g/cm and tension T =
4 × 103 N is fixed at both ends. What is the speed of
waves on the string?

(A) 2 m/s
(B) 20 m/s
(C) 200 m/s
(D) 2,000 m/s
(E) 2× 105 m/s

65. Six charges +q are fixed at the corners of a cube of side
length a. A test charge −q is placed at the center of the
cube and released.Which of the followingMUST be true
of this configuration of charges?

I. The force on the test charge due to the six charges
+q is zero.

II. The electric potential due to the six charges +q is
zero.

III. The test charge is in stable equilibrium.

(A) I only
(B) II only
(C) I and II only
(D) I and III only
(E) I, II, and III

66. A particle of mass m and charge q in a region of homo-
geneous magnetic field undergoes cyclotron motion at
speed v = 0.6c with cyclotron radius R. If the particle’s
speed is increased to v = 0.8c, what is the new cyclotron
radius?

(A) 3R/4
(B) R
(C) 5R/4
(D) 4R/3
(E) 16R/9

67. Unpolarized light is incident on two polarizing filters
oriented at 30◦ to one another. What is the intensity
of transmitted light as a fraction of the incident light
intensity?

(A) 1/4
(B) 3/8
(C) 1/2
(D) 3/4
(E) 1/8

68. What is the expectation value of the operator

O = |[x̂, p̂]|2

in the ground state of the infinite square well of size L,
centered on x = 0?

(A) 0
(B) �

2

(C) L2

(D) �
2L2

(E) �
2/L2

 



222 Sample Exam 3

69. What is the inductance of a cylindrical solenoid with N
turns, length �, and radius R� �?

(A) 2μ0N2R2/�
(B) 2μ0N2πR2/�
(C) μ0NπR2/�
(D) μ0N2πR2/�
(E) μ0N2R2/�

d

2f f

70. Two converging lenses of focal length f /2 are placed in
series, separated by a distance d. The object is placed a
distance 2f to the left of the left lens, and the image is
upright and located a distance f to the right of the right
lens. What is d?

(A) (2/3)f
(B) (5/3)f
(C) (7/3)f
(D) 3f
(E) 9f

m m
kk

71. Two masses m are connected by springs with spring
constants k and a massless rigid rod, as shown in the
diagram. What is the frequency of oscillation of the
system?

(A)
√
3k/m

(B)
√
k/m

(C)
√
2k/m

(D)
√
k/2m

(E) 2
√
k/m

72. Suppose an atomic transition has a lifetime of 3 ×
10−10 s. The natural line width of this transition is
closest to

(A) 10−2 eV
(B) 10−4 eV
(C) 10−6 eV
(D) 10−8 eV
(E) 10−10 eV

73. Which of the following quantities change under a gen-
eral gauge transformation in electromagnetism?

I. Electric potential
II. Electric field
III. Magnetic field

(A) I only
(B) II only
(C) I and II
(D) II and III
(E) I, II, and III

74. The degeneracy of the second excited state of the three-
dimensional infinite square well is

(A) 1
(B) 2
(C) 3
(D) 8
(E) 9

75. What is the capacitance of two concentric thin conduct-
ing spheres of radii a and b > a?

(A) 4πε0ab/(b− a)
(B) 4πε0a2/(b− a)
(C) 4πε0b2/(b− a)
(D) 4πε0 ln(b/a)
(E) 4πε0

76. How many distinct spin states can be formed by three
distinguishable spin-1/2 particles?

(A) 1
(B) 2
(C) 4
(D) 7
(E) 8

77. A thin lens is made of a material with an index of refrac-
tion of 1.5. If the radius of curvature of the left side of
the lens is 10 cm, and the focal length is 1 m, what is the
radius of curvature of the right side of the lens?

(A) 12.5 cm
(B) 6.25 cm
(C) 25 cm
(D) 3.125 cm
(E) 25 cm
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78. A car drives at velocity v through a garage of length l,
with a front and rear door. The front door is initially
open and the rear door is initially closed. In the frame
of the garage, the rear door opens when the car is just
about to collide with it, and the front door closes at the
same time. In the frame of the car, how much time sep-
arates the opening of the rear door from the closing of
the front door? (γ = 1/

√
1− v2/c2.)

(A) 0

(B)
γ vl
c2

(C)
vl
c2

(D)
γ cl
v2

(E)
vl

γ c2

79. Consider the change in entropy of an ideal gas in the
following situations:

● �S1: temperature doubles, pressure constant
● �S2: temperature doubles, pressure doubles
● �S3: temperature constant, volume doubles

Which of the following is true?

(A) �S1 < �S2 < �S3
(B) �S1 < �S3 < �S2
(C) �S2 < �S3 < �S1
(D) �S3 < �S1 < �S2
(E) �S3 < �S2 < �S1

80. Amassm attached to a spring of constant k is driven by a
force F(t) = F0 sin(ωt). What is the late-time amplitude
of the spring oscillations, assuming friction is small but
sufficient to damp out transient oscillations?

(A)
F0
k

(B)
F0
mω2

(C)
F0

|k− 2mω2|
(D)

F0
|k−mω2|

(E)
F0

|4k−mω2|

81. An event occurs at (t, x, y, z) = (0 s, 5m, 10 m, 0 m)
in a reference frame S. At what position x′ does the
event occur in a reference frame S′ with coordinates
(t′, x′, y′, z′) that is moving at velocity 0.8c along the x-
axis, relative to S? You may assume that the origin of
coordinates coincides in both reference frames.

(A) 15.67 m
(B) 11.33 m
(C) 8.33 m
(D) 6.67 m
(E) 3.00 m

R

M

L

h

82. A dowel of radius R, mass M, and uniform mass den-
sity rolls without slipping down a ramp of length L and
height h. What is its speed at the bottom of the ramp?

(A)
√
2gh

(B)
√
gh

(C)
√
gL

(D)

√
Rgh
3L

(E) 2

√
gh
3

83. A positively charged particle, initially moving in the x̂-
direction, enters a region containing uniform electric
andmagnetic fields, E = E0(x̂+2ŷ) andB = B0ẑ. Which
of the following is a true statement about the motion of
the particle?

(A) The particle moves in a circle.
(B) The particle is confined to the xz-plane.
(C) The particle is confined to the xy-plane.
(D) No work is done on the particle.
(E) The particle moves in a straight line.

 



224 Sample Exam 3

84. Dark matter, a hypothetical component of matter in the
universe, which feels the gravitational force but does not
interact with electromagnetism, can potentially explain
all of the following observations EXCEPT:

(A) Stars at the outskirts of galaxies rotate faster than
expected based on the mass inferred from luminous
matter.

(B) Galaxies appear to be receding from us at a rate
proportional to their distance.

(C) Fits to cosmic microwave background anisotropy
data require a nonzero energy density which does
not couple to photons.

(D) Gravitational lensing observations of colliding
galaxies show that the luminous mass and the grav-
itational mass are displaced from one another.

(E) The gravitational potential of baryons alone would
not be sufficient to counteract cosmic expansion
and form structure such as galaxies.

85. A Geiger counter measures 1,250 events near a radioac-
tive source during 10 seconds, and 350 events during
10 seconds when the source is removed. What is the
uncertainty of the rate of events due to the source?

(A) 3.0 Hz
(B) 4.0 Hz
(C) 18.7 Hz
(D) 35.4 Hz
(E) 40.0 Hz

86. A signal pulse contains a current that has an exponential
risetime of 10 ms and an exponential falltime of 100 ms.
Approximately what minimum bandwidth should be
used to view the pulse in frequency space on a spectrum
analyzer?

(A) 0.01 Hz
(B) 1 Hz
(C) 1 kHz
(D) 1 MHz
(E) 1 GHz

87. A fit of a histogram to a model has a χ2 statistic of
45.6. Which of the following should be used with the
χ2 value to determine whether the model represents the
data well?

I. The number of entries in the histogram
II. The number of parameters in the model
III. The number of bins in the histogram

(A) II only
(B) III only
(C) I and III only
(D) II and III only
(E) I, II, and III

88. Which of the following is NOT produced in the pp cycle
of the Sun?

(A) 2H
(B) 3He
(C) 4He
(D) 8B
(E) 11C

89. What is the mean energy at temperature T of a two-state
system with energy states 0 and ε?

(A) ε/2
(B) ε/(1+ e−ε/kT)
(C) ε/(1− eε/kT)
(D) ε/(1+ eε/kT)
(E) ε(1+ eε/kT)

90. If the Hubble parameter suddenly were increased to
twice its present value, which of the following would
change?

(A) Fundamental particle masses
(B) Distance between Earth and distant galaxies
(C) Redshift of distant galaxies
(D) Cosmological constant
(E) Gravitational constant G
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91. A satellite in orbit around the Earth monitors seismic
activity through interferometry, by comparing the phase
of a reflected wave before and after an earthquake. If the
typical displacement of a point on Earth is 5 cm, which
of the following radiation frequencies would be most
appropriate to use for this measurement?

(A) 1 Hz
(B) 1 kHz
(C) 1 MHz
(D) 1 GHz
(E) 1 THz

92. Doping a semiconductor does which of the following to
the band structure?

(A) No effect on band structure
(B) Eliminates the valence band
(C) Increases the gap energy
(D) Adds additional states between valence and conduc-

tion bands
(E) Eliminates the energy gap

93. An infinite conducting cylinder of radius a carries a sur-
face charge density of σ . Assuming that the potential on
the surface is 0, what is the potential at a distance r > a?

(A)
1
ε0

aσ ln
r
a

(B)
1
ε0

aσ ln
a
r

(C)
1
2ε0

aσ ln
r
a

(D)
1
2ε0

aσ ln
a
r

(E) 0

94. A toy car travels through a vertical loop on a track. If
the radius of the loop is 50 cm, what is the minimum
initial speed needed by the car at the bottom of the loop
to successfully complete the loop without losing contact
with the track?

(A) 1.4 m/s
(B) 4.5 m/s
(C) 5.0 m/s
(D) 7.8 m/s
(E) 9.6 m/s

95. Which of the following is equivalent to the commuta-
tor
[
SxSy, Sy

]
, where Sx and Sy are quantum-mechanical

spin operators?

(A) 0
(B) i�SzSx
(C) −i�SxSz
(D) i�SySx
(E) i�SzSy

96. A particle is under the influence of a central potential
U(r) with the property that all bound orbits are closed.
The particle has an energy E such that Vmin < E < 0,
where Vmin is the minimum of the effective potential
derived from U(r). Which of the following characterizes
the shape of the orbit?

(A) Circular
(B) Elliptical
(C) Parabolic
(D) Hyperbolic
(E) The answer cannot be determined from the infor-

mation given.

a

d k

97. A square parallel-plate capacitor has side lengths a and
separation d between the plates. A constant voltageV0 is
applied between the plates. A block of dielectric material
of dielectric constant κ and the same area and thick-
ness as the capacitor is slowly inserted into the capacitor.
What is the change in energy stored in the capacitor by
the time the dielectric is fully inserted?

(A) 0

(B)
(κ − 1)ε0a2V2

0
4d

(C)
(κ − 1)ε0a2V2

0
d

(D)
(κ − 1)ε0a2V2

0
2d

(E)
κε0a2V2

0
2d
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98. An object is placed at rest in a potential fieldU(x, y, z) =
Ax+ By2−C cos z, where A,B,C are constants. What is
the force on the object?

(A) F(x, y, z) = −Ax̂− 2Byŷ− C sin zẑ
(B) F(x, y, z) = Axx̂+ 2Byŷ− C cos zẑ
(C) F(x, y, z) = −Axx̂− 2Byŷ+ C cos zẑ
(D) F(x, y, z) = −Ax̂− 2Byŷ+ C cos zẑ
(E) F(x, y, z) = Ax̂+ 2Byŷ+ C sin zẑ

99. Suppose a hydrogen atom is in a uniform external elec-
tric field of magnitude E. What is the correction to the
ground state energy calculated from first-order pertur-
bation theory? The normalized ground state wavefunc-
tion of hydrogen is ψ(r, θ ,φ) = 1√

πa3/20
e−r/a0 .

(A) eE

(B)
1
2
eE

(C)
3
2
eE

(D)
16
5
eE

(E) 0

100. In Mössbauer spectroscopy, a source of photons of
energy E is moved with velocity v � c relative to a
target material. The absorption of photons by the target
material is then measured, with the Doppler shift from
the source velocity producing a small variation in the
photon energy. If the absorption peaks of two lines cor-
respond to source velocities of 0 and v, what is the energy
splitting between the lines to lowest order in v?

(A) Ev4/c4

(B) Ev3/c3

(C) Ev2/c2

(D) Ev/c

(E) E
√
v/c
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Solutions to Sample Exam 1

1. C – This is a simple application of the centripetal accel-
eration formula:

v = √
ar = √9 · 4g = 6

√|g|m/s.

2. E – Although we have to just calculate this one, it is good
practice for working through basic kinematics problems
quickly. If you find yourself getting bogged down in
numerical factors, this is a good example of a problem
to skip and save for later, as there shouldn’t be too many
problems of this type on the exam. Recall that elastic
collisions conserve both linear momentum and energy.
If we call the final velocity of the heavy block v1 and
the final velocity of the light block v2, and drop all the
m’s, then we just need to solve the following system of
equations:

v = 4v1 + v2,
1
2
v2 = 1

2
4v21 +

1
2
v22.

Plugging the first equation into the second for v, we get

(4v1 + v2)2 = 4v21 + v22,

16v21 + 8v1v2 + v22 = 4v21 + v22,

12v21 + 8v1v2 = 0,

v2 = −3
2
v1.

Then, plugging this into the conservation of momentum
equation, we get

v = 4v1 − 3
2
v1,

v1 = 2
5
v.

3. D – The oscillation frequency of an LC circuit is a good
quantity to memorize:

ω = 1√
LC

.

If you (understandably) forget it, it is straightforward
to reconstruct it from dimensional analysis by looking
for combinations of L and C that give units of s−1. The
capacitance scales as C ∼ A/d, so C increases by a fac-
tor of 2 under the doubling. Assuming that our inductor
is a solenoid with a fixed number of loops, then the
inductance scales just like the solenoid inductance (a 20
second derivation if you forget it) L ∼ A/�. Overall, the
frequency drops in half.

4. B – A dipole contains no net charge, and the charge on a
conductor will rearrange itself to completely cancel out
the dipole field.

5. A – The approximation of a product wavefunction
comes from solving the Schrödinger equation by sep-
aration of variables, which is only possible when the
Coulomb repulsion term is ignored.

6. E – Since the emitted photon carries momentum, the
entire atom must recoil slightly to conserve linear
momentum. This means that the total energy released
in the transition is divided between the gamma and the
recoil of the atom. As a result, the photon energy will
be slightly less than the true transition energy of the
atomic level. Choices A–C simply do not make sense in
the context of the problem, and D appears to violate the
conservation of energy, so E is the correct choice.

7. C – The Fermi energy is EF = �
2

2m (3π
2n)2/3, where

n is the density. Since we are at fixed volume, dou-
bling the number of particles doubles the density, which
multiplies EF by a factor of 22/3, choice C.

8. D – Since the gas is well above the Fermi temperature,
it is essentially classical. By the equipartition theorem,
each quadratic degree of freedom contributes specific
heat per particle k/2. There are two quadratic degrees
of freedom for the kinetic part of the Hamiltonian and
two quadratic degrees of freedom for the potential part,
so the specific heat is 2k.

9. B – Recall that the effective potential for radial motion
is Veff(r) = l2

2mr2 + U(r). The radii of circular orbits are

found by solving
dVeff

dr
= 0, and stability is determined

by the sign of
d2Veff

dr2
. Here,

dVeff

dr
= − l2

mr3
+ k

r2
,

and setting this equal to zero and solving for r gives r =
l2
mk , choice B. We could check that this is a minimum of
Veff by computing the second derivative, but it’s easier to
just think about the behavior of the potential at r = 0
and r = ∞. At r = 0, the repulsive centrifugal barrier
dominates and Veff → +∞. As r approaches infinity,
the central potentialU = −k/r decays more slowly than
the centrifugal term, soVeff approaches zero from below.
Since Veff has only a single critical point, sketching the
graph of V shows that this radius is indeed a minimum,
and hence an allowed stable circular orbit.

10. C – This is a straightforward application of the paral-
lel axis theorem. Recall from the formula sheet that the
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moment of inertia for a single disk about its central axis
is ICM = 1

2MR2. From the parallel axis theorem, we can
read off the moment of inertia for a single disk about the
axis going through the edge:

Idisk = ICM + 1
2
MR2 = MR2 + 1

2
MR2 = 3

2
MR2.

And finally, the moment of inertia of two bodies that are
rigidly attached to each other is equal to the sum of the
moments of inertia of the individual bodies, so we have
the final result

Itotal = 2
3
2
MR2 = 3MR2.

11. E – Redshift z is defined by 1 + z = λobs/λemit. So a
galaxy at redshift 2 has wavelengths expanded by a factor
of 3, and the 21 cm hydrogen line gets redshifted to 63
cm, choice E. Beware the trap answer D: redshift 2 does
not mean wavelengths are expanded by a factor of 2!

12. D – The probabilities of states 1 and 2 are 1
4 and 1

2 , so
the probability of measuring state 3 must be 1

4 . We can
write the wavefunction as

|�〉 = c1 |1〉 + c2 |2〉 + c3 |3〉 ,
and the energy expectation value is

〈E〉 = c21(E0)+ c22(2E0)+ c23X.

The squares of the coefficients are the probabilities of
measuring each energy, so we can just plug in values and
solve for X:

9
4
E0 = 1

4
E0 + 1

2
2E0 + 1

4
X,

1
4
X = 9− 5

4
E0,

X = 4E0.

13. E – The Planck mass is the unique combination of fun-
damental constants �, c, and G that has units of mass.
Expressing all the constants in terms ofmass, length, and
time:

� = [M][L]2[T]−1,
c = [L][T]−1,
G = [M]−1[L]3[T]−2.

For a combination (�)p(c)q(G)r to have units of mass, or
[M]1, we need:

p− r = 1,

2p+ q+ 3r = 0,

−p− q− 2r = 0.

Using your favorite method to solve systems of linear
equations, we find p = 1/2, q = 1/2, r = −1/2, so
MP =

√
�c
G , which is E.

14. B – This is a straightforward application of the relativis-
tic Doppler shift formula:

ν′

ν
=
√
1+ β

1− β
,

where β = v/c is the relative velocity of the source with
respect to the observer. The easy way to keep track of
the signs in the numerator and the denominator is to
remember that the observed frequency increases when
the source is moving towards the observer. Or, if you’re
partial to astrophysics, when the observer is receding,
the signal is redshifted (in other words, the frequency
decreases). Here the source is approaching, so β = 0.6
is positive and

ν′

ν
=
√
1.6
0.4

= √
4 = 2,

so the frequency doubles: ν′ = 2 GHz, choice B.
15. A – This is a classic method of images problem, with a

small twist. To calculate the work, we first need to know
the potential energy of the initial charge configuration
with the point at infinity. This is just U0 = 0, by def-
inition. The final potential energy can be determined
from the image charge configuration, which consists of
our charge +q at a distance d above the plane, and an
image charge−q at a distance d below the plane. Be sure
to remember your signs! One of the charges must be
negative because the potential on the conducting plane
must, by definition, always be zero (this is the entire
point of the method of images). The potential energy of
two opposite point charges separated by a distance 2d is
given by

Uimage = − 1
4πε0

q2

2d
.

Now the trick: the total potential energy of the point
charge plus plane is half the potential energy of the two
point charges. This is because we can think of the total
energy of the configuration as

U =
∫
all space

ε0

2
E2 dV ,

but since the plane is a conductor, the electric field E =
0 below the plane. By symmetry about the plane, the
potential energy of the charge with conductor is half the
energy of the two charges. Thus we find
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W = �U = Uimage

2
− 0 = − 1

4πε0

q2

4d
,

which is choice A. You could also compute this by inte-
grating the force on the point charge, as discussed in
Section 2.1.7.

16. D – The charge after one second is Q = (10−3 C ·
s−1)(1 s) = 10−3 C. From V = Q/C, we get V =
10−3/10−5 = 100 V.

17. E – The leading-order perturbation is simply

〈2| δV |2〉 = 2
L

∫ L/2

0
V0 sin2

(
2πx
L

)
dx

= V0/2.

18. A – From dE = T dS − P dV , we do a Legendre trans-
form to get dF = −S dT − P dV . Since the expansion
is isothermal, it takes place at constant temperature,
so the first term vanishes; the second term is positive
because the volume increases, so dF is negative and
the free energy decreases, rather than increases. This is
consistent with the definition of “free” energy, which is
essentially the available energy the gas has to do work on
its surroundings. Since it does work in the isothermal
expansion phase, at the end of the expansion it has less
free energy available to do work. All the other statements
are true; see the discussion in Section 4.2.6.

19. E – The angle of the first diffraction minimum is sin θ =
λ/a, where λ is the wavelength of the incident light.
Since the screen is far away, we approximate sin θ ≈ θ ,
so the angular width of the central maximum is 2θ . For
a screen a distance L away, the width of the maximum as
seen on the screen is L tan θ ≈ Lθ . So we want

2L
λ

a
= 100a =⇒ a2 = 9× 10−8 m2

=⇒ a = 3× 10−4 m = 0.3 mm.

20. B – From the definition of conjugate momentum,

pφ = ∂L
∂φ̇

= m(a+ b cos θ)2φ̇,

choice B.
21. D – The Lagrangian isn’t explicitly dependent on time,

so the first two terms in L represent the kinetic energy
T and the third represents the potential energy U. Since
L = T−U, to get the total energy T+U we have to take
L+ 2U, which is choice D.

22. A – The decay time constant for an RL circuit is τ =
L/R. This represents the amount of time required for the
voltage across the inductor to drop to 1/e of its initial

level, or, in other words, V(t) = V0e−t/τ . Setting V(t) =
V0/2, we find that t = τ ln 2 = L

R ln 2.
23. E – The straight wire produces a magnetic field that

circles azimuthally around in the φ̂-direction. The ten-
sion on the circular wire, if any, will be the result of
the Lorentz force that the moving charges in the circu-
lar wire feel due to the magnetic field established by the
straight wire. But the current in the circular wire is also
flowing in the φ̂-direction, parallel to the magnetic field.
The electrons flowing in the circular wire therefore feel
no force and there is no tension. So the correct answer
is E.

24. A – Considering the limit of r � h eliminates C and
D immediately, but we need to calculate to get the exact
numerical factors. The cylinder will fall over when it is
tipped just past the point where the center of mass is
directly above the point of contact of the cylinder with
the ground. At that point, the angle θ forms a right tri-
angle with side lengths h/2 and r, so we have tan θ =
r/(h/2) = 2r/h, and the angle of the cylinder with the
horizontal is A.

25. C – The γ factor is γ = 3000 MeV/100 MeV = 30.
In the (stationary) lab frame, the lifetime of the muon is
τ = γ τrest = 30τrest = 60 µs.

26. B – This problem is a bit of trivia that is difficult to
guess. The only way to guess it is to notice that the
dispersion relation in B gives energy as proportional
to momentum, which is ordinarily true for particles in
the extreme relativistic limit (i.e. E = pc). Given that
the problem refers to unusual electronic properties, it
might seem reasonable that this unusual dispersion rela-
tion would produce unusual properties. This is indeed
what happens in graphene, where electrons and holes
behave like massless Dirac fermions, a distinctive fea-
ture of a semiconductor with no gap energy and linear
dispersion.

27. C – The perturbing potential V(x) = −qE0x is an odd
function, while the ground state wavefunction for the
harmonic oscillator is even. Therefore, the first-order
perturbation will vanish, and the leading-order correc-
tion will come from second-order perturbation theory
and be proportional to E20.

28. D –We can use the lens equation twice. For the first lens,
we have

1
5 cm

= 1
2 cm

+ 1
s′1
,

which implies that s′1 = −10/3 cm. The negative sign
implies that the image is located to the left of lens A,
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or 25/3 cm to the left of lens B. Using the lens equation
again for the second lens, we find that

1
5 cm

= 3
25 cm

+ 1
s′2
,

which implies that s′2 = 12.5 cm. Since the answer is
positive, it is located to the right of lens B.

29. A – As is typical for uniform circular motion, we want
to set the gravitational force equal to the centripetal
force. The acceleration in uniform circular motion is still
given by a = v2/r, and the gravitational force is still
Fgrav = GMm/r2. The MOND force law requires that
we set Fgrav = ma2/a0, giving

GMm
r2

= m
(v2/r)2

a0
=⇒ v = (GMa0)1/4.

The factors of r cancel out, and v ends up independent
of r.

30. E –When combining spins l1 and l2 (where without loss
of generality we can take l1 < l2), we can get all values of
l between l2+l1 and l2−l1 in integer steps. In the present
case, with l1 = 1 and l2 = 2, we can get s = 3, 2, 1. The
only condition on ms is |ms| ≤ s, so choices A–D are all
fine. Since s = 0 is impossible, the answer is E.

31. D – The radial probability density for the 2p state is
given by

r2|R21(r)|2 = 1
24

a−50 r4 exp(−r/a0),

where the factor of r2 is from the volume element in
spherical coordinates, dV = r2 sin θdr dθ dφ. To find
the most probable value, we take the derivative and set
to zero (and in doing so, we can ignore all the annoying
constants out front):

4r3e−r/a0 − r4

a0
e−r/a0 = 0

=⇒ r = 4a0,

choice D. Forgetting the factor of r2 from the volume
element leads to trap answer C, forgetting to square the
wavefunction leads to E, and forgetting both also leads
to C. These are all very common mistakes – don’t make
them!

32. C – This is almost a giveaway, since the “mass” in “mass
spectrometry” does indeed refer to the mass of the par-
ticle involved. However, it is important to note that only

the charge-to-mass ratio can be measured by electro-
magnetic fields, so the answer can’t be D, which can
change the mass without affecting the charge.

