

Current Electricity Test 1

Instructions

Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To des<mark>elect your c</mark>hosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.

collegedunia

1.	 An electrical power line, having a total resistance of 2Ω, de The efficiency of the transmission line is approximately: a. 72% b. 96% c. 91% d. 85% 	elivers 1 kW at 220 V. [Sep. 05, 2020 (I)] Click for Solution	(+4, -1)
2.	Model a torch battery of length l to be made up of a thin radius 'a' and a concentric thin cylindrical shell of radius with an electrolyte of resistivity ρ (see figure). If the batter resistance of value R , the maximum Joule heating in R w a. $R = \frac{2\rho}{\pi l} \ln \left(\frac{b}{a}\right)$ b. $R = \frac{\rho}{\pi l} \ln \left(\frac{b}{a}\right)$ c. $R = \frac{\rho}{2\pi l} \left(\frac{b}{a}\right)$ d. $R = \frac{\rho}{2\pi l} \ln \left(\frac{b}{a}\right)$	cylindrical bar of 'b' filled in between ry is connected to a vill take place for : [Sep 03, 2020 (II)] Click for Solution	(+4, -1)

3. In a building there are 15 bulbs of 45 W, 15 bulbs of 100 W, 15 small fans of **(+4, -1)** 10 W and 2 heaters of 1 kW. The voltage of electric main is 220 V. The minimum fuse capacity (rated value) of the building will be:

a. 2	5A	[Jan 07, 2020 (II)]
b. 1	5 A	Click for Solution
c. 1	0A	
d . 2	0A	

a. 0.20 V

b. 0.25 V

4. In the circuit shown, a four-wire potentiometer is made of a $400 \, cm$ long wire, (+4, -1) which extends between A and B. The resistance per unit length of the potentiometer wire is $r = 0.01 \, \Omega/cm$. If an ideal voltmeter is connected as shown with jockey J at $50 \, cm$ from end A, the expected reading of the voltmeter will be : [Apr 08, 2019 (II)]

Click for Solution

	c. 0.75 V	
	d. 0.50V	
5.	A cell of internal resistance r drives current through an external resistance R . The power delivered by the cell to the external resistance will be maximum when R = 1000 r Glick for Solution b . $R = 0.001 r$ c . $R = 2r$ d . $R = r$	(+4, -1)
6.	A 2W carbon resistor is color coded with green, black, red and brown respectively. The maximum current which can be passed through this resistor is : [Jan 10, 2019 (I)] a. 63 mA b. 0.4 mA c. 100 mA d. 20 mA	(+4, -1)

7. When 5 V potential difference is applied across a wire of length 0.1 m, the drift (+4, -1) speed of electrons is $2.5 \times 10^{-4} ms^{-1}$. If the electron density in the wire is $8 \times 10^{28} m^{-3}$ the resistivity of the material is close to

2015

Click for Solution

Click for Solution

- **a.** $1.6 imes 10^{-8} \Omega \, m$
- **b.** $1.6 imes 10^{-7} \Omega \, m$
- **c.** $1.6 imes 10^{-5} \