33. E – Beat frequencies are caused by destructive interfer-
ence between two closely spaced frequencies, resulting
in a modulation with a long enough period that the
minimum of each cycle is heard independently. For
this problem, all that is relevant is the sum-to-product
identity

cos 2πat+cos 2πbt =2 cos
(
2π

a+ b
2

t
)
cos
(
2π

a− b
2

t
)
.

The second term in the product modulates the wave; we
hear beats when its amplitude is zero, which occurs at
frequency a− b. Note that this is twice the apparent fre-
quency of the cosine! If all we know is that this frequency
is 3 Hz, and that one of a or b is 440 Hz, it is impossible
to determine whether the other frequency is 443 Hz or
437 Hz, since both would give the same beat frequency
(the sign of a − b is irrelevant because cosine is even).
Hence the correct answer is E.

34. C – This is a relativistic velocity addition problem. In the
frame of the planet, the speed of the missile is given by
the velocity addition formula:

vmissile = 0.5c+ 0.5c
1+ (0.5c)(0.5c)/c2

= c
1.25

= 0.8c.

Light travels at c in all frames, so the information that
the missile has been fired reaches the planet at 1c. Since
the spaceship is 1 light-hour away (c× 1 h), the observer
sees the flash at t1 = (c × 1 h)/1c = 1 h, and the missile
hits at t2 = (c × 1 h)/0.8c = 1.25 h, so the difference is
0.25 h or 15 min, choice C.

35. D – There are no external torques here, so angular
momentum is conserved. Thus I0ω0 = I1ω1, and plug-
ging in numbers we arrive at D.

36. C – IV is obviously false since we use the Euler–Lagrange
equations to construct the equations of motion for any
system with a Lagrangian. III is not always true because
we are always free to add a constant to the potential –
the fact that L is independent of x only means that the
potential must be constant in space, and we can set that
constant to zero if we wish.
On the other hand, homogeneity of time does imply

conservation of energy, and homogeneity of space
implies linear momentum conservation. If these state-
ments are unfamiliar to you, then let’s prove them. Since
L depends on x and ẋ only, the total time derivative of
the Lagrangian is
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dL
dt

= ∂L
∂x

ẋ+ ∂L
∂ ẋ

ẍ+ ∂L
∂t

.

Using the Euler–Lagrange equations and the fact that
∂L
∂t = 0, we have

dL
dt

= ẋ
d
dt

∂L
∂ ẋ

+ ∂L
∂ ẋ

ẍ

= d
dt

(
ẋ
∂L
∂ ẋ

)
,

0 = d
dt

(
ẋ
∂L
∂ ẋ

− L
)
.

But the quantity in parentheses is precisely the energy
of the system that we obtain when we construct the
Hamiltonian of the system from the Lagrangian via the
Legendre transform.
The situation for momentum is more simple. By

Euler–Lagrange, we have

d
dt

∂L
∂ ẋ

= 0,

and therefore
∂L
∂ ẋ

= p,

where p is a constant of motion that is defined to be the
linear momentum.

37. D – The formula we want is N = εLσT, where N is
the number of events seen, ε is the detector efficiency,
L is the luminosity, σ is the cross section, and T is the
running time. Note that this just comes straight from
dimensional analysis – any possible numerical factors
are all absorbed in the definitions of luminosity, cross
section, and efficiency. There are 8.64× 104 seconds in a
day, soN = (0.5)(1022)(10−20)(8.64×104) = 4.32×106,
choice D.

38. B – Cyclotron motion is simple enough that it can be
derived in a matter of seconds from the Lorentz force
law and centripetal force. Rewriting a bit, we find that

r = p
qB

.

Triple the field, and the momentummust also be tripled
to maintain constant radius.

39. B – Without calculating anything, we can reason that
only choices B and C are allowed. The current is the
same in both loops of wire and the field from the smaller
loop (pointed into the page, by the right-hand rule) will
be stronger than the field from the larger loop (pointed
out of the page). So the total fieldmust also point into the

page. If you remember the formula for themagnetic field
at the center of a single circular loop of wire of radius r,

B = μ0I
2r

,

then you can immediately find that the answer is

Btot = μ0I
2

(
1
a
− 1

b

)
,

which is choice B.
If you are in a bind and don’t remember the formula

for the field at the center of a circular loop of wire, it is
easy to derive from the Biot–Savart law:

B = μ0

4π

∫
Idl× r̂
r2

= μ0I
4πr

∫ 2π

0
dφ ẑ

= μ0I
2r

ẑ.

40. D – Recall that L2 commutes with each component of
L because it commutes with Lz. For the same reason, L2

commutes with J2 = L2 + S2 + 2L · S: L and S act on
different parts of the wavefunction, so all components
of L commute with all components of S, and L2 com-
mutes with the last term because it commutes with L as
well. However, L2 only commutes with rotationally sym-
metric Hamiltonians, and a Hamiltonian need not have
rotational symmetry: for example, an atom in a strong
magnetic field which picks out a particular direction in
space.

41. B – The possible energies are just the eigenvalues of the
Hamiltonian matrix, which we can obtain by solving the
equation

det(H − λI) = 0,

(a− λ)(λ2 − b2) = 0.

The solutions are clearly λ = a and λ = ±b, choice B.
42. B – If there were magnetic charges, we would have a

Maxwell equation∇·B ∝ ρm just like we have aMaxwell
equation for electric (monopole) charges∇ ·E ∝ ρe, and
Gauss’s law for magnetismwould give the total charge by
integrating over space. This is choice B.

43. D – We could solve this one exactly, but it is clear from
the answer choices that we can use dimensional anal-
ysis and scaling arguments to rule out answers much
more quickly. Choice C does not have the correct units
for an electric field (N/C). And choices A, B, and E all
have the wrong scaling with the radius of the target.
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As the radius of the target increases, the electric field
required to deflect the beam should increase. In all of
these answers, R appears in the denominator, implying
the opposite behavior.
On the other hand, it is not too difficult to solve the

problem the normal way, which would be necessary on
the exam if a different set of answer choices were given.
The perpendicular electric field only provides an accel-
eration perpendicular to the direction of motion, so we
can solve this just like an analogous kinematics prob-
lem where gravity provides the perpendicular force. The
velocity in the direction of the beam stays v, so the time
it takes to strike the target is t = L/v. On the other hand,
the perpendicular acceleration is a⊥ = qE/m, so in time
t the protons are deflected 1

2a⊥t
2 = qE

2mt
2 in the per-

pendicular direction. Setting this equal to R, plugging

in t = L/v, and solving for E, we obtain E = 2mRv2

qL2
,

choice D.
44. E – In the standard cosmology, the Big Bang is imme-

diately followed by inflation, at the end of which ele-
mentary particles are produced in an era known as
“reheating.” At this stage, quarks and gluons are free par-
ticles. Once the universe cools enough to allow quarks
to form baryons, we get nucleosynthesis. Even with-
out knowing the exact timeline governing I and II,
we can deduce immediately that II precedes I, since
(re-)ionization refers to the stripping of an electron from
a neutral atom, and to have atoms we must first have
nuclei, which are formed during nucleosynthesis. So the
correct order is III, II, I, choice E.

45. C – For an adiabatic process, we have PVγ = const,
where γ ≡ cP/cV = (α + 1)/α and 2α is the number
of degrees of freedom for the system. For an ideal gas
α = 3/2 and γ = 5/3.

46. A – A solid cylinder of uniform mass density has
moment of inertia I = 1

2MR2. The potential energymgL
of the weight when the rope is wound is entirely con-
verted to kinetic energy once the rope is unwound. Note
that the kinetic energy has contributions from both the
rotational energy of the cylinder and the velocity of the
weight. So by conservation of energy,

mgL = 1
2
mv2 + 1

4
MR2

v2

R2
=⇒ v =

√
4mgL

M + 2m
,

choice A.

47. A – The force on an object is related to the potential
energy by

F = −∇U.

All we need is to take the gradient of the potential in the
question:

F = −x̂ ∂

∂x
(x)− ŷ

∂

∂y
(
y2
)+ ẑ

∂

∂z
(cos z)

= −x̂− 2yŷ− sin zẑ.

48. B – The formula for the energy is

E =
∑

ε εd(ε)e−ε/kT∑
ε d(ε)e−ε/kT .

Plugging in the given energies and degeneracies,

E = (−2ε)eε/kT + (3ε)e−ε/kT

2eε/kT + 1+ 3e−ε/kT .

As T → ∞, the exponent goes to zero, so each of the
exponential factors collapses to 1. Thus the T → ∞
limit of the energy is

E = −2ε + 3ε
2+ 1+ 3

= ε

6
,

choice B. This last step is equivalent to saying that, at
infinite temperature, each state becomes equally proba-
ble, so we can forget about the Boltzmann statistics and
just calculate a weighted mean.

49. D – In process 1 we have �S1 =
∫
dQ/T = C ln 2 =

(3/2)Nk ln 2. In process 2, we have have �S2 = Nk ln 2
from the equation for the entropy of an ideal gas. So
�S1 > �S2.

50. D – The Poynting vector is

S = 1
μ0

(E× B) ,

and if the electric field is E = E0 cos(kx − ωt)ẑ, then
the magnetic field is B = −(1/c)E0 cos(kx − ωt)ŷ for
propagation in the x̂-direction. The average magnitude
of the Poynting vector is simply

〈S〉 = 1
μ0c

〈
E20 cos

2(kx− ωt)
〉 = E20

2μ0c
.

(A very useful fact to remember is that the average of
sin2 or cos2 over one period is 1/2.)

51. C – If we consider the reaction in the CM frame of the
e+e− system, then the γ must be at rest to conserve
energy–momentum. But γ always travels at the speed of
light, so conservation of energy–momentum is violated.
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52. D – This is a straightforward application of the uncer-
tainty principle. We know that

�p�x � �.

So if r is the nuclear radius,

r ∼ �x � �

�p
.

Using our numerical values, we have

r � �c
40 MeV

= 197
40

fm ∼ 5 fm,

closest to choice D. Note that we have dropped lots of
factors of 2 along the way, which is fine for these “powers
of 10” type of problems.

53. A – Choices B–E all are spin-1 objects and therefore
are bosons, which obey Bose–Einstein statistics. You
should know that the photon has spin-1 from quantum
mechanics. The statistics of helium nuclei and atoms fol-
low from the rules of addition of angular momentum:
the nucleus has four fermions (two protons and two
neutrons), and the atom has twomore fermions (the two
atomic electrons), and an even number of spin-1/2 par-
ticles behaves as a boson with integer spin. Pions are a
little tricky, but you might remember that in the quark
model they are bound states of a quark and an antiquark,
both fermions, so again an even number of fermions
gives a boson. Only A, the neutrino, is a spin-1/2 particle
and fermion that obeys Fermi statistics.

54. D – The mass of the electron is 511 keV/c2, which is
one of those ubiquitous numbers that should be mem-
orized. So any time the energy scale 511 keV shows up,
it must have something to do with electrons. In this
case, electrons and positrons at rest in the galactic cen-
ter can annihilate to two photons, each of energy 511
keV. (Incidentally, the fact that the line is “sharp” means
that most of the electrons and positrons in the galac-
tic center are moving slowly, since if annihilation took
place between two highly energetic particles, the pho-
tons would be boosted in the galactic rest frame. The
spectrum observed on Earth would then have a sharp
“edge” at 511 keV and a long tail extending to higher
energies.)

55. C – From basic kinematics, the cannonball falls a vertical
distance of 250m in time 1

2gt
2; solving gives t = √500/g

seconds. In this time, the cannonball travels a horizontal
distance of 420 m, so from vt = 420 m, we plug in our
previous result for t to get

v = 420
√
g/500 ≈ 420

√
1/50 ≈ 420(1/7) ≈ 60 m/s.

This is closest to choice C, so we choose it and move on.
This pattern of answer choices is typical of Physics GRE
questions – since they’re so widely spaced, it’s not at all
necessary to do arithmetic to three decimal places. The
approximations g ≈ 10 m/s and

√
50 ≈ 7 were just fine

here.
56. C – Let the mass of the rocket be m. In the frame of

the rocket, we balance the momentum of the exhaust
with the momentum of the rocket at the moment of
expulsion:

|�pfuel| = |�procket|,
v
2
(0.1m) = (0.9m)|�vrocket|,

|�vrocket| = v
18

.

Transforming to the given frame where the rocket is
moving at speed v, the final velocity is v + v/18 =
19v/18. The signs are fixed by physical reasoning: if
the exhaust is expelled backwards, the rocket’s velocity
increases.

57. B – Since all we care about is ratios, we can scale all
elements of the circuit by some convenient numerical
factor: let’s divide all the resistances by 10 k	 to make
the numbers easier (so we’re working in units of 10−4

A whenever we calculate currents). When S is open, the
total resistance of the circuit is 4+ 1 = 5, so the current
is I1 = 1. When S is closed, the two resistors in parallel
have an effective resistance of (1+ 1/2)−1 = 2/3. So the
total resistance is 4+2/3 = 14/3, and the total current is
I = 15/14. The voltage across the 40 k	 resistor is IR =
30/7, so the voltage drop across the 10 k	 resistor is
5−30/7 = 5/7. Hence the current I2 is 5/7 in our units;
since I1 = 1 in these units, this is also the desired ratio.

58. C – This is a ballistic pendulum problemwith two twists:
the rod is not massless, and it starts out an angle with
respect to the projectile, so we have to be a little careful
calculating the angular momentum. The initial angular
momentum comes just from the clay and is L = mv ×
r = mvd sin(90◦ − α) = mvd cosα, so by conservation
of angular momentum, this is the angular momentum
after the collision as well. We get the angular velocity
from L = Iω, where the moment of inertia of the clay–
rod system is I = 1

3Md2 + md2 (the first term from
the moment of inertia of a rod about one end, and the
second from the moment of inertia of a point mass). So

ω = L
I
= 3mv cosα

(M + 3m)d
,

choice C.
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59. E – Because the loop rotates, the angle the normal to
the loop makes with the magnetic field oscillates sinu-
soidally, and so does the flux: � = B0A sinωt. Thus the
emf in the loop is V = d�/dt = B0Aω cosωt, and
the power dissipated in the resistor is P = V2/R =
B20A

2ω2 cos2 ωt/R. Solving for ω, and using the fact that
the average of cos2 is 1/2, we find

ω =
√
2PR
B0A

= 500 rad/s.

60. B – If you do not recall the mathematical definition of
chemical potential, you should at least remember that
the chemical potential has something to do with the
energy associated with changing the number of parti-
cles in a system. This reduces the options to A or B,
but there is chemical potential for systems of bosons and
fermions, so B is the correct choice.
To be more rigorous, recall that the entropy is S =∑
i pi ln pi. We wish to maximize the entropy with

respect to the constraints:

0 =
∑
i

εipi − E,

0 =
∑
i

nipi − N,

0 =
∑
i

pi − 1.

To maximize Swe introduce the Lagrange multipliers β ,
μ, and λ, we write

S =
∑
i

pi ln pi − β

(∑
i

εipi − E

)

− μ

(∑
i

nipi − N

)
− λ

(∑
i

pi − 1

)
,

and solve for
∂S
∂x

= 0.

This μ turns out to be the chemical potential and is
clearly the Lagrange multiplier that enforces the particle
number constraint.

61. C – At first glance, choices D and E do not seem to make
much sense. Choice B is a bit suspicious too because it
does not contain a factor of 2, implying that the spin
distributions are independent of the external magnetic
field. Choice A does notmakemuch sense either because
the number of spin-up particles should increase, not
decrease, with an increase in magnetic field: alignment

with the magnetic field is energetically favorable. So C
seems to be the best choice.
To decide for sure, we can calculate. Since the eigen-

values of σz are ±1, the possible energies are E = ±|H|.
The partition function is

Z = eE/kT + e−E/kT .

The ratio of spin-up to spin-down particles is just

A = eE/kT

e−E/kT = e2E/kT .

If we double the magnetic field, we have E → 2E, which

implies that A→ e4E/kT =
(
e2E/kT

)2 = A2.
62. A – While this is a good fact to memorize, we can get

it quickly by recalling Poisson’s equation from electro-
magnetism, in SI units:

∇2V = −ρ/ε0.

Since the potential of a point charge q at the origin is

V = q
4πε0

1
r
, and its charge density is ρ = qδ3(r), we

can read off ∇2V = −4πδ3(r).
63. A – The formula for Compton wavelength is

λ = h
mc

,

and plugging in numbers gives 1.32 × 10−15 m, which
is closest to choice A. If you didn’t happen to remember
the formula for Compton wavelength, you could get it
by dimensional analysis. We know the Compton wave-
length has something to do with quantum mechanics,
so h or � must make an appearance, and the mass of a
quantum particle is its only distinguishing characteristic
(besides its spin of course, but that has the same units
as �). To get units of length, we need another dimen-
sionful constant, and c fits the bill. So at worst we would
get λ = �

mc and be off by a factor of 2π , but happily
the answer choices are widely spaced enough that this
isn’t an issue. Alternatively, we could remember that
the defining length scale for nuclear interactions is the
fermi, or femtometer, 10−15 m, which is approximately
the range of the strong force. So it makes sense that the
quantum “size” of the proton is close to this value, but
certainly not much larger.

64. B – We will work in units where c = 1 until the very
end of the problem. In its rest frame, the K0 has energy
mK , and since the decay products have equal mass, the
π+ and π− each get energy mK/2. The boost factor of
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the pion is then γπ+ = (mK/2)/mπ . We now solve for v
using γ = 1/

√
1− v2:

1√
1− v2

= mK

2mπ

=⇒ v =
√
1− 4m2

π/m2
K .

Tacking on a factor of c to give dimensions of velocity
gives choice B.

65. E – Again, we will use units where c = 1 until the end.
The boost factor to go from the rest frame of the K0 to
the lab frame is γ = E/mK . In the center-of-momentum
frame (the rest frame of the K0, after it decays), the π−

has an energymK/2, as found above. To find the energy
of the π− back in the lab frame, we use the γ that we
found in the equation above to boost back. Since we
want to know when the π− is at rest, we want to set the
energy after the boost equal to the rest energy of the π−:

γmπ = mK

2
=⇒ E = m2

K
2mπ

.

Since mK > 2mπ for the decay to be kinematically
allowed, we have E > mK , which passes a useful san-
ity check. Restoring a factor of c2, we conclude that E is
correct.

x = Lx = 0

Closed end Open end

66. C – For a half-open pipe, the open end must be a pres-
sure node, because the air inside and outside the pipe
is at atmospheric pressure, hence it is a displacement
antinode. On the other hand, the air at the closed end
cannot go anywhere, so it is a displacement node. The
allowable wavelengths λ in a half-open pipe of length L
are then given by the constraint that L = λ (1/4+ n/2),
for non-negative integers n. This implies that

λ = 4L
2n+ 1

.

For n = 1, we have λ = (4/3)(0.6 m) = 0.8 m. The
cartoon above shows the envelope of displacements as a
function of distance along the pipe for this λ.

67. C – The field inside the sphere is as if there was a bound
charge density of

ρb = −∇ · P.

Plugging in the expression for the polarization, we find
that

ρb = −C 1
r2

∂

∂r
(
r2r2

) = −4Cr.
The electric field can easily be solved using Gauss’s law
and exploiting the spherical symmetry of the problem:

E(r) = 1
4πr2ε0

∫ r

0
−4Cr′4πr′2dr′

= 1
r2ε0

∫ r

0
−4Cr′3dr′ = −Cr2

ε0
.

68. E – The electric field inside a perfect conductor is zero,
so the magnetic field must vanish as well, and there is no
transmitted wave.

69. B – This just involves repeated application of the angular
momentum identity[

Li, Lj
] = i�εijkLk.

Proceeding step-by-step, we have[[[
Lx, Ly

]
, Lx
]
, Lx
] = [[i�Lz, Lx] , Lx]

= [(i�)2Ly, Lx]
= −(i�)3Lz
= i�3Lz.

70. C – The vibrational energies of diatomic molecules are
approximately those of a harmonic oscillator, so we
solve for T in kT " �ω = hf . To do this quickly,
it helps to take advantage of the fact that h is given in
the formula sheet in units of eV, and use the mnemonic
that kT at room temperature (300 K) is about 1/40 of
an eV. We get about 2,400 K, which is closest to choice
C. This problem illustrates a fact worth remembering
– the vibrational degrees of freedom of light diatomic
molecules are “frozen out” at room temperature, and are
only unfrozen at temperatures an order of magnitude
larger.

71. B – Observables must be Hermitian. The reason for the
factor of i in the momentum operator −i�∇ is pre-
cisely to make this single-derivative operator Hermitian
– otherwise, we’d pick up an extraneous minus sign dur-
ing integration by parts. So any operator involving only
one derivative that does not have a factor of i can’t be
Hermitian.

72. B – Choices D and E are obviously incorrect. A is
incorrect because the chief virtue of the BCS theory is
that it does give the correct microscopic description of
many superconductors. C is interesting, but B is a bet-
ter answer because it not only escapes the violation of
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Pauli exclusion but also gives us a mechanism for super-
conductivity (bosons can occupy the same state, which
produces superconductivity).

73. E – Analyze this system in a frame that rotates with the
hoop, and consider only the equation of motion for the
tangential component, since the bead is constrained to
move on the hoop. There are no Coriolis or centrifugal
force terms, so Newton’s second law just reads

F = −kRω = mRω̇,

where ω here means the angular velocity relative to the
hoop. This has solution ω(t) = Ce−kt/m. Moving back
to the stationary reference frame with the replacement
ω → ω + 	, we have ω(t) = 	 + Ce−kt/m. Imposing
the initial condition ω(0) = ω0 gives C = ω0 −	, so

ω(t) = 	− (	− ω0)e−kt/m,

which is choice E.
We could also have proceeded by limiting cases. If

ω0 = 	, the bead will experience no frictional force and
will continue to rotate along with the hoop, ω = 	, for
all t. This eliminates all but choice E.

74. E – At the top of the hill, the cylinder has only potential
energy. At the bottom, it will have purely kinetic energy,
which is composed of both translational and rotational
kinetic energy. Given the moment of inertia of the cylin-
der, we can solve the energy conservation equations
to find the velocity; since the rotational kinetic energy
depends on the moment of inertia, which depends on α,
the final velocity must depend on α. Since there is no
rolling friction, the difference in potential energy simply
depends on the initial and final heights and not on the
path taken, so the final velocity depends on h and not
θ . This leaves choice E. All energies, kinetic and poten-
tial, are proportional to M, so this cancels when using
conservation of energy to find the velocity. Similarly,
the rolling without slipping condition v = Rω ensures
that both translational and rotational kinetic energy are
proportional to v and independent of R.

75. D – The spin-3/2 states are the states with the high-
est total spin that can be formed from three spin-1/2
particles. The maximal-spin states are always totally
symmetric under exchange of the particles. D is the only
choice that is totally symmetric. We could also derive
this quickly by starting with |�〉 and applying the low-
ering operator twice; or even more quickly, by starting
with them = −3/2 state |↓↓↓〉 and applying the raising
operator once.

76. A – A p-type semiconductor has an excess of positive
charge carriers or holes, which are empty states in the
valence band that electrons can fill. An n-type semicon-
ductor has an excess of electrons. When p- and n-type
materials are brought together, the electrons from the n-
type material diffuse into the p-type material. This leaves
a slight negative charge on the edge of the p-type mate-
rial and a slight positive charge on the edge of the n-type
material. The electric field thus points from n-type to
p-type material.

77. C – The two reference frames S and S′ must be related
by a Lorentz transformation, so with the (+,−,−,−)
metric signature, the invariant interval of the position
4-vector in both reference frames must be equal. The
separation of E1 and E2 in the original frame is (2,1,1,0),
which has invariant interval 2. Checking each choice, the
invariant interval for A is −1.25, B is 3, C is 2, and D is
1. Choice C is the same as in the original frame, and so
is the correct answer.

78. C – With these answer choices, one can make con-
siderable progress using pure dimensional analysis: the
answer must have units of (time)−1, and must be non-
negative. This leaves only B, C, and E, and E seems rather
unreasonable. More formally, assuming that darkmatter
detection follows a Poisson process withmean rate λ, the
probability of seeing zero events is e−λT . The 90% con-
fidence level upper limit is the mean rate such that 90%
of the time we would see in our experiment a number
of events that is inconsistent with our measurement of
zero events. Practically, this means that we want to find
the mean rate that would produce more than 0 events
90% of the time. In other words, we want to find the
rate that gives 0 events only 10% of the time. This is just
0.1 = exp(−λT), or λ = −(1/T) ln 0.1.
A limiting-cases analysis also works here. As the con-

fidence level grows and approaches 100%, the upper
limit must get weaker (that is, the rate must be larger),
since we can never be 100% confident that any finite
rate will give zero events in every experiment. The only
answer choice that goes to infinity as the confidence level
goes to 100% is choice C; indeed, choices B and D both
go to zero.

79. C – The 21 cm splitting comes from the hyperfine
interaction, which is a spin–spin coupling between the
electron and proton spins. Hence, this splitting (between
the spin singlet and triplet configurations) is evidence
for the proton having spin-1/2.
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80. D – Choices A and E are obviously incorrect. B seems
initially plausible, but this process would happen just as
often with tau neutrinos, so it is far from clear that it
would make up the discrepancy. C also seems vaguely
plausible, but it does not give an obvious mechanism
for production of tau neutrinos. D is the correct answer,
with the difference between neutrino mass and flavor
eigenstates being the basis of the famous neutrino oscil-
lations. This is the same oscillation effect that takes place
in two- and three-state quantum systems.

81. E – By rescaling energies, the partition function can be
written as

Z = eε/2kT + e−ε/2kT + 2.

The probability of being the triplet state is just

P = eε/2kT + e−ε/2kT + 1
eε/2kT + e−ε/2kT + 2

.

82. A – Recalling that the total energy isH = T+U, we can
solve this problem by a careful consideration of signs in
the answer choices. The spring potential energy Us =
1
2kx

2, where x is some relative displacement, is always
non-negative, so we have only choices A and B. With
coordinates y1 and y2 as defined in the problem, posi-
tive displacements correspond to downward motion, so
gravitational potential energy is actually negative. Thus
we are left with choice A.

83. B – The expectation value of energy is

E =
∫ a

0
ψ∗Hψ dx.

After a sudden expansion, ψ stays constant. The poten-
tial V also stays constant on the interval [0, a], but
changes from ∞ to 0 on the interval [a, 2a]. Since ψ

vanishes on [a, 2a], the kinetic energy operator T =
− �

2

2m
d2
dx2 gives zero when acting on ψ . (If you’re worried

about the fact that the derivative of ψ is discontinuous
at x = a, meaning that the second derivative is a delta
function, note that ψ(a) = 0, and zero times a delta
function is still zero.) The expectation value of energy
after the expansion is therefore

E′ =
∫ 2a

0
ψ∗H′ψ dx

=
∫ a

0
ψ∗Hψ dx+

∫ 2a

a
ψ∗H′ψ dx

=
∫ a

0
ψ∗Hψ dx+ 0

= E.

By the way, this is an application of conservation of
energy within the formalism of quantum mechanics –
just as the temperature of an ideal gas remains constant
during free expansion, the energy of a quantum system
remains constant after a sudden change of potential.

84. D – This looks long and complicated, but it’s really
just a matter of limiting cases. A and B are eliminated
by dimensional analysis, since the reflection coefficient
must be dimensionless. To eliminate E, note that, as
α → 0, the coefficient of reflection must go to zero
because the barrier disappears, and the particle contin-
ues to propagate to x > 0 with probability 1. Choice
C looks reasonable at first, but the reflection coefficient
must always take a value between 0 and 1, by defini-
tion, for all values of parameters in the problem. If α is
chosen sufficiently large, then the reflection coefficient
of choice C is greater than 1, which is unphysical. This
leaves only D.

85. C – The transition 2s → 1s has �m = 0 so it does not
violate the dipole selection rule.

86. E – The electric dipole moment is a vector quantity,
which changes sign under parity transformations, so a
nonzero electric dipole moment violates parity. Inter-
estingly, it also violates time-reversal invariance. To see
this, recall that the neutron does have a nonzero mag-
netic dipole moment. Suppose the magnetic and electric
dipolemoments were parallel; then, under time-reversal,
the magnetic one would change sign but the electric one
would remain the same, and the system would not be
invariant under time-reversal. So the relative orienta-
tions of the magnetic and electric dipole moments lead
to a violation of time-reversal invariance.

87. C – The sharp drop of curve b is the signature of a pro-
cess with an energy threshold around 1 MeV. Recalling
that the electron mass is about 0.5 MeV, this must be the
threshold for pair production.

88. A – f (x) is an odd function on [−π ,π], and cosine is an
even function, so all the cosine coefficients in the Fourier
series vanish identically.

89. E – We are looking for an A satisfying ∇ × A = B. It’s
simplest to consider the components of B one by one.
Since Bx = (∇ × A)x = ∂Az/∂y − ∂Ay/∂z, with an
eye on the answer choices we see that we can only sat-
isfy this by taking Az = B0y, since Ay is independent
of z in all answer choices. This leaves only C and E. To
get Bz = 2xB0, we must have 2xB0 = (∇ × A)z =
∂Ay/∂x − ∂Ax/∂y. Choice E has the correct sign, and
we can check that it also satisfies (∇ × A)y = 0.
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90. D – The change in energy can be obtained from the
change in the electric field energy density outside the
sphere. There is no change in energy density inside the
sphere, so we will neglect this contribution. Before the
grounding, the field outside the sphere has energy

Ubefore = ε0

2

∫
outside

E2dV

= ε0

2
1

16π2ε20

∫ ∞

a

Q2

r4
4πr2dr

= 1
8πε0

∫ ∞

a

Q2

r2
dr

= Q2

8πε0a
.

Afterwards, charge is induced on the conducting sphere
to exactly cancel the electric field everywhere outside of
the sphere of radius a, so Uafter = 0. The change is
therefore �U = − Q2

8πε0a , which is choice D.
91. C –Without color, spin-3/2 baryons with three identical

quarks and zero orbital angular momentum would have
symmetric wavefunctions under the interchange of any
two quarks, violating the Pauli exclusion principle.

92. B – By momentum conservation, when a free nucleus
emits a photon it must also recoil in the opposite direc-
tion, which causes the emitted photon to have a different
energy (hence frequency) than it would if the nucleus
were held stationary. You may have been thrown by
choice C, since the Pound–Rebka experiment used a
carefully contrived arrangement of absorbers and emit-
ters in a vertical shaft so that the gravitational redshift
was dominant. However, the adjective “tabletop” implies
that the experiment takes place at (almost) constant
gravitational potential, so gravitational redshift barely
contributes.

93. E – It is a useful bit of trivia that a sequence of NAND
gates can be combined to create any sequence of basic
logical gates. (This is also true of NOR gates.) Even with-
out knowing this, though, we can see fairly easily that A
and C must be possible: since NAND is AND followed
by NOT, to get an AND we just put two NAND gates in
sequence and tie the output of the first to both inputs of
the second, and to get NOT we can tie both inputs of a
single AND gate together. So if at least two of the answer
choices are possible, the answer must be E.

94. E – Applying the Euler–Lagrange equation

d
dt

∂L
∂ q̇

− ∂L
∂q

= 0

to the given Lagrangian, we get Aq̈ − (−2Bq) = 0.
Rearranging gives q̈ = − 2B

A q, choice E.
95. E – The field of a straight solenoid has uniform mag-

nitude μ0nI, where n is the number of turns per unit
length; bending this solenoid around into a toroid of
radius R sets n = N/2πR. (This is a hand-wavy argu-
ment, but it gives the correct answer, and it’s an excellent
way to remember the formula without having to rederive
it from scratch.) The energy stored in the magnetic field

is U = 1
2μ0

∫
B2 dV , where the integral is taken over

all of space. Here the field is only nonzero inside the vol-
umeV , and inside this volume the field is approximately
uniform (this follows from the statement that r � R), so

U = V
2μ0

|B|2 = 2π2Rr2

2μ0
·
(

μ0NI
2πR

)2
= μ0N2I2r2

4R
,

choice E.
96. A – Longitudinally polarized waves propagate in the

same direction as the displacement of the wave medium.
This means that the polarization vector is forced to be
along the direction of propagation, excluding choices I
and II. This narrows the answer to A.

97. C – The phase velocity is

vphase = ω

k
= Ak−1/2.

The group velocity is

vgroup = dω
dk

= 1
2
Ak−1/2,

so vphase = 2vgroup, choice C.
98. B – The setup n1 < n2 < n3 occurs so often that it

is probably useful to memorize the result. This is the
configuration of an antireflective coating, and the 180◦

phase shift that occurs at both boundaries leads to the
condition for destructive interference:

2nfilmt =
(
m− 1

2

)
λ,

where t is the thickness of the film. (Try to derive this
formula if you forgot it.) We conclude that tmin = λ/4n,
which can be memorized with the mnemonic that tn for
an antireflective coating is a quarter-wavelength. For the
numbers given in this problem, we get t = 8.33 × 10−8

m. So B is correct.
99. D – The wavefunction is already normalized, so using

〈x〉 = ∫ |�(x)|2x dx, we have
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〈x〉 = 3
∫ 1

0
x(1− x)2 dx

= 3
(

1
12

)

= 1
4
.

This matches choice D.
100. A – A rigid rod has only rotational degrees of freedom,

so its energy is determined by its rotational quantum
numbers. The classical formula is T = L2/2I for the
kinetic energy of a rotating body, where I is the moment
of inertia about the center of mass, so in the quantum

mechanics setting we get E = �
2n(n + 1)/2I. The cen-

ter of mass of this rod is at the center of the rod, so
the moment of inertia is I = 2 · m ( a2 )2 = 1

2ma2.
Thus,

E = �
2n(n+ 1)
ma2

,

choice A.

Note that we could also have done the last step of the
problem by calculating the reduced mass of the system,
μ = m ·m

m+m
= m

2
, and using the formula I = μr2 for a

single particle of mass μ.
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Solutions to Sample Exam 2

1. D – Rather than solving the equation of motion to find
the whole trajectory of the particle, then taking the limit
to find the velocity at t = ∞, we can simply solve for
the velocity vt at which the force due to gravity balances
the air resistance. By Newton’s Second Law, there will
then be no net force, and the ball will continue to fall at
this velocity – this is the terminal velocity. Solvingmg =
bv for v, we get vt = mg/b. For an alternate solution,
note that only choice D has the correct units. Choice E
looks like it has the correct units, but you can check that
there is no dimensionless combination of the quantities
m, g, and b (which are the only ones appearing in the
problem), so nothing can appear in an exponential and
we are back to choice D.

2. C – The particle has a component of velocity along the
direction of the magnetic field. Since the Lorentz force
is zero for this component, the particle will continue
with the same velocity in the x-direction. However, the
perpendicular component of B will cause the particle to
execute cyclotron motion in the yz-plane. Superimpos-
ing these two components of velocity gives a helical path,
choice C.

3. E – We first find the velocity at the lowest point, then
find the tension needed to supply the required cen-
tripetal acceleration. The initial potential energy mgl
is converted into kinetic energy 1

2mv2 at the bottom,
so v2 = 2gl. The centripetal force must be mv2/l, so
F = m(2gl)/l = 2mg. However, this is the net force:
since there is already a force mg due to gravity acting
downwards, the tension must provide a force 3mg act-
ing upwards for a net force of 2mg upwards. Hence
choice E.

4. C – Without actually setting up any equations, we can
see that C must be correct. The electric field couples to
charge (that is, the electric force is qE), but gravity cou-
ples to mass (with force mg), so balancing forces gives
something like mg = qE with some terms involving α

thrown in as well. The only quantity we can get out of
this equation, knowing both g and E, is q/m, and a single
measurement of α is enough to determine this quantity.

5. B – This is an easy problem, but without a few tricks it
is easy to get hung up on the computational details. The
Bohr formula gives E = −E0/n2 for the nth excited state
with E0 = 13.6 eV. It’s easy to eliminate E by remem-
bering that most of the hydrogen spectrum falls near the
visible range, and mm wavelengths correspond to radio

waves. Deciding between the rest takes a little bit of com-
putation. Using hc = 1240 eV ·nm (which is given in the
Table of Information on recent tests), we can compute
using a couple of numerical approximations to avoid
nasty arithmetic:

�E = E0
(
1
4
− 1

9

)
= 13.6 eV

(
5
36

)
≈ 2 eV,

λ = hc
�E

≈ 1240 eV · nm
2 eV

≈ 620 nm.

This is closest to B.
6. A – This follows from the axioms of quantum mechan-

ics: Hermitian observables are guaranteed to have real
eigenvalues, and since eigenvalues of operators are
results of measurements which must be real numbers,
operators must be Hermitian. Some counterexamples
for the other choices: the Hamiltonian of a bound state
has negative eigenvalues, which violates B; the momen-
tum operator is an operator on infinite-dimensional

function spaces, so violates C; the Pauli matrix

(
0 −i
i 0

)

is Hermitian but not symmetric, so violates D.
7. C – III is the statement of Newton’s Second Law. Choice

I fails if an extended object is subject to two equal
and opposite forces at different locations, creating a net
torque, and choice II fails (for example) for an object in
empty space moving with some initial velocity.

8. D – You might be tempted to think that this question
requires rote memorization of the atomic number of
fluorine, but there’s an easy way to deduce the correct
answer using the information provided and the par-
ticular selection of answer choices. The fact that the
common form is Fl−means that fluorine wants to attract
an extra electron. This results from an electron shell that
is one short of being full, which matches choice D. In
fact, E is the electron configuration for both Fl− and the
noble gas neon, with a full n = 2 shell. By contrast, A
is the electron configuration for lithium, which wants to
lose an electron to get a full n = 1 shell.

9. D – The resonant frequency of an LC circuit is given by
ω = 1/

√
LC. If the capacitor is initially charged, then

the charge in the circuit oscillates as Q(t) = Q0 cosωt,
and the current is I = dQ/dt = −Q0ω sinωt. Thus |I| is
maximized at ωt = π/2, or t = π

2
√
LC, choice D.

10. E – Themagnitude of the work done by the gas is
∫
P dV ,

which is just the area in the P–V-plane. In this case, the
sum of the integrals under each curve is positive, so the
total work done by the cycle is also positive. The shape
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of the P–V curve is pretty close to a parallelogram, with
base 2m3 and height 3,100 kPa, so the area is about
6,200 kJ, choice E.

11. A – During an adiabatic process the quantity PVγ is
constant, where γ = Cp/Cv. Looking at step A, at the
endpoint we have V = 1m3, so independent of γ ,
PVγ = 3, 200 in the units given. Looking at the start
of step A, we solve for γ :

(100)(8)γ = 3200 =⇒ γ = 5/3.

A monoatomic gas has γ = 5/3, so choice A is correct.
12. A – The scope trace looks like a carrier wave whose

frequency changes as a function of time, which is the
defining characteristic of frequency modulation.

13. E – Planetary orbits have two independent parame-
ters corresponding to the two conserved quantities in
central-force motion: the energy of the orbit and the
angular momentum. The semimajor axis is determined
solely by the energy, but the semiminor axis (which is
needed to find the area of the orbit) also depends on the
angular momentum. Without this additional informa-
tion, the area of the orbits can’t be determined.

14. C – The choices for the orbital angular momentum of
the particle are given by the angular wavefunction: we
can have either l = 3 and ml = 0, or l = 2 and ml = 1.
Adding these choices to the particle’s spin (s = 1/2 and
ms = ±1/2) gives the following possibilities:

j = 7/2,mj = ±1/2
j = 5/2,mj = ±1/2
j = 5/2,mj = 1/2, 3/2

j = 3/2,mj = 1/2, 3/2

Of these, only j = 7/2,mj = −1/2 appears in the answer
choices, and it is choice C.

15. E – You can either remember the energies of the infi-
nite square well, En = n2π2

�
2

2mL2 , or derive them from
the given wavefunctions using the Hamiltonian operator
− �

2

2m2
d2
dx2 . Fortunately the wavefunction is already given

to us normalized, so we compute

〈E〉 = 1
2
E2 + 1

3
E3 + 1

6
E4 = π2

�
2

2mL2

(
22

2
+ 32

3
+ 42

6

)

= 23π2
�
2

6mL2
,

choice E.
16. C – From the definition of entropy for a reversible pro-

cess, �Q = T�S, so at constant temperature �S =
�Q/T = 20 J/K, choice C.

17. B – In the photoelectric effect, electrons are ejected from
a metal after bombardment of the metal with light of
a suitably high energy. The fact that no electrons are
ejected for light of low enough frequency, independent
of the intensity of the light, implies that the energy of
the light depends on the frequency rather than the inten-
sity, and higher frequency means higher energy. Both I
and III are true, but are not directly supported by this
experiment.

18. D – This is pure fact recall. The splitting of spectral lines
by electric fields is called the Stark effect, choice D.

19. A – This is fairly intuitive: we know that if m1 = m2,
then m1 will stop dead after the collision, and if m1 �
m2, thenm1 will just bounce back in the opposite direc-
tion, so it’s reasonable that if m1 > m2 the first mass
will continue moving in the same direction. More for-
mally, letting v1 and v2 be the final velocities of m1 and
m2 respectively, we solve the conservation of momen-
tum and energy equations m1v = m1v1 + m2v2 and
1
2m1v2 = 1

2m1v21 + 1
2m2v22 for v1 to get

v1 = v
m1 −m2

m1 +m2
,

so indeed if m1 > m2, the numerator is positive and v1
has the same sign as v.

20. A – We want an upright virtual image with magnifi-
cation m = 20 cm/2m = 1/10. This means we need
−s′/s = 1/10, or s′ = −s/10. Using the optics equation
with s = 1m,

1
f
= 1

s
+ 1

s′
= −9

s
= −9m−1,

so f ≈ −0.11m and R = 2f = −22 cm. In particular, R
is negative, so the mirror must be convex.

21. C – You could probably get this from some etymology:
vibrations of a lattice are also known as sound, which has
the Greek root phon, hence “phonons” (choice C).

22. D – The potential must be continuous, which eliminates
choice B (which, incidentally, is a graph of the elec-
tric field). Furthermore, the potential should be constant
inside the inner shell since there is no field there, which
eliminates C. In the region between the two shells, the
potential should look like −1/r, since the only field is
due to the inner shell, and this eliminates A.
To decide between D and E, we need to do a quick cal-

culation. Depending on the amount of charge on each
shell, either D or E could be valid. Call the potential
inside the inner shell V1(r), the potential in between
the two shells V2(r), and the potential outside the outer
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shell V3(r). Since the electric field is the derivative of
the potential, we can add arbitrary constant offsets C1

and C2 to the standard Coulomb potentials for the
enclosed charge in these regions, so that they match on
the boundaries according to the conditions V1(R) =
V2(R) and V2(2R) = V3(2R). When we rewrite the
boundary conditions in terms of the Coulomb potentials
with the constant offsets, we get the following system of
equations:

V1(R) = V2(R)⇐⇒ C1 = − q
4πε0R

+ C2,

V2(2R) = V3(2R)⇐⇒ − q
8πε0R

+ C2 = + 2q
8πε0R

.

The offset C1 is clearly positive, so V1(r) = C1 > 0 and
D is the correct answer.

23. B – The quarks in the proton are held together by
the strong nuclear force, which is mediated by gluons,
choice B. The quarks are also electrically charged, but
the electromagnetic force is orders of magnitude weaker
than the strong force so is not responsible for binding.

24. A – Potential energy is related to electric potential by
U = qV . The change in potential is �V = − ∫ E · dl,
and since E ⊥ ŷ, only the x-component of the path
contributes. This gives �V = 3E since E is constant,
and U = −3Ee. To make sure we have the signs right,
note that if e is positive, then our particle is negatively
charged and moving in the opposite direction from the
field lines. This is the direction it would move under
the influence of the Lorentz force, so its energy should
decrease, which is consistent with the minus sign.

25. E – I is true, as a magnetic monopole would provide a
“source term” on the right-hand side of Gauss’s law, just
as it does for Gauss’s law for electricity. In general, by
Helmholtz’s theorem, we can decompose a vector field
such as the magnetic field into the gradient and curl of
a scalar and vector potential as X = −∇ϕ + ∇ × A.
Thus III is true as well, since a divergence-free B implies
that the scalar potential can always just be chosen to
be zero without changing the gradient or curl of B in
Maxwell’s equations. Gauss’s law is perfectly compatible
with the continuity equation – Ampère’s law is the one
that needs adjusting, through the addition of Maxwell’s
displacement current.

26. B – Using E2 = p2c2 + m2c4, we have E2 = 2m2c4, so
E = √

2mc2, choice B.
27. E – This is pure dimensional analysis. Only E has the

correct units, so it is the correct answer. A quick way
to see this is to recall the expression for the potential

energy of two equal point charges, W = e2
4πε0

1
r , which

says that e2/ε0r has units of energy. The only remaining
units are nice and familiar powers of mass and length, so
we see that E works out to have units of inverse time, or
frequency.

28. D – It’s easy to get lost in calculations in this prob-
lem, computing the total energy of the orbit and so on,
but things are drastically simplified because at perigee
and apogee the planet’s path is perpendicular to the
line connecting the planet and the star. Thus, its angu-
lar momentum at perigee and apogee is just mvp(a/4)
andmva(7a/4), respectively. By conservation of angular
momentum in a central force field, we get vp/va = 7,
choice D.

29. D – The time-averaged force is defined as
1
T

∫ tf

ti
F dt,

where T is the total time. The distance-averaged force

is defined similarly, by
1
D

∫ xf

xi
F dx, where D is the

total distance. The quantities inside the integral are also
known as total impulse and total work, respectively. But
total impulse is change in momentum, and total work
is change in kinetic energy. Since boat 2 arrives with a
higher speed, we know the impulse must be greater, but
the denominator T is greater as well, so we can’t defini-
tively say whether Ft increases or decreases with respect
to boat 1. However, the distance traveled by the two boats
is identical, and v2 > v1 means the kinetic energy of boat
2 is greater than that of boat 1. This implies Fd1 < Fd2,
choice D.

30. C – The unperturbed energies are E0 = �ω/2 and
E1 = 3�ω/2. The first-order perturbation theory for-
mula gives

δEn = 〈n|V(x)|n〉 = ε

∫ ∞

−∞
|ψn(x)|2δ(x) dx = |ψn(0)|2.

Since ψ1(x) vanishes at x = 0, it has no first-order shift.
|ψ0(0)|2 = √

mω/π�, so E0 = �ω/2 + ε
√
mω/π� and

E1 = 3�ω/2, which is C.
31. E – The degrees of freedom associated to choices II and

III freeze out at low temperatures, but at sufficiently
high temperatures all three are active. Note that if we
were dealing with a single atom rather than a diatomic
molecule, choices II and III would not contribute.

32. E – All steps of the Carnot cycle are reversible, and
reversible adiabatic processes take place at constant
entropy. This problem illustrates a questionable, but
standard, use of GRE terminology: “adiabatic” in the
question statement was understood to mean “reversible
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adiabatic,” not just a process where�Q = 0. Indeed, free
expansion is also adiabatic, but not reversible, and if the
process in question were free expansion, choice A would
be the correct answer.

33. E – This is the setup for the method of images, but we
must remember there are two image charges: −q at dis-
tance d below the plate and +q at distance 2d below
the plate. So the real charge +q feels a force from the
real charge −q and both the image charges. The correct
prescription is at this point to pretend there is no con-
ductor and just calculate the force directly from all these
charges. The force from the closest charge will dominate,
so we know that qwill be attracted upwards, and thus the
force must be in the+ẑ-direction, eliminating choices A
and B. More precisely,

F = qE = q2

4πε0

(
1
d2

− 1
(2d)2

+ 1
(3d)2

)
ẑ.

At this stage we can make sure all our minus signs
are correct: the real charge −q should attract, so the
force from the first term should be upwards (positive),
whereas the attraction of the image charge−q should be
a downwards force (negative), and the repulsion of the
image +q should be upwards (positive). Rearranging a
bit, we get

F = q2

4πε0d2

(
1− 1

4
+ 1

9

)
= 31q2

144πε0d2
,

which is E. This problem is rather tricky, because if
instead you had tried to get the field by taking the deriva-
tive of the potential, you would have been off by a factor
of 2 in the middle term (from the image charge associ-
ated to our test charge +q) and ended up with choice
C. This subtlety is discussed in Griffiths Introduction to
Electrodynamics Sections 3.2.1 and 3.2.3, and is due to
the fact that there is no energy cost from moving the
image charge along with the test charge. In our opin-
ion, it’s better to forget all the complicated reasoning and
just memorize the fact that you can pretend that you
get forces, rather than potentials, from the method of
images.

34. B –UsingWien’s displacement law,T = 3×10−3 m·K/λ

(since the answer choices are widely separated we can
approximate the constant to one significant figure), we
find T ≈ 5000 K.

35. E – A receding star will have its wavelengths redshifted,
meaning that λtrue < λmeas, and hence Ttrue > Tmeas.
This immediately knocks out choices A, B, and D. To

find the exact ratio we use the relativistic Doppler shift
formula, which can be applied directly to T rather than λ

because of the inverse proportionality between T and λ

and the fact that we know which direction the ratio must
go.

Ttrue

Tmeas
=
√
1+ β

1− β
=
√
1.2
0.8

=
√
3
2
,

so choice E is correct.
36. D – The Euler–Lagrange equation is

d
dt

∂L
∂ q̇

= ∂L
∂q

.

Computing the derivatives, ∂L/∂q = 1
L cos(q/L − ωt)

and ∂L/∂ q̇ = 2Aq̇, so the Euler–Lagrange equation is

2Aq̈ = 1
L
cos(q/L− ωt),

which becomes choice D after dividing through by 2A.
37. D – Hamilton’s equations for the coordinate z and the

conjugate momentum pz are given by

ṗz = −∂H
∂z

, ż = ∂H
∂pz

.

Plugging in the Hamiltonian to the first equation, we
find

ṗz = − ∂

∂z

( pθ

2mz2
cot2 α +mgz

)

= p2θ
mz3

cot2 α −mg.

Plugging into the second equation, we find

ż = ∂

∂pz

(
p2z
2m

cos2 α

)

= pz
m

cos2 α.

Note that it is easy to confuse the minus signs and coor-
dinates in Hamilton’s equations, which make for classic
trap answer choices, so it pays to memorize these, or
rederive them quickly by relating H = p2/2m + U(x)
to Newton’s law F = −U ′(x).

38. D – CV is defined as ∂U/∂T, so all we have to do is
integrate CV with respect to T.

∫
AT3 dT = 1

4AT
4, so

choice D is correct. We could have narrowed down the
answer choices first, by dimensional analysis: since CV

has units of energy/temperature, U(T) could only have
been D or E.

39. C – Since the states |n〉 are orthonormal, 〈m|n〉 = δmn,
so I is false. For II, recall that two operators commute if
and only if they share the same eigenfunctions. Since x̂
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does not commute with p̂, then [Ĥ, p̂] �= 0 for Hamil-
tonians whose potential term depends on x, thus the
eigenfunctions of the Hamiltonian and the momentum
operator are not shared in general. III is true, and follows
from both orthonormality and the fact that the states |n〉
are energy eigenfunctions with eigenvalues En. So C is
the correct answer.

40. B – As is typical for specialized topics problems, this is
pure fact recall. Expulsion of magnetic fields is an inter-
esting characteristic of superconductors. For the record,
A and D are false, and C and E are true but irrelevant.

41. C – Energy scales of MeV are typical of nuclear bind-
ing energies and reactions, so C is the only choice that
has roughly the correct order of magnitude. One way
of remembering this is that �c ≈ 200MeV · fm, and
nuclear dimensions are on the order of several femtome-
ters. But we could get pretty far just by a process of
elimination. The binding energy certainly can’t be more
than three times the mass of a nucleon (in units of c2),
or else tritium would have negative mass. Since nucle-
ons have masses of about 1 GeV/c2, choices D and E are
impossible. Furthermore, energies of eV are typical of
chemical reactions, rather than nuclear reactions, so the
only remaining reasonable choices are B and C.

42. D – If we keep the nucleus with charge +1 and the orbit-
ing particle with charge −1, the Bohr radius goes as
a ∼ 1/μ, where μ is the reduced mass of the system.
The reduced mass of the hydrogen atom is memp

me+mp
, and

the reduced mass of muonium is memμ

me+mμ
, so taking the

correct ratio gives

a = a0
memp/me +mp

memμ/me +mμ

= a0
mp(me +mμ)
mμ(me +mp)

,

which is D. For an alternate solution, we can use limiting
cases: in the limit me → 0, we must have a = a0 since
the nucleus becomes infinitely heavy compared to the
electron, and the reduced mass is then independent of
the nucleus mass. Choice D is the only one that satisfies
this property.

43. D – Just apply the canonical commutation relation
[x̂, p̂] = i� repeatedly. Using the commutator identity
[A,BC] = [A,B]C + B[A,C], we have

[x̂, p̂2] = [x̂, p̂]p̂+ p̂[x̂, p̂] = (i�)p̂+ p̂(i�) = 2i�p̂,

which is D.
44. D – The work–energy theorem tells us that the differ-

ence between the initial and final energies must be the
work done by friction; in the absence of friction, energy

would be conserved. In symbols, let h be the radius of the
quarter-circle ramp, v the block’s velocity at the bottom,
andm its mass.

W = mgh− 1
2
mv2

≈ (2 kg)(10 m/s2)(2 m)− (0.5)(2 kg)(4 m/s)2

= (40− 16) J

= 24 J,

where as usual we have approximated g ≈ 10 m/s2.
45. A – Potentials of line sources are logarithmic, which

eliminates D and E. Furthermore, the potential should
blow up to +∞ at r = 0, which eliminates C. To decide
between A and B, we have to go back to Gauss’s law to
find the field. Taking a Gaussian cylinder of height h and
radius r centered on the wire, the charge enclosed isQ =
λh. The field should be radial, so there is no field parallel
to the endcaps of the cylinder, and the fact that the field
is constant at constant radius r gives E(2πrh) = λh/ε0,
so E = λ/2πrε0. Computing V we find

V = −
∫ r

a
E(r) dr = − λ

2πε0
(ln r−ln a) = λ

2πε0
ln(a/r),

matching choice A.
46. D – If there is no absorption, the sum of the intensities

of the outgoing beams is equal to the incident intensity.
Since the intensity is proportional to the square of the
amplitude, choice D is correct. Choice A is true for a
50/50 beam-splitter, which divides an incoming beam
into two equal-intensity beams, but this is a special case
and not true in general.

47. B – The classical free-particle Hamiltonian is p2/2m, so
to get the quantum operator we make the replacement
p→−i�∇ to get

H = (−i�∇)2/2m = −�
2∇2/2m,

matching choice B.
48. B – This is mostly common sense. The penetration depth

of the protons as a function of energy would be the most
useful piece of information, since this would allow the
proton depth to be matched with the tumor position.
Note that protons of a fixed energy traveling through
matter tend to penetrate to a relatively constant depth,
losing the majority of their energy near the end of their
track (a phenomenon usually referred to as the “Bragg
peak” of their dE/dx curve). This makes them particu-
larly suitable for cancer treatment because the physical
location of a dose from a proton beam is well localized.
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This is in contrast to neutrons, for example, which tend
to diffuse much more broadly as they lose their energy.

49. A – First using conservation of angular momen-
tum, the angular momentum of the baseball is L =
(0.09 kg)(20 m/s)(2 m) = 3.6 kg · m2/s, so this must
be the angular momentum of the student–ball–platform
system after it starts rotating. The total moment of
inertia of the system (ignoring the ball, whose mass is
negligible compared to the student) is I = mstudentr2 +
Iplatform = (100 kg)(2 m2)+ 200 kg ·m2 = 600 kg ·m2.
Using L = Iω, we findω = 0.006 rad/s. Note that forget-
ting the contribution of the platform’s moment of inertia
would lead to choice B, and forgetting the student would
lead to choice C.

50. A – You might think you needed to memorize the for-
mula for Compton scattering, but really all you need
here is to take the correct limits. As θ → 0, there should
be no change in wavelength since no scattering takes
place: this eliminates B, C, and E. However, D has the
wrong units, which leaves only choice A. You could also
observe that there should be a nonzero wavelength shift
at θ = π , where the incident light is reflected directly
back off the electron accompanied by a suitable change
in kinetic energy; this also eliminates D.

51. D – Li++ is a hydrogen-like ion with one electron orbit-
ing a nucleus of charge +3. Recalling that the binding
energy of hydrogen-like systems is proportional to the
square of the nuclear charge Z, the binding energy of
Li++ is 32 = 9 times the binding energy of hydrogen.
9× 13.6 eV = 122.4 eV, so D is correct.

52. B – Choice B is false because it is forbidden by the Sec-
ond Law of Thermodynamics. The Third Law comes in
various forms, but all of them require that the entropy
approaches a constant at absolute zero. A, C, and E are
all true by the Boltzmann definition of entropy S =
k ln	, where 	 is the degeneracy of the system. A per-
fect crystal of a pure substance has a nondegenerate
ground state, so	 = 1 and S = 0. But if the ground state
were degenerate, then S could conceivably be nonzero
at absolute zero when the system is in the ground state.
Since a system at absolute zero is in its ground state,
the Boltzmann definition of entropy implies that the
entropy of a system approaches a constant at absolute
zero. The fact that D follows from the Third Law is
somewhat less obvious, but also true and proven inmany
textbooks.

53. B – By symmetry, if the triangle consisted of equal
charges+q at each vertex, the field at the center would be

zero. So the field at the center is entirely due to the sur-
plus of charge+q at the top vertex compared to the other
two vertices. The distance to the center of the triangle
from a vertex is L/

√
3, so

E = − q
4πε0

1
(L/

√
3)2

ŷ = − 3q
4πε0L2

ŷ,

choice B.
54. A – We just use V = q

4πε0
1
r with r = L/

√
3, and sum

over all charges. In fact, since all charges are equidistant
from the center, we can do the sum immediately:

V = 2q+ q+ q
4πε0

1
L/
√
3
= q

√
3

πε0L
,

which is choice A.
55. E – The thermodynamic limit for heat engine efficiency

is W/Q = 1 − TC/TH , where W is the work output
of the engine in one cycle, Q is the heat provided by
the hot reservoir in one cycle, and TC and TH are the
cold and hot reservoir temperatures, respectively. In the
given problem TC = 300 K and TH = 400 K, so the
maximum efficiency is W/Q = 0.25, and Qmin = 4W.
A power output of 100 kW corresponds to 100 kJ/s, so in
1 minute the work done is 6,000 kJ, and Qmin = 24, 000
kJ, choice E.

56. E – Doing the usual conservation of energy routine, we
set the zero of potential energy at the top of the equi-
librium position of the spring. The brick starts with
potential energy mgh, and at maximum compression x
the spring has potential energy 1

2kx
2. However, there

is an additional contribution −mgx to potential energy
from the compression of the spring below its equilib-
rium position.We have the following quadratic equation
for x:

1
2
kx2 −mgx = mgh

=⇒ x = mg ±√m2g2 + 2mghk
k

= mg
k

(
1±

√
1+ 2kh

mg

)
.

Discarding the spurious negative solution, we get choice
E. We could also have done this by dimensional analysis
and limiting cases. The only answers with correct units
are A, D, and E, and in the limit h→ 0 (where the block
is just sitting on top of the spring and then released),
only E gives the correct compression 2mg/k.

57. E – Solving this by free-body diagrams is straightforward
but rather time consuming. Just using a little physics
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intuition, T1 must support the mass of all the blocks, a
total of 40 kg, while T3 only has to support the lightest
mass of 5 kg. So T1/T3 = 8, choice E.

58. A – Recall that the z-component of orbital angular
momentum has the operator L̂z = −i�∂/∂φ. The
hard way is to compute the expectation value from the
definition,

〈Lz〉 =
∫ π

0

∫ 2π

0
dφ dθ ψ∗(θ ,φ)

(
−i� ∂

∂φ

)
ψ(θ ,φ) = 0,

but the easy way is to note that this wavefunction is
purely real, and so acting on it by L̂z will give something
imaginary. Expectation values of observables must be
real, so the expectation value must be zero. Yet another
way to see this is to remember that the φ dependence
in spherical harmonics is carried by eimφ , and that sines
and cosines are odd and even linear combinations of
these exponentials with m values of opposite signs. So
positive and negative Lz contribute equally and cancel
in the end for any real orbital wavefunction.

59. E – The potential given is a finite square barrier, and at
the given energy E, the barrier is a classically forbidden
region for the alpha particle. So its wavefunction in that
region must be an exponential, rather than a sinusoid.
Furthermore, the tunneling probability is less than 1, so
the amplitude of the wave outside the barrier must be
less than the initial amplitude. Only choice E matches
this description. Note that choice C is incorrect both
because the wavefunction is not sinusoidal outside the
barrier, and because the derivative of the wavefunction
is discontinuous at both the walls; discontinuities in the
derivative only occur in infinite potential wells, not finite
ones.

60. D – Apply the double-slit relation d sin θ = mλ to find
m, with d = 4mm, λ = 500 nm, and θ = 30◦, since θ

measures the angle from the center of the arrangement.
This gives m = 4,000, and we must multiply by 2 to
cover both halves of the screen. So approximately 8,000
fringes are visible, choice D. (We say “approximately”
because there is also a fringe at θ = 0, but also the very
last fringes at θ = 30◦ may or may not be visible at the
edges of the screen.)

61. A – This is the setup for the relativistic Doppler shift.
Since the ship is approaching the telescope, the period
should decrease relative to the emitted period, since the
light pulses are being received more often. This fixes the
signs in the numerator and denominator:

Tobs

Temit
=
√
1− β

1+ β
=
√
0.4
1.6

=
√
1
4
= 1

2
,

so Tobs = 0.5 s, choice A.
62. A – This is an example of length contraction: in the rest

frame of the particle, the tube is approaching at speed
0.8c, and so has its length contracted by a factor

1
γ
=
√
1− v2/c2 = √

1− 0.64 = 0.6.

So, in the particle’s rest frame, the tube is (30m)(0.6) =
18m long, which is choice A.

63. D – The reciprocal lattice to a simple cubic lattice is also
a simple cubic lattice, but with side length 2π/a. The
first Brillouin zone is again a cube, centered at one of the
points on the reciprocal lattice, which bisects the recip-
rocal lattice vectors and hence also has side length 2π/a.
Thus its volume is (2π/a)3, which is D.

64. A – Unfortunately this is just memorization. Beta decay
is n → p + e + ν (actually, the ν should be an antineu-
trino, but this distinction is irrelevant for the problem),
and the third particle present in the final state is respon-
sible for the broad energy spectrum of the remaining
two. It is possible to narrow down the answer choices
slightly using conservation laws: the positron, muon,
and strange quark are all charged, so their presence in
beta decay would violate charge conservation.

65. B – This one is simplest by limiting cases. Because we can
always replaceM1 andM2 along with the rope connect-
ing them by a single block of massM1 +M2, the answer
must involve only M1 +M2 and not M1 or M2 individ-
ually. Furthermore, as M3 → 0, α must approach 0◦ or
else M1 and M2 would slide down the ramp. Finally, if
M1+M2 = M3, we must have α = 90◦. The only choice
matching these limits is B.

66. D – The equivalent resistance of the top two resistors is
10	, as well as for the bottom two. Thus we have equiv-
alent resistances of 10	, 5	, and 10	 in parallel, with
total equivalent resistance of (1/10 + 1/5 + 1/10)−1 =
2.5	. From V = IR, the current is I = 2 A, choice D.

67. E – There are several ways to do this, but the quickest is
to remember that each of the Pauli matrices squares to
the 2 × 2 identity matrix. You can of course check this
by direct matrix multiplication, but it’s a very useful fact
to remember. Then M = 3I2×2, which has determinant
9, choice E.

68. C – The expectation value of Sx is given by

〈Sx〉 = η†Ŝxη = �

2
η†σxη.
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The normalization constant works out to beN = 1/
√
6,

so

〈Sx〉 = 1
6
· �

2

(
(−i 2+ i)

(
0 1
1 0

)(
i

2− i

))
= −�/6,

choice C. As it must, the expectation value comes out to
be real: if it doesn’t, you know you’vemade an arithmetic
mistake.

69. D – A standing wave should be of the formA(x)B(t) with
B periodic in time. Only choice D matches this form.

70. B – First find the image formed by the lens A. Here the
focal length is positive, so

1
12.5 cm

+ 1
s′1
= 1

10 cm
=⇒ s′1 = 50 cm,

and the image is real and 50 cm to the right of A, so
30 cm to the right of B. The diverging lens acts next,
and because the image is on the opposite side from the
incoming light rays, it acts as a virtual object for B:

− 1
30 cm

+ 1
s′2
= − 1

10 cm
=⇒ s′2 = −15 cm,

so the image is virtual and 15 cm to the left of B, or 5 cm
to the right of A. Since s′1 > 0, the first magnification
is m1 = −s′1/s1 < 0, so the first image is inverted. But
both the second object and image distances s2 and s′2 are
negative, som2 < 0, and the final image is upright.

71. B – You could solve this by simply remembering the field
transformations under a Lorentz transformation, but it’s
also instructive to reason geometrically. In S , there will
be a length contraction along the direction of motion,
reducing the area of the parallel plates by a factor of
1/γ = √

1− v2/c2, but no change in the plate sepa-
ration. The capacitance C = ε0A/d will then become
C/γ = C

√
1− v2/c2, choice B.

72. B – Muons have a mass of about 100 MeV, and cosmic
ray muons are usually produced with energies substan-
tially higher than this, so B is at least plausible. E might
have high enough energy, but charged particles created
by solar flares are usually captured by the Earth’s mag-
netic field. Thermal radiation, seismic noise, and solar
neutrinos have energies orders of magnitude too small,
so B is the best choice.

73. C – The kinetic energy of the pivot is 1
2Mẋ2, and the

pivot has no potential energy. Setting the zero of poten-
tial at the height of the bar, the potential energy of the
massm isU = −mgl cos θ . The position ofm is (X,Y) =
(x+ l sin θ ,−l cos θ), so taking time derivatives,

(Ẋ, Ẏ) = (ẋ+ l cos θ θ̇ , l sin θ θ̇).

The kinetic energy is

T = 1
2
m(Ẋ2 + Ẏ2)

= 1
2
m(ẋ2 + 2l cos θ ẋθ̇ + l2 cos2 θ θ̇2 + l2 sin2 θ θ̇2)

= 1
2
m(ẋ2 + l2θ̇2 + 2l cos θ ẋθ̇),

and taking L = T − U gives choice C. Note that we had
to start with the expression for kinetic energy in terms
of Cartesian coordinates, rather than immediately jump-
ing to polar coordinates, which would have neglected the
contribution to the kinetic energy of the hanging mass
coming from the motion of the pivot.

74. D – The relevant equations are the Bernoulli equation
for an incompressible fluid,

1
2
ρv21 + p1 = 1

2
ρv22 + p2,

and the continuity equation, which implies

v1A1 = v2A2.

Setting p1 = p and v1 = v, we solve for the relevant
variables and find

p2 = p+ 1
2
ρv2

(
1− A2

1
A2
2

)
,

choice D. Note that this is consistent with Bernoulli’s
principle (in this context also known as the Ven-
turi effect), where a decrease in cross-sectional area
is accompanied by a decrease in pressure. For a par-
tial alternate solution, we could have examined limiting
cases: for A1 = A2, we must have p2 = p, which
eliminates B and E.

75. B – Calculating the probability (remembering the r2

factor in the volume element),

P =
∫ 2a

a
|ψ(r)|2 r2 dr = a

∫ 2a

a

1
r4

r2 dr

= a
(
1
a
− 1

2a

)
= 1

2
,

which is B. Note that we don’t have to worry about the
angular part of the wavefunction, which is assumed to
be normalized on its own, and so we only have to do the
radial part of the volume integral.

76. C – The vx graph tells us that vx is constant and positive,
and vy tells us that vy is initially positive but decreases
linearly, which means constant negative acceleration.
In other words, something is falling, but started with
positive velocity in both the x- and y-directions. And
vy(0) ≈ 2vx(0), which means that the initial angle of the
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velocity vector was about 60◦, which is consistent with
choice C. In particular, vy(0) > vx(0), so choice D is not
a possibility.

77. D – This is the setup for Brewster’s angle: when the
Sun is at Brewster’s angle with respect to the normal
to the ocean, the reflected wave is completely polarized
parallel to the ocean. Since the polarization axis of the
sunglasses is perpendicular to the ocean, no transmit-
ted light passes through the polarizer. The information
given in the problem tells us that Brewster’s angle is
60◦, so n2 = tan 60◦ = √

3, choice D. Incidentally,
choice A can be eliminated immediately since indices of
refraction can’t be less than 1.

78. A – A charge in a sinusoidally oscillating field is just a
dipole oscillator, which radiates power according to the
Larmor formula

P = q2a2

6πε0c3
,

where a is the acceleration of the charge. For the pur-
poses of this problem, you don’t need to remember all
the constants and numerical factors: the crucial part is
the dependence on q and a. The acceleration is obtained
from F = ma = qE, giving a = qE/m, and (dropping
the irrelevant constants)

P ∝ q2(qE/m)2 = q4E20
m2 cos2 ωt.

Taking the time average, 〈cos2 ωt〉 = 1/2, which is just
a numerical factor (in particular, it’s independent of ω).
So we have

〈P〉 ∝ q4E20
m2 ,

which shows that if m is increased, 〈P〉 decreases.
Increasing q and E0 will increase 〈P〉. Changing T won’t
change the average power: since power is instantaneous
energy per unit time, changing the measurement time
can never change the power. Curiously, changing ω

won’t change the average power either, in contrast to the
case of a dipole antenna where the emitted power scales
as ω4.

79. B – While actually calculating the flux as a function of
time would require doing some tricky integrals, we can
see that, because q > 0, the flux is positive from t = −∞
to t = 0, and negative from t = 0 to t = +∞. In par-
ticular, the flux must go to zero as t → ±∞ because
the charge is infinitely far away and the field dies off as
1/r2. Furthermore, because the strength of the electric
field at z = 0 increases as the charge approaches, the flux

does not simply increase at a constant rate, but acceler-
ates. Finally, there is a discontinuity at t = 0 where the
flux jumps from positive to negative, because at t slightly
negative, all the field lines have components parallel to
the normal to the loop, but at t slightly positive, all the
field lines have components antiparallel. B is the only
plot that satisfies all of these conditions.

80. B – The most probable speed of particles following the
Maxwell distribution is v = √

2kT/m. From the ideal
gas law, P is directly proportional to T at fixed volume,
so the most probable speed goes as v ∝ √

P, choice B.
81. B – The Doppler shift formula for a source approaching

an observer in a straight line gives a constant observed
frequency as the source approaches, and a different con-
stant observed frequency as the source recedes because
the sign of the relative velocity changes. The wave-
fronts are being compressed as the ambulance travels
in the direction of the emitted signal, so the frequency
is higher, hence choice B. This is a bit counterintu-
itive because the usual situation observed in real life
is choice E, which corresponds to an ambulance pass-
ing by the observer with a nonzero distance of closest
approach b. There, the reason for the sliding frequency
is that the direction between the source and observer is
constantly changing, and the Doppler shift only occurs
in the direction of the source’s motion, so there is an
angle-dependent factor which changes continuously as
the source moves past the observer.

82. E –Without doing any calculations, we know the answer
must be E because the speed of a photon in any inertial
reference frame is c. This is one of the axioms of special
relativity: the speed of light is constant in any inertial
reference frame.

83. C –Mesons are defined as bound states of a quark and an
antiquark. Choice D describes baryons, not mesons, and
none of the other choices are found in nature as bound
states (except choice E, but that describes a nucleus).

84. A – Neutron stars are essentially giant spheres of neu-
trons. Since neutrons are fermions, they cannot all
collapse to be in the same position state by the Pauli
exclusion principle. All of the other choices could possi-
bly be argued in vaguely plausible ways, but A is clearly
the correct answer.

85. A – This can be quickly determined from energy conser-
vation. The total energy stored in the capacitor is

E = Q2
0

2C
.
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Assuming that all of this energy is dissipated by the resis-
tor, the heat transferred to the material is �Q = Q2

0ε
2C ,

and the change in temperature can be found from�Q =
mcp�T:

�T = �Q
mcp

= Q2
0ε

2mcpC
.

86. B –We can get the field of an infinite wire fromAmpère’s
law. Taking an Amperian loop around the wire at radius
r, we get 2πrB = μ0I, so B = μ0I/2πr, where we
have assumed the field is circumferential. Setting r = d
and using F = I dl × B gives a force per unit length
|F|/dl = μ0I2/2πd. The direction comes from the right-
hand rule, or by remembering that wires behave oppo-
sitely from charges: like currents attract while opposite
currents repel. Hence choice B.

87. C – Writing

S1·S2 = 1
2
((S1+S2)2−S21−S22) =

1
2

(
(S1 + S2)2 − 3

2
�
2
)
,

we see the possible values of H depend on the total spin
S2tot = (S1 + S2)2; in other words, whether the two
particles are in the singlet or triplet state. In the singlet
state with spin 0, H = −A(− 3

4�
2) = 3A�

2/4, and in
the triplet state where S2tot = (1)(2)�2, H = −A�

2/4.
However, there are three linearly independent total spin
states in the triplet, so the triplet has a degeneracy of 3.
Since A > 0, the triplet is the lowest-energy state, hence
choice C.

88. B – The diameter of themolecules is only relevant in that
they are much smaller than the wavelength of incident
light. This puts us in the regime of Rayleigh scattering,
where intensity is proportional to λ−4. So doubling the
wavelength multiplies the scattered intensity by 1/16,
which is choice B. Incidentally, this is the same phe-
nomenon that is responsible for the blue color of the sky,
since solar light scattering off air and water molecules
has a much higher intensity toward the blue end of the
spectrum.

89. C – By the selection rules, we need �l = ±1, so 3s
must decay to 2p in the electric dipole approximation.
All other decay modes will be suppressed relative to
this “allowed” transition, hence choice C. (The selection
rules formwill be satisfied if the 2p state also hasm = 0.)
Note that, depending on the total spin, the 3p state is at
best degenerate with 3s, up to hyperfine-structure cor-
rections. This is a tiny energy splitting, so the transition
would still prefer to go to 2p.

90. D – Statistical and systematic errors are independent
so they add in quadrature:
σtot =

√
(0.08 GeV)2 + (0.06 GeV)2 = 0.10 GeV.

91. B – Radioactive decays follow a Poisson probability dis-
tribution, whose variance is equal to N, the number of
counts. Hence the fractional error is σ/N = √

N/N =
1/
√
N, which for N = 64 gives 1/8, choice B.

92. C – This is a simple kinematics problem dressed up with
some unfamiliar units. While we could convert the elec-
tron kinetic energy to joules and use F = qE with the
electron charge q in coulombs, it’s much simpler to recall
the definition of eV (“electron-volt”) as the potential
energy gained by an electron traveling through a poten-
tial difference of 1 V. The electron reaches its maximum
height when its kinetic energy is converted entirely to
potential energy, which occurs when the potential rela-
tive to the sheet is 10 V. 100 V/m = 1 V/cm, so the 10 V
potential occurs at a height of 10 cm, choice C. (The elec-
tron is negatively charged, so an electric field directed
along its direction of motion will cause it to decelerate –
trap answer E would be correct for a positively charged
particle.)

93. C – Let � be the length of the rod, v be the initial velocity
of the bullet, V be the velocity of the block immediately
after the collision, and m and M be the masses of the
bullet and block, respectively. Momentum is conserved
in the collision with the block, so we can solve for V :

mv = (M +m)V

=⇒ V = m
M +m

v ≈ m
M

v,

where the last approximation comes from the fact that
the bullet is much lighter than the block. For the block to
just barely make a complete revolution, the block must
reach the very top of its circular path with zero veloc-
ity. There, it will have potential energy (M + m)g(2�)
with respect to its initial position, so we solve for V by
conservation of energy:

1
2
(M +m)V2 = 2(M +m)g�

=⇒ V = 2
√
g�.

Plugging in for V and inserting the numbers in the
problem gives

v = 2
M
m
√
g� ≈ 800 m/s,

choice C.
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94. E – This is an application of the Rayleigh criterion,
sin θ = 1.22λ/D. Solving for D gives D = 1.22λ/ sin θ .
Since θ = 0.061 rad is very small, we can approximate
sin θ ≈ θ . From λf = c, we have λ = 1.5 m, andD = 30
m, choice E.

95. D – In the center-of-momentum frame, the electron
and the positron each have energy γme where γ =
1/
√
1− v2/c2 is the Lorentz factor. The total energy in

this frame is 2γme, which must be at least the energy of
the two muons at rest, 2mμ. Solving 2γme = 2mμ for v,
we find choice D.

96. B – The time constant of an RC circuit is simply RC. We
have two resistors in series, so the effective resistance is 2
M	 + 3M	 = 5M	, and two capacitors in series whose
effective capacitance is (1/1µF + 1/4µF)−1 = 0.8µF.
Multiplying these gives a time constant of 4 s, which is B.

97. E – The field in the solenoid is proportional to the num-
ber of coils per unit length, n. But the flux through the
solenoid is proportional to n2, since we have to sum the
fluxes through each of the n coils. From the definition
of inductance, L = �/I, L is also proportional to n2, so
tripling n increases L by a factor of 9, as in E.

98. B – In a free electron laser, electrons are forced in a
sinusoidal path, and the resulting acceleration produces
coherent synchrotron radiation, choice B. All the other
choices are steps in the operation of normal lasers, but
they all require electronic transitions in atoms – the
key description “free electron” should at least eliminate
choices A and E.

99. C – If we imagine the surface current as being made
up of a bunch of parallel wires all pointing in the
ŷ-direction, we see that there are equal and opposite
contributions to a field in the ẑ-direction, from wires at
+x and −x for any value of x. So there is no field in
the ẑ-direction. Moreover, there can’t be any field par-
allel to the wires, so B must point in the ±x̂-direction.

This leaves only C and D. To get the sign right, apply
the right-hand rule to all the wires, which shows that
above the plane, the field from every wire is in the +x̂-
direction. Since C andD only differ by a sign, we’re done:
we don’t actually have to use Ampère’s law to calculate
the magnitude. Always be on the lookout for shortcuts
like this on the GRE!

100. D – It turns out that all of the numerical values in the
question are irrelevant. This is not an uncommon occur-
rence on the GRE, so it pays to work out everything in
terms of variables until the end of the problem. Let m
be the mass of the sphere, R its radius, h the height of
the ramp, and v its velocity at the bottom. Two obser-
vations make this problem quite simple. First, while the
forces on the sphere are different whether or not fric-
tion is present, they must be constant throughout the
fall down the ramp. So the acceleration down the ramp
is constant as well. Second, from kinematics we know
v2 = 2a�x for constant acceleration a, so combining
this with v = at gives t = 2�x/v; the time is inversely
proportional to the velocity at the bottom of the ramp.
The distance traveled �x will cancel out in the ratio
t′/t.
To find the velocity at the bottom, use conservation of

energy. Without friction, mgh = 1
2mv2, so v = √

2gh.
With friction, there is an additional rotational kinetic
energy 1

2 Iω
2 = 1

2 (
2
5mR2)( v

′2
R2 ) = 1

5mv′2. Now we have

mgh =
(
1
2
+ 1

5

)
mv′2 =⇒ v′ =

√
10
7
gh,

so t′/t = v/v′ = √
7/5, choice D. We could have nar-

rowed the choices down to D or E from the beginning,
since the additional rotational kinetic energy implies the
velocity at the bottom will be less than in the friction-
less case. From the constant acceleration argument, this
means that t′ > t, which eliminates choices A–C.
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Solutions to Sample Exam 3

1. C – Whenever a small amount of liquid with mass m is
emitted from the bath, the potential energy released by
the level of the water dropping is�U = mgh. Neglecting
small effects such as surface tension and viscosity, all of
this energy is converted into kinetic energy with a veloc-
ity directed parallel to the ground. The velocity parallel
to the ground is therefore

1
2
mv2 = mgh,

v = √2gh.

The same result can also be derived from Bernoulli’s
principle applied to the top and bottom of the bath,
noting that atmospheric pressure is the same at both
locations and cancels. In fact, it’s common enough that
it has its own name, “Torricelli’s law,” and may be worth
memorizing so you don’t have to repeat the derivation.
The time required for free fall in the vertical direction

follows from basic kinematics:

t = √2y/g.

Substituting this into x = vt, we find that

x = 2
√
hy.

2. E – Hydrogen atoms are much smaller than 450 nm
so the small-particle Rayleigh formula applies. If the
Bohr radius were doubled by the a6 dependence in
the Rayleigh formula we get intensity 26I0 = 64I0,
choice E.

3. E – This is a straightforward application of the Rayleigh
criterion. The minimum aperture diameter D needed
to resolve objects with separation �θ emitting light of
wavelength λ is

D = 1.22λ
�θ

,

where we have assumed �θ is small so we can use
the small-angle approximation. For the purposes of this
problem, which is really an order-of-magnitude ques-
tion, the coefficient 1.22 isn’t even necessary. Radio
waves have wavelengths on the mm to km scale, visible
light has wavelengths between 400 and 700 nm, and x-
rays have wavelengths of approximately 0.01 to 10 nm.
Applying the criterion, we can estimate

Dradio ≥ 1.22(10−3 m)
3× 10−4 rad

≈ 5 m,

Dvis ≥ 1.22(500× 10−9 m)
3× 10−4 rad

≈ 2 mm.

At this point we don’t even have to do the calculation
for x-rays (nor do we really have to know exactly what
their wavelengths are), since we know that a 1 cm aper-
ture is large enough to resolve visible light, so it must
be large enough to resolve x-ray light, which has an
even smaller wavelength. So both II and III are possible,
giving choice E.

4. B – The force due to friction is F = μmg, so the
acceleration due to friction is given byma = μmg, or

a = μg,

opposite to the direction of motion. We can obtain the
distance traveled by the useful kinematic identity

v2f − v2i = 2a�x.

Plugging in numbers, we find that

�x = v2i
2a

= v2i
2μg

= (10 m/s)2

10 m/s2
= 10 m.

Just as easily, we can use the work–energy theorem: the
work done by friction to bring the block to rest must be
equal to its initial kinetic energy, so

μmg�x = 1
2
mv2i =⇒ �x = 10 m

as before. Note that the mass cancels out in both solu-
tions.

5. E – The fastest way to solve this problem is to just think
of some examples where you have used Lagrangians to
solve a problem. Clearly, we use Lagrangians all the time
to solve problems with conservative forces; for example,
a particle in a gravitational field. There’s also nothing
special about rotational symmetry; for example, again,
we can use Lagrangians to solve for motion in a uniform
gravitational field at the surface of the Earth, which has
cylindrical but not full rotational symmetry. Finally, one
rarely deals with time-dependent potentials, but the fact
that the Euler–Lagrange equations include time deriva-
tives suggests that they do not assume anything to be
constant with time.

6. C – The hyperfine structure is the smallest correc-
tion, orders of magnitude smaller than the fine-structure
effects. It is produced by the interaction of the nuclear
dipole moment with the magnetic field produced by the
orbit of the electrons. The next smallest is the Lamb
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shift, which arises due to interactions between the elec-
tron and the vacuum and causes a shift in the rela-
tive magnitude of the s and p orbital energies for the
n = 2 states. The fine-structure corrections arise due
to spin–orbit coupling, relativistic effects, and the so-
called Darwin term. The combined fine-structure effects
are the largest contribution. The easiest way to remem-
ber the hierarchy is to remember the factors of the
fine-structure constant α: fine-structure corrections are
proportional to α4, the Lamb shift is proportional to α5,
and hyperfine-structure corrections are proportional to
α4(me/mp)� α5.

7. C – The energies of the harmonic oscillator are just En =
�ω(n+ 1/2). The difference between the n = 5 and n =
1 states is therefore 4�ω.

8. B – While it is tempting to think of this problem as an
application of the Coriolis force, it is much easier to solve
in the nonrotating frame. It takes the puck a time t =
R/v to reach the edge of the disk. By this time, the disk
has rotated through an angle �θ = ωt = ωR/v.

9. C – The answer is a common enough formula that you
may have it memorized. If you do not, you can derive
it from the usual rules for propagation of uncertainties.
The uncertainty of the function z = x/y is

(�z)2 =
(

∂z
∂x

)2
(�x)2 +

(
∂z
∂y

)2
(�y)2

= 1
y2
(�x)2 + x2

y4
(�y)2

= z2
((

�x
x

)2
+
(

�y
y

)2
)
.

Taking square roots to get �z gives choice C.
10. A – A bandpass filter only allows signals to propagate

that are between two frequencies (not to be confused
with high-pass or low-pass filter, which are only one-
sided). Intuitively, inductors suppress high-frequency
signals because voltages are high for fast oscillations
and capacitors suppress low-frequency ones because
of excessive charge buildup. It therefore is most rea-
sonable that a bandpass filter would require both an
inductor and a capacitor. Choice A is the only option
that has both of these circuit elements. (Note however
that both high-pass and low-pass filters can be made
with either RL or RC circuits, and stringing two of
these circuits together would give a bandpass filter, but
this requires more circuit elements than allowed by the
answer choices.)

r

U(r)

11. A – The effective potential is shown in the figure above.
Since a circular orbit is at a fixed radius, Ecir corre-
sponds to an energy at the minimum of the effective
potential. An elliptical orbit is at a variable radius but
is still bound, so Eell corresponds to an energy above the
minimum of the effective potential but less than zero.
Finally, a hyperbolic orbit is unbound at all radii (even
at r → ∞), so Ehyp > 0. Putting it all together, we find
that Ecir < Eell < Ehyp.

12. C – Electrons are fermions, and so at zero temperature
they cannot all collect in the ground state. Instead, they
fill out the so-called Fermi sphere, and the energy of elec-
trons at the boundary is called the Fermi energy, choice
C. In a pinch, if you only remembered that electrons are
fermions, youmight be able to guess that the answer had
something to do with Fermi.

13. B – The time dilation changes the apparent lifetime in
the rest frame by a factor of γ = 1/

√
1− 0.64 =

1/0.6 = 1.67. The distance traveled during this time is
0.8c× (1.67× 10−8 s), or about 4 m.

14. B – The outermost electron is in the p orbital, and so has
l = 1. This means L2 = l(l+ 1)�2 = 2�2, so |L| = �

√
2.

15. C – Superficially this may seem like a rather technical
question from early universe cosmology. On the other
hand, it is clear that I and II are light nuclei, while III
is fairly heavy. Your intuition should tell you that light
nuclei were probably the first elements produced after
the Big Bang, leading you to guess C. Indeed this is cor-
rect. No elements heavier than beryllium were produced
in the early universe before it cooled below the tem-
perature needed for nucleosynthesis. Heavier elements
were not produced until the first stars formed and com-
bined the lighter elements into heavier ones via nuclear
fusion.

16. B – The fluid conservation equation implies that

vA1 = v2A2,

so B is the correct choice. This follows immediately
from conservation of mass and the fact that the fluid is
incompressible.
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17. C – We can use the equation from basic kinematics:

v2 = 2a�x.

Plugging in numbers, we find that the velocity is 20 m/s.
18. E – While this problem can be analyzed to a large extent

using limiting cases, it is also simple to work out explic-
itly. The velocity of the block–bullet system after the
collision is obtained by conservation of momentum:

v′ = mv
m+M

.

The force due to friction is simply constant and given by

F = (m+M)a = −μ(m+M)g.

From basic kinematics at constant acceleration, we
know that

�t = �v
a

= mv
μg(m+M)

.

Alternatively, you could eliminate all choices except E
by considering the limiting behavior of the masses and
coefficient of friction.

19. C – This question refers to Johnson noise, the voltage
fluctuations that arise in resistors due to thermal fluctua-
tions that induce resistance fluctuations. The derivation
of this formula is not difficult, but it may be unfamiliar to
you. Luckily, we can solve this one by pure dimensional
analysis. A spectral density of voltage fluctuations has
units of V Hz−1/2. The funny units are chosen because
rms values of noise sum in quadrature. It therefore is
most natural to write a spectrum of square power over
frequency because then noise simply adds. Choice C is
the only option that has the correct units. Note that
almost always, k and T show up in the combination kT
which has units of energy. Here, it’s most convenient to
write energy as [V][Q], or voltage times charge. From
V = IR, resistance R has units of V/I = [V][Q]−1[T].
To get Hz−1/2 or [T]1/2, we want

√
R somewhere, so

computing the units,
√
kTR ∼

√
[V][Q][V][Q]−1[T] ∼ [V][T]1/2,

and C has the right units as promised.
20. D – At time t the bar has traveled a distance x = vt.

Since the magnetic field is perpendicular to the loop, the
flux through the loop is

� =
∫

B · dA = Bxd.

By Faraday’s law, the emf in the circuit is E = d�/dt =
Bvd, so the power is P = E2/R = (Bvd)2/R, and inte-
grating this from t = 0 to t = T gives the total energy
(Bvd)2T/R, choice D.

21. D – Recall that the rms velocity of an ideal gas is

vrms =
√
3kT
m

.

Helium is a monoatomic gas since noble gases don’t
form chemical bonds under standard conditions, so
helium gas, with a mass of approximately 4 amu, is
approximately two times heavier than that of molecular
hydrogen, with a mass of approximately 2 amu. Thus, its
rms velocity is v/

√
2, choice D.

22. D – The resonant frequency of an LC circuit is

ω0 =
√

1
LC

,

which is also the frequency at which the current through
an RLC circuit is maximized, so the answer is D. If you
don’t remember this fact, just remember that the res-
onant frequency is defined as the frequency where the
imaginary part of the total impedance vanishes. Adding
a series resistance only changes the real part of the
impedance, so the resonant frequency is unchanged.

23. B – An open pipe has pressure nodes at both ends, so
the wavelength of the fundamental vibration is 2L. The
frequency is

f = c
λ
= 343 m s−1

0.4 m
= 858 Hz.

24. B – Since the two loops are perpendicular to each other,
the torque on the smaller loop is given by

N = mB,

where m = π ib2 is the magnetic moment of the smaller
loop, and B is the magnitude of the magnetic field at the
center of the larger loop. This can be readily obtained
from the Biot–Savart law, which reduces to

B = μ0

4π
2πaI
a2

= μ0I
2a

.

Putting the pieces together, we find that the torque is

N = μ0πIib2

2a
.

25. B – When ball A is released, it experiences a centrifugal
acceleration in its reference frame:

a = v2

r
= 	2R

2
.
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Ball B experiences an acceleration given by

a = v2

r
= 	2R,

so the ratio is 1/2.
26. B – The electric field inside the sphere can be quickly

obtained from Gauss’s law, and is found to be ∝ r. By
integration, we conclude that the potential is ∝ −r2.
In the region between the charged sphere and the con-
ductor, there is the usual ∝ r−1 potential. Inside the
conductor, the potential is constant. Finally, outside the
conductor, the potential is again ∝ r−1. Only choice B
satisfies these requirements.

27. D – Only choices D and E are behaviors that are even
remotely possible for an RLC circuit. E is almost a cor-
rect plot of an overdamped RLC circuit (the case with
no visible oscillation from the inductor), but the current
starts out at a nonzero value. This should not happen
because the inductor should oppose the sudden increase
in current, producing a more gradual increase from zero
current to some maximum, as seen in choice D.

28. A – The cyclotron radius is

r = mv
qB

.

If the electrons travel at velocity v, then we have

v = 2πr
T

,

and so

T = 2πm
qB

.

29. B – This is classic Bragg diffraction. We can simply use
the well-known formula for first-order diffraction:

2d sin θ = λ.

Solving for the angle in the small-angle approximation,
we have

θ ≈ λ

2d
.

Plugging in numbers, and approximating π by 3 when
converting from radians to degrees,

θ ≈ 10
2 · 80 ×

180
π

≈ 30
8
≈ 3.75◦,

which is closest to 3.6◦, choice B.
30. B – If this strikes you as an insanely difficult problem

for the GRE, realize that it can be solved without any
calculation by considering limiting cases. The most use-
ful limit here is x → R: since the sphere is grounded

and conducting, we know that the potential must van-
ish when x = R. Choices B and E are the only options
that satisfy this basic requirement. Choice E is obviously
wrong, because as R → 0 we should still see some
dependence on x from the potential of the charge Q by
itself.

31. B – It is a useful fact that the simple cubic lattice is self-
dual; that is, the lattice is equal to its reciprocal lattice. In
case this isn’t obvious, it should be clear to you from the
definition of the reciprocal lattice. If r = lax̂ + maŷ +
naẑ with l,m, n ∈ Z are the lattice sites of the simple
cubic lattice, then the reciprocal lattice vectors are those
vectors k satisfying the relation

eik·r = 1.

It is clear that this relation will hold as long as k =
2π
a (px̂ + qŷ + rẑ), where p, q, r ∈ Z. But these k vec-
tors are just the points of another simple cubic lattice.
So the reciprocal lattice of a simple cubic lattice is itself
cubic.

32. A – This is a straightforward computation using the
definition of the magnetic field in terms of the vector
potential. Recall that we have

B = ∇ × A.

Direct substitution of the vector potential into this equa-
tion gives choice A.

33. B – This is a simple application of Wien’s displacement
law, which holds for blackbody radiation. The CMB is
one of nature’s most perfect blackbodies, so Wien’s law
is applicable. It states that the wavelength of maximum
intensity emitted by a blackbody is

λ = b
T
,

where b is a constant. We just set

λT = λ′T′,

so that

λ′ = λT
T′

= 1 mm · 2.7 K
5 K

≈ 0.5 mm,

which is closest to B.
34. E – The best way to solve this problem is by a process

of elimination. B and D are trivially forbidden by charge
conservation. A is forbidden by conservation of lepton
number (you cannot get two leptons from one). C is a
bit more subtle, but it is forbidden because the �+ is
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a low-lying excitation of the proton, which is not suf-
ficiently massive to decay to a proton and neutron. In
addition, this decay would violate baryon number since
�+, p, and n each have baryon number equal to 1. This
leaves E: note that lepton number is conserved because
μ+, the antimuon, has mu-lepton number−1.

35. D – This is another application of Wien’s displacement
law. Relating observed to true quantities, we have

b
Tobs

= λobs =
√
1+ β

1− β
λtrue =

√
1+ β

1− β

b
Ttrue

.

The true temperature is therefore

Ttrue =
√
1+ β

1− β
Tobs.

Plugging in numerical values, we obtain about 1.1 ×
104 K.

36. C – Intuitively, one might expect the energy to go to the
larger of the two states, but this does not turn out to be
the answer. The partition function is given by

Z = e−βε + eβε .

The average energy is given by

〈E〉 = εe−βε − εeβε

e−βε + eβε
.

As T →∞, we have β → 0, so

〈E〉 → 0.

We can understand this result because T → ∞ means
kT � ε, so the thermal fluctuations overpower the
small energy splitting due to ε, and each state is equally
populated.

37. C – If the gas expands, then clearly energy is conserved
as long as the box is reasonably thermally isolated from
its surroundings. Somewhat less obviously, the tempera-
ture is also unchanged. During free expansion of an ideal
gas, we have PV = P′V ′, and thus temperature must
remain constant. Alternatively, you can see that the tem-
perature is unchanged since the temperature is related
to the internal energy of the gas via U = (3/2)NkT. The
entropy of an ideal gas, on the other hand is given by

S = Nk

[
ln

(
V
N

(
4πmU
3Nh2

)3/2
)
+ 5

2

]
,

which has a clear volume dependence. Another for-
mula that is probably more familiar to you and easier

to remember for the exam is that the entropy change
during free expansion of an ideal gas is

�S = Nk ln
(
V ′

V

)
.

This follows directly from the full expression for the
entropy above, but it is quite a bit more practical for
GRE-style questions.

38. C – Energy conservation is not necessarily violated
because e < 1 is still possible. The First Law of Ther-
modynamics is essentially a restatement of conservation
of energy, so this should be a good clue that neither
of the first two choices are correct. The Third Law
of Thermodynamics is the statement that objects can-
not be cooled to absolute zero, which has nothing to
do with the situation at hand. Finally, the postulate of
equal a priori probabilities is a fundamental assump-
tion of statistical mechanics, which states that all of the
microstates corresponding to each macrostate of a sys-
tem are equally probable. This clearly has nothing to do
with the heat engine at hand. This leaves the Second Law
of Thermodynamics as the correct answer.
We could also have seen this right away since, as

TH → TC, e → 2/3. This is a clear violation of the Sec-
ond Law since it would imply that useful work could be
done between two reservoirs at the same temperature; in
particular, it violates the Carnot bound e = 1− TC

TH .
39. E – The addition of velocities formula is generally writ-

ten in the form

s = u+ v
1+ uv

c2
.

It is critical to understand the notation here. This equa-
tion holds for a body A that is traveling at velocity v with
respect to another body B that is traveling at velocity u
with respect to a reference frame S. In this notation, s is
the velocity of A with respect to the reference frame S. In
the problem, we can identify v as the velocity v1 of space-
ship A with respect to the planet.We can identify s as the
velocity v2 of spaceship B with respect to the planet. And
we want to solve for the absolute value of u, the speed of
spaceship A relative to spaceship B. Making these substi-
tutions and solving, we find that the speed is as given in
the solution.
Equivalently, we can think of everything in the ref-

erence frame of B. Then u is the velocity of the planet
relative to B, v is the velocity of A relative to the planet.
and s is the velocity of A relative to B. Making the
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r

r r

r

A

B

1

2

3

4

identification u = −v2, v = v1, we obtain the same
result.

40. E – This is a straightforward equivalent resistance prob-
lem. Labeling the resistors as shown above, resistors 3
and 4 are in series, with equivalent resistance 2r. This
equivalent resistance is in parallel with resistor 2, giving

R234 =
(
1
2r
+ 1

r

)−1
= 2r

3
.

Adding resistor 1 in series, we get a total resistance of
5r/3, or choice E.

41. D – The invariant of a gas undergoing a reversible
adiabatic change is

PVγ = const,

where γ is the ratio of specific heat at constant pressure
to specific heat at constant volume. For a monoatomic
ideal gas, we have γ = 5/3. Thus we have

P = Pf × 25/3,

and

Pf = 2−5/3P.

42. B – To compute this, we simply need to recognize that
LzYm

l (θ ,φ) = �mYm
l (θ ,φ). Using this fact, we have

〈Lz〉 = 1
2

∫
d	
(
Y∗−11 (θ ,φ)+ Y∗01 (θ ,φ)

)
Lz
(
Y−11 (θ ,φ)+ Y0

1 (θ ,φ)
) = −�

2
.

Even this setup is a little overkill here: since Y−11 has
eigenvalue−� and Y0

1 has eigenvalue 0, and they appear
in the wavefunction with equal relative coefficients, the
average must be 1

2 (−�+ 0) = −�/2.
43. C – Choice A is clearly incorrect. Superpositions of

energy states are permissible states, and they are cer-
tainly not energy eigenstates. Choice B is also incorrect.
The simplest counterexample is the free particle (i.e.
the solution of the Schrödinger equation with V = 0),
which can have any positive energy. The wavefunction
for this case ψ(x) = Aeikx also is a simple counterexam-
ple for choice D. Choice C is, of course, true for quantum

systems in any number of dimensions. Youmay remem-
ber that observables are represented by Hermitian oper-
ators, so it stands to reason that their eigenvalues should
be real.

44. C – We cannot easily guess away the solutions, so we
must solve this problem explicitly. We just need to use
conservation of angular momentum. In order to do
this, we need to know the moment of inertia of the
mass–rod system. Since the mass is a point particle, the
total moment of inertia is the sum of the point parti-
cle moment of inertia and the rod moment of inertia.
And, since m � M, the center of mass of the new sys-
tem is approximately the center of mass of the rod, so we
compute both moments about the center of the rod:

I = 1
12

ML2 +m
(
L
2

)2
.

The angular momentum before the collision is equal to
the angular momentum afterwards:

mv
(
L
2

)
=
(

1
12

ML2 + 1
4
mL2

)
ω.

So the solution is

ω = 6mv
(M + 3m)L

.

Under the approximation m � M, we can drop the 3m
term in the denominator, which just gives

ω = 6mv
ML

,

choice C.
45. A – The time dependence of the wavefunction is given

by e−iHt/�. For an eigenstate we have e−iEt/�, where E =
α�B/2 for the |+〉 state. The wavefunction for this state
is thus exp(−iαBt/2)|+〉.

46. D – Observables in quantum mechanics clearly must
have real eigenvalues because we measure real numbers
in physical experiments. We also require that observ-
able operators be Hermitian, partially in order to ensure
that the eigenvalues are real. So, I and III are correct.
II is false because multiple operators can commute with
the Hamiltonian and therefore can have simultaneous
eigenstates.

47. A – The oscillation frequency of a mass on a spring is

f0 = 1
2π

√
k
m
.

While you should definitely know this expression and
how to derive it, you can easily derive it from dimen-
sional analysis in a pinch. The equation of motion for

 



260 Solutions to Sample Exam 3

this system only involves k and m, and there is only one
combination of these constants that gives units of fre-
quency. The prefactor is unimportant for this problem,
since we’re only interested in the fractional change of a
quantity. That said, if we increase the mass by a factor of
3 and increase the spring constant by a factor of 2, then
the new oscillation frequency is just

f = 1
2π

√
2k
3m

=
√
2
3
f0.

48. E – The probability of finding the particle on [0, 1/2] is
the integral over this interval of |ψ |2:

P = 5
∫ 1/2

0
x4 dx = 1

32
.

49. E – The spin-up and spin-down components of the wave
function are orthogonal, so we simply have

〈ψ | Sz |ψ〉 = 2
3

(
�

2

)
+ 1

3

(−�

2

)
= �

6
.

50. D – Carbon dioxide lasers produce photons when elec-
tron impacts on nitrogen excite vibrational modes of
the molecule. Collisions between nitrogen and CO2

then excite vibration modes of the molecule, and the
de-excitation produces the laser light.

51. B – This can be quickly solved by writing the equations
of motion for the car and the trailer. For the car we have

Ma = F − T.

For the trailer, we have

ma = T − μmg.

Solving for T by substituting for a, we arrive at

T = m(F + μMg)
M +m

.

52. E – The total angular momentum obtainable when sum-
ming together angular momenta l and s are integral
values between

∣∣l+ s
∣∣ and ∣∣l− s

∣∣. The smallest total
angular momentum is therefore j = 2.

53. E – Recall that noble gases such as helium, neon, and
argon have full electron shells, which is the case here:
each shell has 2n2 states, so there are two electrons in
the n = 1 shell and eight electrons in the n = 2
shell. (This happens to be the electronic configuration
for neon.) Alkali metals and rare earth metals have one
or two additional electrons over a full shell, respectively,
and halogens are one electron short of a full shell. Semi-
conductors are not easily identified from their electronic
configurations.

54. C – This seems like a nasty problem, but considering
limiting cases makes it easy. As β → 0, the perturbation
becomes constant, and thus the energy shift must also be
the constant α: this eliminates A, D, and E. As β →∞,
the perturbation disappears entirely, which leaves only
choice C.
For completeness, here’s the exact solution. The

energy shift of the ground state is given by taking the
expectation value of the perturbation with respect to the
ground state wavefunction:

〈0| δV |0〉 = α
(mω

π�

)1/2 ∫ ∞

−∞
e−mωx2/�e−βx2 dx

= α

(
mω

mω + β�

)1/2
.

55. C – By Stokes’s theorem, we can relate the line integral
of f around a closed curve to the surface integral of∇× f
over a surface bounded by that curve. But ∇ × f = 0
so the line integral must vanish. We can also easily do
the integral explicitly. The integral over the first segment
is zero because only the x̂ part contributes, and y = 0;
the same is true for the last segment. The second seg-
ment contributes 1, but the third segment contributes
−1 since it is traversed in the −x̂-direction, so the total
is zero as before.

56. C – All answers except C can be eliminated with dimen-
sional analysis. The dimensions of magnetic flux are a bit
tricky: it’s magnetic field strength times area, but we can
relate this to electrical charges by Faraday’s law:

(B-field)(area) = (voltage)(time)

= (energy · time)/charge,

which has units of J · s/C.
57. C – I is true: electrons and positrons are both fermions,

and a system consisting of an even number of fermions
behaves as a boson and obeys Bose–Einstein statistics.
This can be shownmore rigorously by the rules for addi-
tion of angular momentum: two spin-1/2 particles can
have a total spin of 0 or 1, both of which are integers
rather than half-integers. II is also true, since the binding
energy of a two-particle bound state is proportional to
the reduced mass of the system. In the case of the hydro-
gen atom, the reduced mass is mpme/(me + mp) " me

and the ground state energy is given by−13.6 eV. In the
case of positronium, the reduced mass is m2

e/(2me) =
me/2, so the ground state energy must be about half
that of hydrogen. III is false: going to the rest frame of
positronium, a massive bound state cannot decay into
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a single massless photon without violating conservation
of relativistic energy–momentum.

58. C – Energy is conserved in an elastic collision, and since
the wall of the pool table doesn’t move, the ball must
have the same energy before and after the collision. Thus
1
2m|v|2 = 1

2m|v′|2, and |v| = |v′|, so I is true. II is only
true if v is normal to the wall. III is true by the definition
of momentum.

59. A – The only transition that is allowed is A. The others
are forbidden by the selection rules �l = ±1 and�m =
0,±1.

60. C – If the power of radiation emitted by the satellite is
P, then the blackbody temperature is T such that P =
σT4. If the radius of the orbit doubles, then the amount
of radiation received from the Sun decreases by a factor
of 4. In equilibrium, power emitted also decreases by a
factor of 4. This means that the blackbody temperature
must change by a factor of 4−1/4 = 2−1/2 in order to
satisfy P = σT4.

61. E – The particles of gas A and gas B have the same total
mass. By the equipartition theorem, the rms velocity
only depends on the motion of the center of mass of the
molecule, and thus should be the same for gases A and
B. Gas B has rotational degrees of freedom at low tem-
peratures and vibrational degrees of freedom at higher
temperatures, but these only affect the specific heat and
not the rms speed.

62. A – Since angular momentum is always conserved, we
can use it to solve this problem quickly. The moment
of inertia of the disk in the problem about the axis of
rotation is

Idisk = 1
2
Mr2.

The moment of inertia of the person at the edge of the
disk is

Iperson = mr2.

The conservation equation is

Idiskω = (Idisk + Iperson)ω′,

so the change in angular velocity is

�ω = |ω′ − ω| =
∣∣∣∣ Idisk
Idisk + Iperson

− 1
∣∣∣∣ω = 2ωm

M + 2m
.

63. E – The equation for the energy levels of a hydrogen-like
atom with Z protons is

En = Z2(13.6 eV)
n2

.

Calculating the change in energy between the two states
with Z = 2 for helium, we find that the emitted photon
must have energy

�E = 4(13.6 eV)
(
1− 1

4

)
= 40.8 eV.

64. C – The given information suggests that the speed of
a wave on a vibrating string only depends of μ and T,
so by dimensional analysis, the quantity with the correct
units is

c =
√
T
μ
.

In fact, this is the correct answer even up to dimen-
sionless factors, but because the answer choices are of
the “numbers and estimation” type, any such factors are
irrelevant for getting the correct answer. Plugging in the
given numbers,

c =
√
T
μ
=
√
4× 103 N
0.1 kg/m

= 200 m/s,

choice C.
65. A – By symmetry, the force on the test charge at the

center is zero, so I is clearly true. II is false because
the potential from each charge at the corners adds and
is nonzero. III is false for a subtle, but important rea-
son. Earnshaw’s theorem states that any configuration
of electrostatic charges cannot be in stable equilibrium.
The charge at the center is in an unstable equilibrium:
the force vanishes, but if the charge is perturbed in cer-
tain directions, it will move away from the center instead
of returning to its original position.

66. E – The cyclotron radius is given by R = γmv/(qB),
where B is the magnetic field strength and γ is the
Lorentz factor. It’s easy to remember this formula
because it’s identical to the nonrelativistic version,
except with the momentum p = mv replaced by the
relativistic momentum γmv. For v = 0.6c, we have
γ = 5/4 and γ v = 3c/4. For v = 0.8c, γ = 5/3 and
γ v = 4c/3. All other factors cancel out in the ratio, so
the new cyclotron radius is 4c/3

3c/4R = 16R/9.
67. B – Let the initial intensity be I0. The intensity of

unpolarized light is attenuated through a single linear
polarizer by a factor of 2. The emitted light leaving
the first polarizer is now linearly polarized, with inten-
sity I′ = I0/2. Malus’s law gives the intensity I′′ going
through the second filter as

I′′ = I′ cos2 θ = I0
2
cos2 θ .
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For θ = 30◦, we have

I′′ = I0
2

(
3
4

)
= 3

8
I0.

The total attenuation is therefore 3/8.
68. B – Recalling the fundamental commutation relation

[x̂, p̂] = i�, we see that

O = |i�|2 = �
2,

soO is just a constant operator. The expectation value of
a constant in any state is just the value of that constant,
so 〈O〉 = �

2.
69. D – Recall that the inductance L is defined through

�B = LI.

We obtain the magnetic field through the solenoid by
Ampère’s law:

B� = μ0NI.

The magnetic flux through the solenoid interior is

�B = πR2μ0NI
�

,

so the inductance of one wind of the solenoid is

L = πR2μ0N
�

.

Since inductance adds in series, the inductance of N
winds is

L = πR2μ0N2

�
.

70. B – This is a simple application of the thin lens equation.
The first lens satisfies

2
f
= 1

2f
+ 1

q
,

where q is some undetermined position of the image
from the first lens. The second lens satisfies

2
f
= 1

d − q
+ 1

f
.

Solving for d, we obtain

d = 5
3
f .

Note that we implicitly assumed that d > q, oth-
erwise the sign conventions would be different; since
the first equation gives q = 2f /3, this assumption is
self-consistent.

71. B – We can replace the masses connected by the rod
with an effective mass 2m, coupled to a spring of effec-
tive spring constant 2k (one spring pulls while the other
pushes, so the forces add, and are equivalent to a single
spring with constant 2k). This has an identical equation
of motion to a single mass attached to a single spring,
with the usual frequency ω = √2k/2m = √k/m.

72. C – The natural line width is given by the energy–time
uncertainty relation:

�E ∼ �

�t
.

Plugging in numbers, we arrive at �E = 2.2× 10−6 eV,
which is closest to C.

73. A – By definition, a general gauge transformation cor-
responds to changes of the scalar and vector poten-
tials that leave the physical electric and magnetic fields
unchanged. This information alone is sufficient to
answer the question. In case you were wondering, how-
ever, a general gauge transformation corresponds to a
change of the scalar potential by

V → V − ∂f
∂t

,

and a change of the vector potential by

A→ A+∇f ,
where f (r, t) is some real-valued function.

74. C – The energies of the three-dimensional infinite
square well are proportional to n2x+n2y+n2z , where nx, ny,
and nz are positive integers (if n = 0, the wavefunction is
identically zero). The ground state has all of the n’s equal
to 1. The first excited state occurs when one of the n’s is
2, and the others are 1. The second excited state has two
of the n’s equal to 2 and the third equal to 1. (Note that
since 22 + 22 + 12 < 32 + 12 + 12, this state has less
energy than the state where one of the n’s is 3.) There are
three such combinations: (1, 2, 2), (2, 1, 2), and (2, 2, 1).

75. A – Suppose that there is a charge +Q on the surface of
the inner sphere, and a charge of −Q on the surface of
the outer sphere. The potential in the region between the
two spheres is just the potential of a point charge:

V(r) = 1
4πε0

Q
r
.

The potential difference between the two spheres is
therefore

�V = Q
4πε0

(
1
a
− 1

b

)
.
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Because Q = CV , we can read off the capacitance as

C = 4πε0ab
b− a

.

76. E – This can be solved just by dimension counting. The
Hilbert space of a spin-1/2 particle has dimension 2, so
the total Hilbert space of three such distinguishable par-
ticles has dimension 23 = 8. This is true even if we
rearrange the states into linear combinations with def-
inite total spin, which for this problem happens to be
completely unnecessary. Note that the adjective “distin-
guishable” is crucial here: without it, we would have to
worry about symmetry or antisymmetry of the spatial
and spin wavefunctions to satisfy Fermi–Dirac statistics.

77. A – This is a simple application of the lensmaker’s
equation:

1
f
= (n− 1)

(
1
R1

− 1
R2

)
.

Solving for R2, we obtain

R2 =
(

1
R1

− 1
f (n− 1)

)−1
.

Plugging in numbers, we find that R2 = 12.5 cm. Inci-
dentally, since R2 is positive, the corresponding surface
is concave, and we have an example of a convex–concave
lens which happens to have positive curvature (as
opposed to the more common case of a convex–convex
converging lens, which always has positive curvature).

78. B – Let’s define coordinates by setting the time at which
the doors open and close in the garage’s frame to be
t = 0, and letting x be the distance from the front door.
In the frame of the car, the first equation of the Lorentz
transformation gives the time at which the doors open
and close:

t′ = γ
(
t − vx

c2
)
.

The front door therefore closes at time t′1 = 0. The rear
door opens at time t′2 = γ (0 − vl/(c2)) = −γ vl/c2.
Notice, of course, that even though the doors move at
the same instant in the frame of the garage, they do
not move at the same time in the frame of the moving
car. This is a prototypical example of the relativity of
simultaneity.

79. E – This problem requires remembering the basic scal-
ing law for the entropy of an ideal gas,

S = Nk ln
VT3/2

N
+ constants,

in light of the equation of state for an ideal gas PV =
NkT. If the temperature doubles but pressure remains
constant, then volume must also double. So �S1 =
(5/2)Nk ln 2. If temperature doubles but pressure also
doubles, then volume must be constant. The entropy
only changes by �S2 = (3/2)Nk ln 2. Finally, if the tem-
perature is constant, but the volume doubles, then the
entropy only changes by �S3 = Nk ln 2. The correct
order is choice E.

80. D – The equation of motion for a forced oscillator is

mẍ = −kx+ F0 sin(ωt).

This inhomogeneous ODE may look a little daunting at
first, but it is clear that it is solved by a simple solution
of the form

x(t) = A sin(ωt),

which allows us to cancel the sine in the driving force.
This is the so-called “particular solution” to the ODE;
there will be a general solution piece as well, but the
assumptions in the problem allow us to ignore this
“transient” term. Plugging in this ansatz, we obtain

−Amω2 = −Ak+ F0,

and therefore

|A| = F0
|k−mω2| .

Alternatively, just use limiting cases and physical intu-
ition: if the driving force is applied at the resonant fre-
quency

√
k/m of the system, the amplitude should blow

up to infinity. Only choice D satisfies this condition.
81. C – There is no motion along the y- or z-directions, so

these coordinates remain unchanged: y′ = y and z′ =
z. The x′-coordinate, on the other hand, can be found
directly from the Lorentz transformation equations:

x′ = γ (x− vt) = 1√
1− 0.82

(5 m) = 8.33 m.

Choice E may be tempting since it is reminiscent of
Lorentz contraction, but remember that lengths must
be measured using simultaneous events in S′, while the
event in the problem does not occur at t′ = 0.

82. E – This problem involves conservation of energy, which
is pure potential at the top of the ramp but is a combina-
tion of translational and rotational energy at the bottom.
To obtain the rotational energy, recall (from the formula
sheet given at the beginning of the test) that the moment
of inertia of a cylinder rotating about its axis is
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I = 1
2
MR2.

The potential energy at the top of the ramp must be
equal to the sum of the rotational and translational
energy at the bottom of the ramp. Using the rolling-
without-slipping condition v = Rω, we have

Mgh = 1
2
Mv2 + 1

2
Iω2

= 1
2
Mv2 + 1

4
MR2

( v
R

)2
,

gh = 3
4
v2,

v = 2

√
gh
3
.

83. C – The electric field is confined to the xy-plane, so since
the particle starts out in the xy-plane, the electric force
on the particle will certainly keep it in that plane. The
magnetic force will be perpendicular to both B and the
particle’s path, but B is already perpendicular to the xy-
plane, so the magnetic force will act along the vector
perpendicular to the path, which also lies in the xy-plane.
So C is correct. A would be true if there was only a mag-
netic field, D is false because the electric field does work,
and E is false because of the magnetic contribution.

84. B –Without knowing too much about the details of dark
matter, this question can be answered by recognizing
that dark matter, like any other matter, is gravitation-
ally attractive. Choice B is related to the expansion of
the universe, which requires an energy density that is
effectively repulsive: this is dark energy. Choices A, C,
D, and E are all seen as compelling evidence in favor of
the existence of dark matter.

85. B – Both the counting rates follow Poisson statistics,
where the uncertainty on N counts is

√
N. The first

count represents the number of signal + background
events, while the second count with the source removed
represents the number of background-only events. The
uncertainty in the number of signal + background events
is
√
1, 250 events, and the uncertainty in the number

of background events is
√
350. The number of signal

events is obtained by subtracting the background, and
the uncertainty on this count is given by

�N = √
1, 250+ 350 = √

1, 600 = 40.

The rate uncertainty is therefore 4.0 Hz. Note that the
errors add in quadrature, even though we are subtracting
a background, because the two experiments are indepen-
dent: forgetting this would lead to trap answer A.

86. C – While a precise answer to this question can be cal-
culated, it is too laborious to do so during the exam. Just
note that, since the fastest part of the pulse has a time
constant of about 10 ms, it may produce some signal
around (0.01 s)−1 = 100 Hz. The slow part of the pulse
may produce some signal around 10 Hz. We therefore
need a bandwidth of at least 100 Hz, which is closest to
1 kHz, choice C.

87. D – In order to compute a p-value from a χ2 statistic, we
need to know the number of degrees of freedom. The χ2

distribution looks different for each number of degrees
of freedom. I is not relevant for a χ2 test. II and III
are ingredients that together determine the number of
degrees of freedom. Neither alone is sufficient, however.

88. E – The pp cycle of the Sun consists of nine different
nuclear reactions. It is rather fascinating and elegant, but
chances are low that you would need to remember the
details for an exam. Simple logic can lead to the right
answer here, though. As the name suggests, the pp cycle
starts with fusion of protons into heavier elements. The
most natural guess for the nucleus not produced by the
cycle would be the nucleus of highest atomic number,
11C. This turns out to be the correct answer; the nucleus
with the largest number of protons produced in the pp
cycle of the Sun is 8B.

89. D – The partition function of this two-state system is

Z = 1+ e−βε ,

where β = 1/kT. It would be perfectly valid to com-
pute the mean energy using 〈E〉 = −∂ lnZ/∂β , but this
problem is simple enough that, for GRE purposes, direct
computation is faster:

〈E〉 = 1
Z

∑
i

εie−εi/kT

= εe−ε/kT

1+ e−ε/kT

= ε

1+ eε/kT
,

where the last step follows from multiplying numerator
and denominator by eε/kT .

90. C – The Hubble parameter relates the velocity of reced-
ing objects in space to their distance from us through
Hubble’s law, v = H0d. So if H0 were suddenly doubled,
our distance to the objects would be unchanged and the
velocity would have to double. Since redshift is deter-
mined by the velocity at which distant objects travel with
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respect to us, the redshift of these objects would have to
change.

91. D – If the radiation used for interferometry has wave-
length λ, the phase difference caused by a displacement
�x is �φ = 2k�x = 4π�x/λ (the factor of 2 is from
traversing the path twice, once from the satellite to the
ground and again on the return, but since this is an order
of magnitude problem, it won’t really matter). This sug-
gests that we want λ the same order of magnitude as�x,
but slightly larger so that the phase shift does not exceed
2π . If λ = 5 cm, the frequency is ω = c/λ = 6 GHz,
which is closest to choice D.

92. D – Doping a semiconductor adds additional unbound
electrons or holes into the semiconductor by acting as
donors or acceptors. This clearly influences the band
structure somehow, so A is incorrect. B and E are incor-
rect because adding a small amount of dopant should
not turn the semiconductor into a perfect insulator (B)
or a perfect conductor with no band gap (E). C seems
suspect because addingmore free charge carriers should,
if anything, decrease the energy needed for electrons to
excite into the valence band.

93. B – We can get the radial electric field outside the cylin-
der fromGauss’s law, using a Gaussian cylinder of radius
r and length L. This just gives E(2πrL) = σ (2πaL)/ε0,
or

E = aσ
ε0r

.

Integrating from a to some radius r, we obtain a poten-
tial

V(r) = −
∫ r

a
E(r′) dr′ = −aσ

ε0
(ln r − ln a) = aσ

ε0
ln

a
r
.

Be careful with signs! Forgetting the minus sign in the
potential is easy and leads to trap answer A.

94. C – This problem has two short steps: we need to find
the speed of the car at the top of the loop in terms of the
speed at the bottom, and then find what speed is needed
in order for gravity to provide the required centripetal
force. If the speed at the bottom is vb, then the speed vt
at the top of the loop is given by

1
2
mv2b = 2mgR+ 1

2
mv2t .

Canceling the mass and simplifying, we have

v2t = v2b − 4gR.

Setting the gravitational force equal to the centripetal
force at the top of the loop, we have

mg = mv2t
R

,

gR = v2b − 4gR,

vb =
√
5gR

"
√
25 m2/s2

" 5.0 m/s.

If vb is smaller than this critical value, then gravity
provides an extra radial force which causes the car to
accelerate radially; in other words, to fall off the track.
If vb is larger than the critical value, the extra centripetal
force must be provided by the normal force of the track.

95. E – Expanding out the commutator and factoring, we
have [

SxSy, Sy
] = (SxSy)Sy − Sy(SxSy)

= (SxSy)Sy − (SySx)Sy = [Sx, Sy]Sy.

(You could also have used the formula for commutators
of products, [AB,C] = A[B,C]+[A,C]B.) Now applying
the commutation algebra for spin angular momentum,
we have [Sx, Sy] = i�Sz, so the whole commutator is
i�SzSy.

96. B – Since we are not given the form of the potential,
choice E may be tempting. However, Bertrand’s theo-
rem states that the only central potentials that produce
closed noncircular orbits are the Kepler potential and
the harmonic oscillator potential. Any central potential
will have circular orbits at E = Vmin, but the problem
tells us that E > Vmin so the orbit cannot be circu-
lar. We already know that bound orbits of the Kepler
potential with E > Vmin are elliptical. For the harmonic
oscillator, since r2 = x2 + y2 + z2, the coordinates
decouple and the motion is a superposition of three har-
monic oscillators in the three coordinate directions. The
motion must lie in a plane, per the usual arguments
for a central potential, so we can set the amplitude of
the z oscillation to zero and just consider oscillators
in the x- and y-directions. These are sinusoidal, but if
they have different amplitudes and/or phases, they will
produce ellipses. So the nonminimum energy orbits of
a harmonic oscillator are also ellipses, and choice B is
correct.

97. D – The energy stored in a capacitor of capacitance
C at constant voltage is E = 1

2CV
2
0 . The capacitance

with the dielectric inserted is C = κε0a2/d. The “bare”
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capacitance without the dielectric is C = ε0a2/d. The
difference in energy is therefore

�E = (κ − 1)ε0a2V2
0

2d
.

98. A – To obtain the force from the potential energy, we
just take the negative of the gradient:

F(x, y, z) = −∇U = −x̂ ∂

∂x
(Ax)− ŷ

∂

∂y
(
By2
)

+ ẑ
∂

∂z
(C cos z) = −Ax̂− 2Byŷ− C sin zẑ.

99. E – The ground state wavefunction of hydrogen is
spherically symmetric, so we will denote it by ψ(r)
(as we will see, we don’t actually need the functional
form, symmetry is enough to solve this problem as
stated). Defining the z-direction along the direction of
the electric field, the perturbation Hamiltonian is �H =
eE0z = eE0r cos θ , and the first-order correction is
given by∫ ∞

0

∫ 2π

0

∫ π

0
ψ∗(r)ψ(r)(eE0r cos θ)r2 sin θ dθ dφ dr = 0.

However, the θ integral vanishes:∫ π

0
cos θ sin θ dθ = 1

2

∫ π

0
sin 2θ dθ

= −1
4

(cos 2π − cos 0) = 0.

Thus the first-order correction vanishes.
100. D – We want the nonrelativistic limit of the relativistic

Doppler shift, so we Taylor expand for β � 1:

λ′

λ
=
√
1+ β

1− β
= (1+ β)1/2(1− β)−1/2

≈ (1+ β/2)(1+ β/2) ≈ 1+ β .

Thus the Doppler-shifted energy is

E′ = hc
λ′
= hc

λ(1+ v/c)
≈ hc

λ
(1− v/c) = E(1− v/c),

so the energy shift is Ev/c. In fact, this is what we might
have expected from using the nonrelativistic Doppler
shift expression with wave speed c. Note that the sign
of β or v doesn’t matter here since all we care about is
the magnitude of the energy difference.
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EQUATION INDEX

Classical Mechanics
(1.1) x(t) = v0xt + x0, y(t) = −1

2
gt2 + v0yt + y0 (p. 5)

(1.2) v2f − v2i = 2a�x (p. 5)

(1.3) a = v2

r
(p. 5)

(1.4) F = mv2

r
(p. 5)

(1.5) Translational kinetic energy:
1
2
mv2 (p. 7)

(1.6) Rotational kinetic energy:
1
2
Iω2 (p. 7)

(1.7) Gravitational potential energy on Earth: mgh (p. 7)

(1.8) Spring potential energy:
1
2
kx2 (p. 7)

(1.9) �U = −
∫ b

a
F · dl (p. 8)

(1.10) Fgrav = Gm1m2

r2
r̂ (p. 8)

(1.11) F = −∇U (p. 8)

(1.12) v = Rω (p. 9)

(1.13) Einitial +Wother = Efinal (p. 11)

(1.14) W = �KE (p. 11)

(1.15) W =
∫

F · dl (p. 11)

(1.16) L = r× p (p. 13)

(1.17) L = Iω (p. 13)

(1.18) τ = r× F (p. 13)

L = Iω (p. 13)(1.19)

τ = dL
dt

(p. 13)(1.20)

(1.21) Fcentrifugal = −m	2r (p. 14)

(1.22) FCoriolis = −2m�× v (p. 14)

(1.23) I = mr2 (p. 14)

(1.24) I =
∫

r2 dm (p. 14)

(1.25) I = ICM +Mr2 (p. 14)

(1.26) rCM =
∫
r dm
M

(p. 15)

(1.27) rCM =
∑

i rimi

M
(p. 15)

(1.28) L(q, q̇, t) = T − U (p. 16)

(1.29)
d
dt

∂L
∂ q̇

= ∂L
∂q

(p. 17)

(1.30) pi ≡ ∂L
∂ q̇

: momentum conjugate to q (p. 18)

(1.31) H(p, q) =
∑
i

piq̇i − L (p. 18)

H = T + U (if U does not depend explicitly on velocities or

time) (p. 18)(1.32)

(1.33) ṗ = − ∂H
∂q

, q̇ = ∂H
∂p

(p. 18)

(1.34) L = 1
2
mṙ2 + 1

2
mr2φ̇2 − U(r) (p. 20)

(1.35) l = mr2φ̇ (p. 20)

(1.36) V(r) = l2

2mr2
+ U(r) (p. 20)

(1.37) μ = m1m2

m1 +m2
(p. 20)

(1.38) E = T + V = 1
2
mṙ2 + l2

2mr2
+ U(r) (p. 20)

(1.39) F = mẍ = −kx (p. 22)

(1.40) ω =
√

k
m

(p. 22)
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(1.41) x(t) = Aeiωt (p. 22)

(1.42) qk(t) = akeiωt (p. 23)

(1.43) det(Ajk − ω2mjk) = 0 (p. 23)

(1.44) mẍ+ bẋ+ kx = 0 (p. 25)

(1.45) ωR =
√

ω2
0 − 2β2 (p. 25)

(1.46) mẍ = −mgx/L (p. 25)

(1.47) ω =
√
g
L

(p. 25)

(1.48) ω =
√
mgR
I

(p. 26)

(1.49)
v2

2
+ gz + p

ρ
= constant (p. 27)

(1.50) v1A1 = v2A2 (p. 28)

(1.51)
v21
2
+ gz1 + p1

ρ
= v22

2
+ gz2 + p2

ρ
(p. 28)

Electricity and Magnetism
∇ · E = ρ

ε0
(p. 35)(2.1)

∇ × E = 0 (electrostatics) (p. 35)(2.2)

(2.3) FE = qE (p. 35)

(2.4) E = −∇V (p. 35)

(2.5) V(b) = −
∫ b

a
E · dl (p. 36)

(2.6) ∇2V = − ρ

ε0
(p. 36)

(2.7) ∇2V = 0 (empty space) (p. 36)

(2.8) V(r) = 1
4πε0

∫
ρ(r’)
|r− r′|d

3r’ (p. 36)

∮
S
E(r) · dS = Qenc

ε0
(p. 36)(2.9) ∮

C
E(r) · dl = 0 (electrostatics) (p. 36)(2.10)

(2.11) E(r) = q
4πε0r2

r̂ (p. 37)

(2.12) V(r) = q
4πε0r

(p. 37)

(2.13) E = σ

2ε0
n̂ (p. 38)

(2.14) E‖out − E‖in = 0 (p. 40)

(2.15) E⊥out − E⊥in =
σ

ε0
(p. 40)

(2.16) W = 1
2

n∑
i=1

qiV(ri) (p. 42)

(2.17) W = 1
2

∫
ρ(r)V(r)d3r (p. 43)

(2.18) UE = ε0

2

∫
|E|2 d3r (p. 43)

(2.19) Q = CV (p. 43)

(2.20) C = ε0A
d

(parallel-plate capacitor) (p. 44)

(2.21) UC = 1
2
Q2

C
= 1

2
CV2 (p. 44)

∇ · B = 0 (p. 45)(2.22)

∇ × B = μ0J (magnetostatics) (p. 45)(2.23)

∮
S
B · dS = 0 (p. 45)(2.24) ∮

C
B · dl = μ0Ienc (magnetostatics) (p. 45)(2.25)

(2.26) ∇ × A = B (p. 45)

(2.27) FB = qv× B (p. 46)

(2.28) dFB = Idl× B (p. 46)

(2.29) B(r) = μ0I
4π

∫
dl× r̂′
r′2

(p. 46)

(2.30) |B|(2πr) = μ0I =⇒ B = μ0I
2πr

φ̂ (p. 47)

(2.31) B = μ0nI (solenoid) (p. 47)

(2.32) B = μ0NI
2πr

(toroid) (p. 47)

(2.33) B⊥out − B⊥in = 0 (p. 48)

(2.34) B‖out − B‖in = μ0K× n̂ (p. 48)

(2.35) UB = 1
2μ0

∫
|B|2 d3r (p. 48)

(2.36) R = mv
qB

(p. 48)

(2.37) ω = qB
m

(p. 49)

∇ · E = ρ

ε0
(p. 49)(2.38)

∇ · B = 0 (p. 49)(2.39)

∇ × E = − ∂B
∂t

(p. 49)(2.40)

∇ × B = μ0J+ μ0ε0
∂E
∂t

(p. 49)(2.41)
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(2.42) E = −d�B

dt
(p. 50)

(2.43) �21 = M12I1 (p. 50)

(2.44) �B = LI (p. 50)

(2.45) E = −LdI
dt

(p. 51)

(2.46) L = μ0N2A
l

(solenoid) (p. 51)

(2.47) UL = 1
2
LI2 (p. 51)

(2.48) p = qr1 − qr2 = qd (p. 52)

(2.49) p =
∫

rρ(r)d3r (p. 52)

(2.50) V(r) = 1
4πε0

p · r̂
r2

(p. 52)

(2.51) N = p× E (p. 52)

(2.52) U = −p · E (p. 52)

(2.53) m = IA (p. 52)

N = m× B (p. 53)(2.54)

U = −m · B (p. 53)(2.55)

σb = P · n̂ (p. 54)(2.56)

ρb = −∇ · P (p. 54)(2.57)

(2.58) ε0 �→ ε = κε0 (p. 54)

(2.59) C = εA
d
= κ

ε0A
d

(p. 54)

(2.60) c = 1/
√

ε0μ0 (p. 55)

Ẽ(r) = Ẽ0ei(k·r−ωt)n̂ (p. 55)(2.61)

B̃(r) = 1
c
Ẽ0ei(k·r−ωt)(k̂× n̂) (p. 55)(2.62)

(2.63) S = 1
μ0

(E× B) (p. 55)

(2.64) S = 1
2μ0

Re(Ẽ× B̃∗) (p. 55)

(2.65) I = 〈S〉 = 1
2
cε0E20 (p. 55)

(2.66) P = q2a2

6πε0c3
= μ0q2a2

6πc
(p. 56)

(2.67) 〈S〉 =
(

μ0p20ω
4

32π2c

)
sin2 θ

r2
(p. 56)

(2.68) 〈P〉E = μ0p20ω
4

12πc
(p. 56)

(2.69) 〈P〉B = μ0m2
0ω

4

12πc3
(p. 56)

VR = IR (p. 57)(2.70)

VC = Q
C

(p. 57)(2.71)

VL = L
dI
dt

(p. 57)(2.72)

Req =
∑
i

Ri (series) (p. 57)(2.73)

1
Ceq

=
∑
i

1
Ci

(series) (p. 57)(2.74)

Leq =
∑
i

Li (series) (p. 57)(2.75)

1
Req

=
∑
i

1
Ri

(parallel) (p. 57)(2.76)

Ceq =
∑
i

Ci (parallel) (p. 57)(2.77)

1
Leq

=
∑
i

1
Li

(parallel) (p. 57)(2.78)

(2.79) R = ρ�

A
(p. 57)

(2.80)
∑
k

Ik = 0 (p. 57)

(2.81)
∑
k

Vk = 0 (p. 57)

(2.82) P = IV = V2

R
= I2R (p. 57)

(2.83) τRL = L/R (p. 58)

(2.84) τRC = RC (p. 58)

(2.85) ω0 = 1√
LC

(p. 58)

Optics and Waves

(3.1)
∂2f
∂t2

= v2
∂2f
∂x2

(p. 63)

(3.2) f (x, t) = A cos(kx− ωt + δ) (p. 63)

(3.3) λ = 2π
k
, T = 2π

ω
, ω = 2π f (p. 64)

(3.4) ω = vk (p. 65)

Phase velocity:
ω

k
(p. 65)(3.5)

Group velocity:
dω
dk

(p. 65)(3.6)

(3.7) v =
√
T
μ

(p. 65)
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(3.8) ω/k = c/n (for light waves) (p. 65)

(3.9) λ → λ

n
(p. 65)

(3.10) I = I0 cos2 θ (p. 66)

(3.11) θB = arctan
(
n2
n1

)
(p. 66)

Constructive interference ⇐⇒ phase difference

of 2mπ (p. 67)(3.12)

Destructive interference ⇐⇒ phase difference

of (2m+ 1)π (p. 67)(3.13)

(3.14) δ = k�x (p. 67)

Maxima: d sin θ = mλ (p. 67)(3.15)

Minima: d sin θ = (m+ 1/2)λ (p. 67)(3.16)

(3.17) a sin θ = mλ, m = 1, 2, . . . (p. 68)

(3.18) �x = nd (optical path length) (p. 69)

n2 > n1: phase shift of π (p. 69)(3.19)

n2 < n1: no phase shift (p. 69)(3.20)

(3.21) First circular diffraction minimum: D sin θ = 1.22λ (p. 70)

(3.22) Maxima: d sin θ = nλ/2 (p. 70)

Reflection : θi = θr (angle of incidence equals angle of

reflection) (p. 71)(3.23)

Refraction : n1 sin θ1 = n2 sin θ2 (Snell’s law) (p. 71)(3.24)

(3.25) c2 sin θ1 = c1 sin θ2 (p. 71)

(3.26)
1
s
+ 1

s′
= 1

f
(p. 71)

(3.27) f = R/2 (p. 71)

(3.28)
1
f
= (n− 1)

(
1
R1

− 1
R2

)
(p. 71)

Positive distances ⇐⇒ same side as light rays (incoming for s,

outgoing for s′) (p. 71)(3.29)

Negative distances ⇐⇒ opposite side as light rays (incoming for s,

outgoing for s′) (p. 71)(3.30)

(3.31) I ∝ I0 λ−4 a6 (p. 72)

(3.32) f =
(
v+ vr
v− vs

)
f0 (p. 73)

Thermodynamics and Statistical Mechanics

(4.1) pi = e−βEi∑
j e
−βEj

(p. 78)

(4.2) β = 1
kBT

(p. 78)

(4.3) 〈O〉 =
∑
i

piOi (p. 79)

(4.4) pi = e−βEi

Z
(p. 79)

(4.5) Z =
∑
j

e−βEj (p. 79)

(4.6) 〈E〉 =
∑
i

piEi =
∑

i Eie
−βEi

Z
= − ∂

∂β
lnZ (p. 79)

(4.7) S = kB ln	 (p. 79)

(4.8) S = −kB
∑
i

pi ln pi = ∂

∂T
(
kBT lnZ

)
(p. 79)

(4.9) S = NkB
(
ln

V
N
+ 3

2
lnT + 5

2
+ 3

2
ln

2πmkB
h2

)
(p. 80)

(4.10) S = NkB ln
VT3/2

N
+ constants (p. 80)

ZN = 1
N!h3N

∫
e−βH(p1,...pn ;x1,...xn)d3p1(4.11)

· · · d3pnd3x1 · · · d3xn (p. 80)

(4.12)
(
N
M

)
= N!

(N −M)!M! (p. 80)

(4.13) ln(n!) ≈ n ln n− n (p. 80)

(4.14) �U = Q−W (p. 81)

(4.15) �S ≥
∫

δQ
T

(p. 82)

(4.16) PV = NkBT (p. 82)

(4.17) δW = P dV (reversible) (p. 83)

(4.18) δQ = T dS (reversible) (p. 83)

(4.19) �S =
∫

δQ
T

(p. 83)

(4.20) PVγ = constant (p. 83)
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(4.21) dU = TdS− PdV (p. 84)

(4.22) T =
(

∂U
∂S

) ∣∣∣∣
V

(p. 84)

(4.23) P = −
(

∂U
∂V

) ∣∣∣∣
S

(p. 84)

(4.24)
(

∂P
∂S

) ∣∣∣∣
V
= −

(
∂T
∂V

) ∣∣∣∣
S

(p. 84)

dH = TdS+ VdP (p. 84)(4.25)

dA = −SdT − PdV (p. 84)(4.26)

dG = −SdT + VdP (p. 84)(4.27)

(
∂T
∂P

) ∣∣∣∣
S
=
(

∂V
∂S

) ∣∣∣∣
P

(p. 84)(4.28)
(

∂S
∂V

) ∣∣∣∣
T
=
(

∂P
∂T

) ∣∣∣∣
V

(p. 84)(4.29)

−
(

∂S
∂P

) ∣∣∣∣
T
=
(

∂V
∂T

) ∣∣∣∣
P

(p. 84)(4.30)

(
∂Q
∂T

)
V
= CV (p. 84)(4.31)

(
∂Q
∂T

)
P
= CP (p. 84)(4.32)

(4.33)
(

∂Q
∂T

)
V
= ∂U

∂T
(p. 85)

(4.34) CP − CV = NkB (p. 85)

(4.35) Q = mc�T (p. 85)

(4.36) e = 1−
∣∣∣∣QC

QH

∣∣∣∣ (p. 85)

(4.37) e = 1− TC

TH
(p. 85)

(4.38) U = 3
2
NkBT (p. 86)

(4.39) vrms =
√
3kBT
m

(p. 87)

(4.40) c =
√

γ
P
ρ

(p. 87)

(4.41) c =
√

γ
kBT
m

(p. 87)

(4.42) FFD(εi) = 1
e(εi−μ)/kBT + 1

(p. 88)

(4.43) FBE(εi) = 1
e(εi−μ)/kBT − 1

(p. 88)

(4.44) 〈N〉 =
∑
i

g(εi)F(εi) (p. 88)

(4.45) 〈N〉 =
∫

ρ(ε)F(ε) dε (p. 88)

Quantum Mechanics and Atomic Physics

(5.1) 〈A〉 =
∫ ∞

−∞
�∗Â� dx (p. 92)

(5.2)
∫ ∞

−∞
|�(x, t)|2 dx = 1 (p. 92)

(5.3)
∫ ∞

−∞
f (x)∗(Âg(x)) dx =

∫ ∞

−∞
(Âf (x))∗g(x) dx (p. 93)

(5.4) x̂ = x, p̂ = −i� ∂

∂x
(p. 93)

(5.5) cn =
∫ ∞

−∞
fn(x)∗ �(x, t) dx (p. 94)

(5.6) 〈A〉 =
∑
k

λk|ck|2 (p. 94)

(5.7) Inner product of |a〉 and |b〉 ≡ 〈b|a〉 (p. 94)

(5.8) 〈a|b〉 := 〈b|a〉∗ (p. 94)

(5.9) 〈a|Âb〉 := 〈Â†a|b〉 (p. 94)

〈x|f 〉 := f (x)(5.10)

〈f |g〉 :=
∫ ∞

−∞
f (x)∗g(x) dx (p. 94)(5.11)

(5.12) i�
∂

∂t
�(x, t) = Ĥ�(x, t) (p. 95)

(5.13) Ĥ = p̂2

2m
+ V̂(x) = − �

2

2m
∂2

∂x2
+ V̂(x) (p. 95)

(5.14) i�
∂

∂t
�(x, t) = En�(x, t) (p. 95)

(5.15) [x̂p̂] = i� (p. 96)

(5.16) σ 2
Aσ 2

B ≥
(
1
2i
〈[Â, B̂]〉

)2
(p. 97)

(5.17) σ 2
A := 〈A2〉 − 〈A〉2 (p. 97)

(5.18) σxσp ≥ �

2
(p. 97)

(5.19) �x�p ≈ � (p. 97)

(5.20) �E�t ≈ � (p. 97)

(5.21) H = p̂2

2m
+ 1

2
mω2x̂2 (harmonic oscillator) (p. 99)

(5.22) H = �ω

(
a†a+ 1

2

)
(p. 99)

(5.23) [a, a†] = 1 (p. 99)

(5.24) H|n〉 = �ω

(
n+ 1

2

)
|n〉, n = 0, 1, 2, . . . (p. 99)
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(5.25) 〈T〉 = 〈V〉 = En
2

(p. 100)

ψN (x, y, z) = ψn1 (x)ψn2 (y)ψn3 (z); EN =
(
N + 3

2

)
�ω with

N = n1 + n2 + n3 (p. 100)(5.26)

(5.27) ψ(x) = e±ikx, E = �
2k2

2m
(p. 102)

(5.28) p = �k (p. 102)

(5.29) E = �ω (p. 102)

(5.30) H = − �
2

2m
∇2 + V(r) (three dimensions) (p. 105)

(5.31) [x̂, p̂x] = i�, [ŷ, p̂y] = i�, [ẑ, p̂z] = i� (p. 105)

(5.32) [x̂, ŷ] = 0, [x̂, p̂y] = 0, [x̂, p̂z] = 0, . . . (p. 105)

(5.33)
∫ ∞

0
|R(r)|2r2 dr = 1,

∫ 2π

0

∫ π

0
|Y(θ ,φ)|2 sin θ dθ dφ = 1 (p. 105)

L̂x = ŷp̂z − ẑp̂y (p. 105)(5.34)

L̂y = ẑp̂x − x̂p̂z (p. 105)(5.35)

L̂z = x̂p̂y − ŷp̂x (p. 105)(5.36)

(5.37) [L̂x, L̂y] = i�L̂z , and cyclic permutations of x, y, z (p. 105)

(5.38) L̂2 := L̂2x + L̂2y + L̂2z (p. 105)

L̂zYm
l = m�Ym

l (p. 106)(5.39)

L̂2Ym
l = l(l+ 1)�2 Ym

l (p. 106)(5.40)

(5.41) m = l, l− 1, l− 2, . . . ,−l (p. 106)

(5.42)
∫ 2π

0

∫ π

0
(Ym

l (θφ))∗Ym′
l′ (θφ) sin θ dθ dφ = δll′δmm′ (p. 106)

(5.43) H = − �
2

2μ
∇2 − e2

4πε0

1
r

(hydrogen atom) (p. 106)

(5.44) a = 4πε0�
2

μe2
(p. 107)

(5.45) ψ1(r) ∝ e−r/a (p. 107)

(5.46)

−E1 = �
2

2μa2
= μe4

2(4πε0)2�2
= 13.6 eV for hydrogen (p. 107)

(5.47) −En = �
2

2μa2
1
n2

, n = 1, 2, 3, . . . (p. 107)

(5.48) α = e2

4πε0�c
≈ 1/137 (p. 108)

|↑〉x =
1√
2

(
1
1

)
, |↓〉x =

1√
2

(
1
−1
)

(p. 109)(5.49)

|↑〉y =
1√
2

(
1
i

)
, |↓〉y =

1√
2

(
1
−i
)

(p. 109)(5.50)

(5.51) Ŝ+ := Ŝx + iŜy, Ŝ− := Ŝx − iŜy (p. 109)

(5.52) Ŝ+ |↑〉 = 0, Ŝ− |↑〉 = � |↓〉 (p. 109)

(5.53) Ŝ+ |↓〉 = � |↑〉 , Ŝ− |↓〉 = 0 (p. 109)

Spin s and spin s′ : stot = s+ s′,(5.54)

s+ s′ − 1, s+ s′ − 2, . . . , |s− s′| (p. 110)

(5.55) mtot = ms +m′
s′ (p. 110)

(5.56) s = 0,ms = 0 :
1√
2

(|↑〉 |↓〉 − |↓〉 |↑〉) (p. 111)

(5.57) En = E0n + λ
〈
ψ0
n |H′|ψ0

n
〉

(p. 113)

En = E0n + λ2
∑
m�=n

|〈ψ0
m|H′|ψ0

n 〉|2
E0n − E0m

(p. 113)(5.58)

J2 = (L+ S)2

= L2 + 2L · S+ S2

=⇒ L · S = 1
2
(
J2 − L2 − S2

)
(p. 115)(5.59)

(5.60) �H = eE · r (p. 116)

(5.61) �H = e
2m

(L+ 2S) · B (p. 116)

(5.62) I(ω) ∝ hω3

c2
1

e�ω/kBT − 1
(p. 118)

(5.63)
dP
dA

∝ T4 (p. 118)

(5.64) λmax = (2.9× 10−3K ·m)T−1 (p. 118)

Special Relativity

t′ = γ
(
t − v

c2
x
)

(p. 123)(6.1)

x′ = γ (x− vt) (p. 123)(6.2)

(6.3) γ = 1√
1− v2/c2

(p. 124)

t = γ
(
t′ + v

c2
x′
)

(p. 124)(6.4)

x = γ
(
x′ + vt′

)
(p. 124)(6.5)

(6.6) �t = γ�t′ (fixed x′) (p. 124)

(6.7) L′ = γ L (fixed t) (p. 125)
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(6.8) w = v+ u
1+ vu/c2

(p. 125)

(6.9) x0 = ct, x1 = x, x2 = y, x3 = z (p. 125)

(6.10) xμ = (x0, x1, x2, x3) = (ct, x, y, z) (p. 125)

(6.11) β = v/c (p. 125)

(6.12)

⎛
⎜⎜⎜⎝

x0′

x1′

x2′

x3′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x0

x1

x2

x3

⎞
⎟⎟⎠ (p. 125)

Energy–momentum: pμ = (E/c, p) (p. 126)(6.13)

Current density: jμ = (cρ, J) (p. 126)(6.14)

Wavevector: kμ = (ω/c, k) (p. 126)(6.15)

(6.16) p = γmv = mv√
1− |v|2/c2 (p. 126)

(6.17) E0 = mc2 (p. 126)

(6.18) T = E−mc2 (p. 126)

(6.19) E = γmc2 (p. 126)

(6.20) T = (γ − 1)mc2 (p. 126)

(6.21) a · b ≡ a0b0 − a1b1 − a2b2 − a3b3 (p. 126)

Timelike: (�x)2 > 0 (p. 127)(6.22)

Spacelike: (�x)2 < 0 (p. 127)(6.23)

Lightlike or null: (�x)2 = 0 (p. 127)(6.24)

(6.25) E2 = p2c2 +m2c4 (p. 127)

(6.26)
∑
i

pμ
i =

∑
f

pμ

f (p. 127)

(6.27)
λ′

λ
=
√
1+ β

1− β
(p. 129)

β = 0.6 =⇒ γ = 1.25 (p. 129)(6.28)

β = 0.8 =⇒ γ = 5/3 (p. 129)(6.29)

Laboratory Methods

(7.1) σ 2
S =

1
n− 1

n∑
i=1

(xi − x)2 (p. 135)

(7.2) σtot =
√

σ 2
stat + σ 2

sys (p. 135)

σ 2
z =

n∑
i=1

(
∂z
∂xi

)2
σ 2
xi (p. 135)(7.3)

X = x/σ 2
x + y/σ 2

y

1/σ 2
x + 1/σ 2

y
(p. 136)(7.4)

σ 2
tot =

1
1/σ 2

x + 1/σ 2
y

(p. 136)(7.5)

(7.6) P(n) = λne−λ

n! (p. 136)

Capacitor: Z = 1
iωC

(p. 137)(7.7)

Inductor: Z = iωL (p. 137)(7.8)

Resistor: Z = R (p. 137)(7.9)

Series: Ztot = Z1 + Z2 + · · ·Zn (p. 137)(7.10)

Parallel: Z−1tot = Z−11 + Z−12 + · · ·Z−1n (p. 137)(7.11)

A · B = A+ B (p. 139)(7.12)

A+ B = A · B (p. 139)(7.13)

(7.14) Emax = Eγ − φ (p. 140)

(7.15) λ = h
mc

(p. 140)

(7.16) �λ = h
mc

(1− cos θ) (p. 140)

(7.17) N = N0e−t/τ (p. 141)

(7.18) t1/2 = τ ln 2 (p. 141)

(7.19)
1
τ
= 1

τ1
+ 1

τ2
+ · · · (p. 141)

Specialized Topics

(8.1) kF = (3π2n)1/3 (p. 151)

(8.2) EF = �
2

2m
(3π2n)2/3 (p. 151)

(8.3) ρ(E) = V
√
2

π2�3
m3/2√E (p. 151)

(8.4) N =
∫ EF

0
ρ(E) dE (p. 151)

(8.5) ρ(EF) = 3
2
N
EF

(p. 151)
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(8.6) NC ≈ ρ(EF)(kBT) ∼ N
kBT
EF

(p. 151)

(8.7)
λ0

λT
= a(today)

a(T)
(p. 152)

(8.8) v = H0D (p. 152)

(8.9) z(T) = λ0

λT
− 1 (p. 152)
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absorption, 117, 140, 141, 142, 154

AC circuits, 137, 138

accurate measurement, 136

adiabatic process, 83

reversible, 83

adiabatic theorem, 113, 114

alpha particle, 139, 140

Ampère’s law, 45–47

Amperian loop, 46, 47

angular momentum, in classical mechanics,

12–14, 18, 20

angular momentum, in quantum mechanics

addition of, 110, 112

commutation relations, 105

operator, 93, 105–106

orbital, 105–106, 108

angular velocity, 7, 9, 13, 14

annihilation operator, see lowering operator

areal velocity, 21

atomic number, 116, 140, 141, 148

azimuthal quantum number, 106

bandpass filter, 138

baryon, 148

baryon number, 146, 148

BCS theory, 152, 155

beta decay, see decay, beta

binding energy, 139, 140, 163

Biot–Savart law, 46, 47

blackbody, 117

blackbody spectrum, 117, 118, 152, 155

block problems, 1–4, 29–30

blueshift, 129

Bohr radius, 107

Boltzmann statistics, 78

Boolean logic, 138, 139

boost, 125, 126

Bose condensation, 88

Bose–Einstein statistics, 88, 118

boson, 88, 111–112, 118, 146

boundary conditions, 35

electromagnetic waves, 55

electrostatics, 38, 40, 44, 48, 159

Laplace’s equation, 42

magnetostatics, 48

sound waves, 73

wavefunction, 101–103

Bravais lattice, 150

bremsstrahlung, 140, 143

Brewster’s angle, 66

Brillouin zone, 150

bulk modulus, 87

calorimeter, 141

canonical ensemble, 78, 80

capacitance, 27, 43, 44, 57

with dielectrics, 54

capacitor, 43, 44, 57, 136, 137

charging, 58

discharging, 58

energy in, 44

parallel-plate, 44, 54

Carnot cycle, 85–86

center of mass, 8, 14, 15, 15–81

charge density, 36

line, 38

point charge, 36, 52

surface, 40, 48

volume, 39

charge, induced, 40–42

chemical potential, 88

circular orbit, 20–21

Bohr model, 115

clipping, 138

coefficient of friction, 1, 4

commutation relation

canonical, 97, 105

harmonic oscillator, 99, 100

product identities, 97

uncertainty principle and, 97

with Hamiltonian, 98

complex notation, 55, 64

Compton scattering, 140, 141

Compton wavelength, 140, 163

conductor, 40–43, 55, 159

conjugate momentum, 18–20, 148

conservation, 148

angular momentum, 20, 21, 105, 117

baryon number, 148

charge, 57, 148, 149

energy, 7–11, 27, 81, 159

fluid, 28, 29

Kepler’s laws, 21

lepton number, 148, 149

momentum, 12–14, 159

relativistic, 127, 128

Cooper pair, 152

cosmic microwave background, 152, 155, 163

Coulomb’s law, 37, 39

counting statistics, 136

covariant vector, 126

CPT theorem, 149

creation operator, see raising operator

critical damping, 25

crystal, 70, 142, 149–151

current, 49–52, 57, 58

alternating, 136

density, 126

displacement, 50

induced, 50

surface, 48

cyclic coordinate, 18

damping, 24–26

dark matter, 153

de Broglie relation, 64, 102

de Broglie wavelength, 140

De Morgan’s laws, 139

decay, 97, 136, 141, 147–149

alpha, 148

beta, 147–149, 153, 154

excited state, 142

relativistic kinematics of, 127, 128

degeneracy, 88

delta-function potential, 102–104

density of states, 88, 151

deriving formulas, 159–160

dielectric constant, 54

dielectric materials, 54

dimensional analysis, 134, 160–161

diode, 138

diode laser, 142

dipole, 110, 115

electric, 38, 52

electric potential of, 52
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magnetic, 52

moment, 52

radiation from, 56

Dirac notation, 94–95, 109

dispersion relation, 65, 102, 151, 155

light in medium, 65

doping, 141, 151, 154

Doppler effect

nonrelativistic, 72–73

relativistic, 129, 152

transverse, 129

driven oscillations, 24–25, 27

dual lattice, 150

effective potential, 20, 21, 105

eigenfunctions, 92–93, 95, 102

free particle Hamiltonian, 96, 102

properties of, 93–96, 102

simultaneous, 106

three dimensions, 100

eigenvalues, 92–94, 98

angular momentum, 106, 111, 115

energy, 95, 101, 114

spin, 108–109

eigenvectors, 109, 114

Einstein relation, 64, 141

elastic collision, 12, 140, 159

electric dipole, see dipole, electric

electric field, 35, 36

boundaries, 38

capacitors, 43

changing, 50

conductors, 40

infinite line, 38

infinity, 38

matter, 53

point charge, 37

spherical surfaces, 38

electromotive force, 50

electron

configuration, 116

in metals, 150

mass of, 163

elliptical orbit, 21

energy, 7–11, 31

capacitor, 44, 57

charge configuration, 42

electric dipole, 52

electric field, 43

electromagnetic waves, 55

Hamiltonian mechanics, 18

inductor, 51, 57

Lagrangian mechanics, 16, 17

magnetic dipole, 53

magnetic field, 48

orbit, 20–21

rotational kinetic, 7, 9–10, 17, 268

energy, relativistic

kinetic, 126

rest, 126, 130, 159

total, 126, 127

energy–momentum 4-vector, 126

entropy, 79–80, 82, 83, 85

of mixing, 87

equation of state, 82

equipartition theorem, 80, 81, 85, 86

error propagation, see propagation of error

Euler–Lagrange equations, 17–18, 20

exclusion principle, see Pauli exclusion

principle

expectation value, 79

energy, 79, 114

observable, 92, 94, 96, 97, 99, 100, 109

perturbation theory, 113

Faraday’s law, 50

Fermi energy, 151, 152

Fermi surface, 150, 151

Fermi–Dirac statistics, 88

fermion, 87, 88, 111, 112, 147, 148, 150, 152

Feynman, Richard, 159

fine structure

constant, 107

hydrogen, 115, 117

fission, 139, 148

flux

electric, 36

magnetic, 45, 50, 51, 152

force

centrifugal, 14

centripetal, 5–7, 159

conservative, 7, 8, 11

Coriolis, 14

electric, 35

between point charges, 37

electromagnetic (in particle physics), 139,

140, 146, 147

frictional, 1, 4, 11

gravitational, 1, 5, 8, 21, 147, 162

Lorentz, 45, 46, 48

normal, 1, 4, 11

strong nuclear, 147

weak nuclear, 147, 153, 154

free particle, 18, 81, 86, 96, 101–103

free-body diagram, 1–4, 30

frequency, 64

AC circuit, 137

angular, 64

cyclotron motion, 49

harmonic oscillator, 22, 25, 99

friction, 1, 3, 7, 10

fundamental thermodynamic identity, 84

fusion, 148, 154

Galilean transformation, 123

gauge symmetry, 149

Gauss’s law, 36–42, 44

for magnetism, 45, 53

polarized materials, 54

Gaussian integral, 80

Gaussian probability, 135

Gaussian surface, 36, 38–40

gluon, 147, 154

good quantum numbers, 116

graphene, 155

graviton, 147, 154

ground, 40

ground state, 96, 114, 141, 142

energy of helium, 107, 163

energy of hydrogen, 107, 116, 163

energy of positronium, 107

finite square well, 103

harmonic oscillator, 99, 100, 161

hydrogen atom, 107, 115, 117

infinite square well, 101, 102

group velocity, 65

gyromagnetic ratio, 115, 116

half-life, 97, 141

Hamilton’s equations, 18

Hamiltonian

classical mechanics, 16, 18–19

quantum mechanics, 95, 96, 98–103, 105,

106, 110, 113–117, 154

statistical mechanics, 80, 81, 86

harmonic oscillator

classical mechanics, 22–25, 27, 64

quantum mechanics, 81, 99–101, 161

statistical mechanics, 81

heat, 81, 83, 84

heat capacity, see specific heat

heat engine, 85

Heisenberg uncertainty principle, see

uncertainty principle

Hermite polynomial, 99

Hermitian

conjugate, 94, 99, 100

matrix, 109

operator, 92–94, 106, 109

Higgs boson, 149, 154

high-pass filter, 137

Hilbert space, 94, 108, 109, 111

hole, 142, 151, 154

Hooke’s law, 22, 23

Hubble’s law, 152, 155

hydrogen atom, 106, 107, 160, 163

perturbations, 115–117

spectrum, 107

wavefunctions, 107

hydrogenic atom, 107, 116

hyperbolic orbit, 21

hyperfine structure, 115

ideal gas, 83, 84

diatomic, 81–82

entropy, 80, 85, 87

equation of state, see ideal gas law

internal energy, 86

monoatomic, 80, 85–87

specific heat, 85

ideal gas law, 82, 83

identical particles, 111–112
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statistical mechanics, 80, 86–88

images

method of, 42

real, 71

virtual, 71

impedance, 136–138

index of refraction, 65–66, 68, 69

inductance, 50, 57

mutual, 50

self, 50, 51

solenoid, 51

inductor, 57

inertial reference frame, 123, 125–127

inner product, 94–95, 100, 109

insulator, 54, 151

intensity, 55, 64, 66

dipole radiation, 56

interference

constructive, 67

destructive, 67

interferometer, 143–144

invariant dot product, see relativistic dot

product

invariant interval, 126, 127

invariant, relativistic, 127, 128, 130

irreversible process, 83, 84

isentropic process, 83

isobaric process, 83

isochoric process, 83

isothermal process, 83, 85, 86

Kepler’s laws, 21–22

kinematics, 5–7

relativistic, 127

kinetic/potential problems, 8–10

Kirchoff’s rules, 57, 58

Lagrangian, 16–19, 148

Lamb shift, 115

Laplace’s equation, 36, 42

Laplacian, 105, 106

Larmor formula, 56

laser, 141–143

LC circuits, 137, 138

Legendre polynomials, 53, 106

length contraction, see Lorentz contraction

lens, 71–72

lensmaker’s equation, 71

Lenz’s law, 50

lifetime, 97, 141, 147, 148

light, speed of, 55, 65, 66, 71, 123

light-emitting diode (LED), 154

lightlike interval, 127

limiting cases, 161–162, 164

line charge, 38

line integral, 8, 40

log plot, 134–135

logic gates, 138–139

longitudinal wave, 66, 73

Lorentz contraction, 124, 130

Lorentz force law, see force, Lorentz

Lorentz transformation, 123–126, 130

low-pass filter, 137

lowering operator, 99, 109, 111

luminosity, 139

magnetic dipole, see dipole, magnetic

magnetic field, 45

boundaries, 48

induced, 50

matter, 53

motion in constant field, 48

solenoid, 47, 51

time-varying, 49, 50

toroid, 47

wire, 46, 47

work due to, 48

magnetic monopole, 45

magnetization, 79

Maxwell relations, 84

Maxwell’s equations, 35, 36, 38, 40, 45, 49, 65,

66, 69, 159

measurement

error, 135–136

in quantum mechanics, 92–94, 97–98

Meissner effect, 151

meson, 147–149

minimum-ionizing particle, 140

mirror, 71–72, 143

moment of inertia, 8, 9, 13–14, 18, 26, 81

momentum, 12–15

operator, 93, 105

quantum particle, 64, 102

relativistic, 126, 127

multipole expansion, 53

muon, 147–149

neutrino, 147–149, 153–154

node (in circuits), 57

node (of a function), 73, 96

Noether’s theorem, 148

normal mode, 23–24, 159

normalizable, 96, 102–103

normalization, see wavefunction, normalization

nucleus, 139–141, 147–148

observable, 92–94, 109

occupation number, 87, 88

Ohm’s law, 136

op-amp, 138

operator, 93–94

optical path length, 68–69, 143

orbit, 19–22

orbital, 116, 117

orbital angular momentum, see angular

momentum, orbital

orbital quantum number, 106

orthogonal functions, 93–95

orthonormal, 92, 94, 106

overdamping, 25

pair production, 141

parabolic orbit, 21

parallel axis theorem, 14, 160

parity violation, 149

partition function, 79, 80, 86

Pauli exclusion principle, 87, 88, 112, 148, 150,

151

Pauli matrices, 108, 109

pendulum, 5, 19, 25–26

perfect conductor, 55

period, 64

period (orbital), 21

periodic table, 151, 163

phase, 64, 148

current, 137

difference in interference, 67

harmonic oscillator, 22

shift at boundary, 69–70

wavefunction, 93, 112, 154

waves, 64, 142

phase velocity, 65

photoelectric effect, 54, 140, 141

photon, 117, 118, 140–142, 146–148, 152–155

plane wave, 64, 104

Poisson distribution, 136

Poisson waiting time, 136

Poisson’s equation, 36, 42

polarization (of a medium), 54

polarization (of a wave), 55, 66–67, 73

population inversion, 142

positronium, 107

potential

central, 19, 21, 105

chemical, see chemical potential

Coulomb, 37, 106, 107

effective, see effective potential

electric, 35, 36

gravitational, 8, 21

ground, 40

point charge, 37, 38

scalar, 35, 36

uniqueness of, 42

vector, 45

potential energy, 7–9

point charges, 42

Poynting vector, 55, 64

precise measurement, 136

principal quantum number, 107

probability

quantum mechanics, 92–94

reflection, 103–104

statistical mechanics, 78–79

transmission, 103–104

propagation of error, 135–136

propagation vector, see wavevector

quantum statistical mechanics, 87–88

quark, 147–149, 154, 155

radial wavefunction, 105

radiation

blackbody, 117–118
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cosmic microwave background, see cosmic

microwave background

detection, 139–141

dipole, 56, 72

gamma, 148

point charge, 56

recombination, 143

raising operator, 99, 109

Rayleigh criterion, 70

Rayleigh scattering, 72

RC circuits, 58, 137, 138

reciprocal lattice, see dual lattice

reciprocal lattice vector, 150

redshift, 153

cosmological, 152–153, 155

reflection, 70–71

by thin films, 69

reflection coefficient, see probability, reflection

refraction, 70–71

relativistic dot product, 126–127, 127, 128–130

resistance, 57

resistivity, 57, 151

resonant frequency

electrical circuits, 58, 137

mechanical systems, 25

reversible process, 83, 86

adiabatic, 83

rigid rotor, 81

RL circuits, 58

RLC circuits, 58, 137, 138

rotating reference frame, 14

Rydberg formula, 107, 115

sample variance, see variance

scalar potential, see potential, scalar

scattering

classical mechanics, 12

cross section, 139

quantum mechanics, 102–104

Schrödinger equation, 95, 103, 154

secular equation, 23, 24

selection rules, 117

semiconductor, 138, 142, 151, 154

semimajor axis, 21

separation of variables, 105

shell model, 115–116

simultaneity, 124, 127

singlet

color, 147, 148

spin, 111, 115

sky, blueness of, 72

Snell’s law, 55, 70–71

solenoid, 47, 51

sound wave, 65, 71–73, 85, 87

spacelike interval, 127, 152

specific heat, 84–85

speed

light, 55, 65, 66, 71, 123

sound, 65, 87

spherical harmonic, 106–107

spin, 108–112

addition of, 110–111, 148

one-half, 108–109

spin–orbit coupling, 115

spin–spin coupling, 115

square well potential

finite, 101, 103

infinite, 96, 101, 102, 107

three-dimensional, 102, 105

standard deviation, 135, 136

standing wave, 63, 64, 73

Stark effect, 116

stationary state, 95, 96

Stefan–Boltzmann law, 118

Stern–Gerlach experiment, 117

stimulated emission, 141, 142

Stirling’s formula, 80

strong nuclear force, see force, strong nuclear

superconductor, 151–152

superposition

energy eigenstates, 96, 100, 102, 154

oscillations, 23

waves, 55, 63, 64, 67, 102

surface charge, 38, 48

symmetry, 35, 148

cylindrical, 36, 38, 47

discrete, 149

planar, 36

spherical, 20, 36

temperature, 83, 84

blackbody, 117–118, 152

laws of thermodynamics, 81–82

statistical ensembles, 78

thermodynamic definition, 84

thermodynamic equilibrium, 82, 83

thermodynamics, laws of, 81–82

time dilation, 124, 130

time-independent perturbation theory,

113–114

timelike interval, 127

toroid, 47, 48

torque, 13, 117, 162

electric dipole, 52

magnetic dipole, 53

transient effects, 58

transmission coefficient, see probability,

transmission

transpose, 95

transverse wave, 55, 66

triplet state, 111, 112, 115

truth table, 138

tunneling, 104, 148

unbound orbit, 20

uncertainty principle, 96–98, 102, 160

underdamping, 25

uniform circular motion, 5–6, 11, 48, 159, 160

uniqueness of potential, 42

unit cell, 150

conventional, 150

primitive, 150

van der Waals equation, 82

variance, 79, 97, 135–136

variational principle, 114, 163

vector potential, see potential, vector

vector space, 94, 95

velocity addition (relativistic), 125

vibrating string, 65

virial theorem, 100, 153

W boson, 146, 154

wave, 102

electromagnetic, 54

interference and diffraction, 67–70

properties of, 63–67

wave equation, 63–65

electromagnetic, 55

wavefunction, 92–94

antisymmetric, 111, 112, 148

normalization, 92–93, 99–100, 105, 109–111

symmetric, 111, 112, 148

wavelength, 64–66, 73, 118, 129, 152

wavenumber, 64

wavevector, 55, 64, 66, 126, 150, 274

weak nuclear force, see force, weak nuclear

work

moving continuous charge distributions, 43

moving image charges, 42

moving point charges, 42

performed by magnetic fields, 48

work function, 140

work–energy theorem, 5, 11

x-ray, 70, 140, 163

Z boson, 146, 154

Zeeman effect, 116–117
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absorption, 226

adiabatic process, 89, 91, 235, 244, 245

adiabatic theorem, 122

alpha particle, 200, 249

Ampère’s law, 60, 61, 252

Amperian loop, 252

angular momentum

orbital, 213

angular momentum, in quantum mechanics

addition of, 112, 113, 219, 244, 260

commutation relations, 182, 225, 238, 265

operator, 177, 199, 249

atomic number, 264

ballistic pendulum, 236

bandpass filter, 144, 145, 212, 255

baryon, 185, 241

BCS theory, 182, 238

beat frequency, 176, 233

binding energy, 108, 166, 196, 198, 247, 248

Biot–Savart law, 59, 234, 256

blueshift, 132

Bohr radius, 108, 121, 197, 247

Boltzmann statistics, 235

Bose condensation, 91

Bose–Einstein statistics, 89, 179, 236, 260

boson, 239, 260

boundary conditions

electromagnetic waves, 61

electrostatics, 245

Brewster’s angle, 251

Brillouin zone, 156, 157, 201, 249

capacitance, 44, 45, 59, 203, 222, 250, 263

per length, 59

with dielectrics, 54, 61, 166, 265

capacitor

charging, 60, 173

discharging, 58, 62, 190, 206, 216

energy in, 58, 61, 62, 165, 166, 225, 251

parallel-plate, 45, 51, 54, 59

Carnot cycle, 173, 195, 245

Cauchy’s theorem, 158

charge

in circuit, 243

induced, 241

charge density

point charge, 237

surface, 225

volume, 59, 215

chemical potential, 89–91, 180, 237

circular orbit, 33, 172, 175, 230, 255

Bohr model, 122

commutation relation

canonical, 197, 247, 262

product identities, 247, 265

with Hamiltonian, 247

Compton scattering, 198, 248

Compton wavelength, 181, 237

conductor, 56, 61, 181, 185, 230, 231, 238, 246,

257

conjugate momentum, 32, 174, 232

conservation, 120, 179

angular momentum, 31, 32, 233, 236, 245,

248, 259, 261

baryon number, 258

charge, 249, 257

energy, 230, 233, 235, 239, 240, 244, 248,

251–253, 258, 263

fluid, 255

lepton number, 157, 257

momentum, 230, 233, 241, 244, 256

relativistic, 235, 261

cosmic microwave background, 118, 156, 157

crystal, 192, 216

current, 49, 51, 53, 56

displacement, 61

cyclotron motion, 132, 243

damping, 166, 257

dark matter, 224, 264

de Broglie relation, 75

decay, 155–157, 217, 252

alpha, 200

beta, 201, 249

excited state, 118, 122, 184, 207, 252

relativistic kinematics of, 130, 132, 181, 237,

238, 260

degeneracy, 101, 120, 207, 222, 252

delta-function potential, 184, 195

density of states, 90, 91

dielectric, 54, 61, 165, 166, 225, 265

diode, 145

dipole, 53, 61, 166, 171, 176, 184, 230, 240

radiation from, 251

dispersion relation, 76, 175, 186, 232

doping, 225, 265

Doppler effect

nonrelativistic, 77, 251, 266

relativistic, 132, 231, 246, 249, 266

driven oscillations, 27, 263

dual lattice, 217, 249, 257

Earnshaw’s theorem, 261

effective potential, 33, 225, 230, 255

eigenfunctions, 119, 196, 247

eigenvalues

energy, 119, 234, 247

spin, 237

Einstein relation, 75

elastic collision, 132, 171, 192, 220, 230, 261

electric field of dipole, 53

electromotive force, 60, 202, 237, 256

electron

configuration, 118, 121, 190, 213, 219, 243

in metals, 156–158

mass of, 236

elliptical orbit, 194, 255, 265

energy, 31

capacitor, 206, 225, 265

charge configuration, 185, 231

charge in electric field, 194, 245, 246, 252

electric field, 241

Hamiltonian mechanics, 240

inductor, 186

Lagrangian mechanics, 32, 174, 232, 250

magnetic field, 49, 241

orbit, 33, 212, 225, 255, 265

energy, relativistic

kinetic, 131, 133

rest, 119, 238

total, 130–132, 194

entropy, 223, 248

of mixing, 91

equipartition theorem, 90, 230, 261
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Euler–Lagrange equations, 19, 32, 196, 211,

233, 234, 241, 246, 254

expectation value

energy, 114, 173, 184, 191, 231, 240

observable, 108, 120, 186, 199, 202, 218, 219,

221, 249, 262

perturbation theory, 121, 260

Faraday’s law, 51, 60, 256, 260

Fermi energy, 165, 166, 172, 230, 255

Fermi–Dirac statistics, 91

fermion, 90, 91, 122, 232, 236, 251, 255, 260

fine structure

constant, 255

hydrogen, 254

flux

electric, 61, 205, 251

magnetic, 60, 220, 237, 253, 256, 260, 262

force

conservative, 254

electric, 243, 264

between point charges, 44, 221

image charges, 59, 195, 246

frictional, 165, 182, 239, 254, 256

gravitational, 30, 233

Lorentz, 59, 234, 243, 245

magnetic, 264

between wires, 49, 59, 206, 252

Lorentz, 232

strong nuclear, 156, 200, 245

weak nuclear, 157

free particle, 104, 182, 197, 259

free-body diagram, 248

frequency of harmonic oscillator, 33, 166

fusion, 255, 264

Gauss’s law, 238, 247, 257, 265

magnetism, 194, 234, 245

Gaussian probability, 143, 145

gluon, 245

graphene, 175, 232

ground state, 182

harmonic oscillator, 101, 120, 220

helium, 113, 121, 171

hydrogen atom, 108, 122, 226, 266

infinite square well, 114, 122, 184, 221

positronium, 260

group velocity, 74, 76, 186, 241

gyromagnetic ratio, 181

half-life, 143, 145, 196

Hamilton’s equations, 196, 246

Hamiltonian

classical mechanics, 19, 32, 196, 234, 246

quantum mechanics, 98, 114, 177, 191,

195–197, 207, 218, 220, 234, 244, 247,

259, 266

statistical mechanics, 89, 91, 181, 230

harmonic oscillator

classical mechanics, 27, 33, 166, 265

quantum mechanics, 98, 101, 113, 114,

119–121, 175, 195, 212, 220, 232, 255

statistical mechanics, 88–90, 172, 238

Hermitian

conjugate, 119

matrix, 119

operator, 98, 119, 238, 243, 259

Hilbert space, 263

hole, 239, 265

Hooke’s law, 89

Hubble’s law, 224, 264

hydrogen atom

perturbations, 212, 226, 255, 266

spectrum, 108, 184, 189, 220

hydrogenic atom, 108

hyperbolic orbit, 255

ideal gas, 75, 77, 89, 91, 190, 191, 206, 217, 235,

240, 258

diatomic, 88

entropy, 178, 195, 223, 235, 258, 263

monoatomic, 178, 259

specific heat, 89, 91, 235, 259

ideal gas law, 91, 251, 263

images

method of, 59, 231, 246

real, 75, 77

virtual, 75, 77, 244

impulse, 245

index of refraction, 74–77

inductance, 60, 174, 230, 262

self, 60, 208

solenoid, 222, 253

toroid, 51

inertial reference frame, 183, 251

inner product, 119

intensity, 74, 75, 211, 221, 247, 261

invariant, relativistic, 131, 132, 239

irreversible process, 91

isentropic process, 88, 90, 190

isobaric process, 190

isothermal process, 173, 232

Kepler’s laws, 33

kinematics, 30

Lagrangian, 19, 32, 176, 203, 233, 234, 254

Lamb shift, 255

Larmor formula, 251

laser, 144, 145, 208, 219, 253, 260

LC circuits, 145, 171, 243

Legendre transform, 32, 232, 234

lens, 75, 77, 175, 202, 222, 232, 250, 262

lensmaker’s equation, 263

lifetime, 98, 119, 156, 157, 171, 175, 212, 222,

232, 255

light, speed of, 56

line integral, 220, 260

logic gates, 144, 185

longitudinal wave, 186, 241

Lorentz contraction, 132, 263

Lorentz transformation, 130

lowering operator, 120, 239

luminosity, 176, 234

magnetic field, 51

toroid, 49

wire, 49

magnetic monopole, 177, 234

Maxwell’s equations, 59, 245

measurement

error, 207

in quantum mechanics, 112, 113, 121, 122,

213, 243

Meissner effect, 156, 196

meson, 206, 251

minimum ionizing particle, 143, 145

mirror, 75, 77, 192, 244

moment of inertia, 15, 31, 172, 176, 231

momentum, 31–32

relativistic, 132

MOND, 175, 233

muon, 250

neutrino, 155–157, 183, 236, 240, 249

node (of a function), 119, 238, 256

nucleus, 171, 179, 264

observable, 182, 189, 219, 238, 243, 259

occupation number, 91

orbit, 33

orbital, 118, 121, 255

orthogonal functions, 119

orthonormal, 196, 246

oscilloscope, 191

overdamping, 257

pair production, 240

parabolic orbit, 22, 33

parallel axis theorem, 230, 231

particular solution, 263

partition function, 90

Pauli exclusion principle, 122, 182, 241, 251

Pauli matrices, 119, 202, 249

pendulum, 19, 32, 33

perfect conductor, 61, 181, 238

period (orbital), 6, 22

phase

difference in interference, 225, 241, 265

of harmonic oscillator, 265

phase velocity, 186

photoelectric effect, 191, 244

photon, 156, 166, 184, 216, 219, 236, 251, 260,

261

plane wave, 181

Poisson distribution, 145, 239, 252, 264

Poisson’s equation, 237

polarization (of a medium), 181, 238

polarization (of a wave), 74, 181, 186, 241

positronium, 220, 260

potential

central, 33, 172, 225, 230, 265
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gravitational, 121

Pound–Rebka experiment, 157, 158, 241

Poynting vector, 178, 235

probability

reflection, 184, 240

transmission, 104, 120

quark, 156, 157, 183, 185, 194, 206, 241, 245,

251

top, 157, 158

radial wavefunction, 176, 200, 203

radiation

blackbody, 118, 257, 261

detection, 143, 203, 211

dipole, 251

gamma, 179

Rayleigh criterion, 76, 253, 254

Rayleigh scattering, 252

RC circuits, 58, 62

reciprocal lattice vector, 257

redshift, 231, 246

cosmological, 172, 231, 264

reflection, total internal, 77

resonant frequency

electrical circuits, 145, 171, 214, 243

mechanical systems, 263

reversible process, 91, 244

adiabatic, 89, 91, 245, 259

rigid rotor, 186, 242

RLC circuits, 257

rocket, 179, 236

Rydberg formula, 121

scattering cross section, 176, 184

Schrödinger equation, 259

selection rules, 122, 240, 252, 261

semiconductor, 144, 145, 156, 157, 183, 225,

232, 239, 265

separation of variables, 230

simultaneity, 130, 263

singlet, spin, 121

sky, blueness of, 252

Snell’s law, 76, 77

solenoid, 171, 208, 222, 230, 241, 253, 262

sound wave, 74, 75, 77

specific heat, 88

speed

light, 56

sound, 74, 77

spin, 121

addition of, 157, 175, 222, 233, 239, 260, 263

spin–orbit coupling, 255

spin–spin coupling, 239

square well potential

infinite, 104, 114, 122, 173, 184, 191, 221, 244

three-dimensional, 222, 262

standard deviation, 119, 143, 145

standing wave, 181, 202, 250

Stark effect, 244

superconductor, 156, 182, 196, 220, 238, 247

superposition

energy eigenstates, 119, 120, 173

oscillations, 265

waves, 75, 120

symmetry

cylindrical, 254

spherical, 238

temperature of blackbody, 118, 122

terminal velocity, 189, 243

thermodynamic equilibrium, 261

time dilation, 132, 255

timelike interval, 132

toroid, 49, 51, 60, 186, 241

torque on magnetic dipole, 61, 215, 256

total internal reflection, 77

transient effects, 263

triplet state, 121

truth table, 144

tunneling, 200, 249

unbound orbit, 255

uncertainty principle, 119, 120, 236

van der Waals equation, 89

variance, 252

velocity addition (relativistic), 233

virial theorem, 120

wave equation, 74

wave, electromagnetic, 56, 61

wavefunction

antisymmetric, 121

symmetric, 121, 239

wavevector, 61

work, moving point charges, 45, 59

work–energy theorem, 60, 247, 254

x-ray, 254
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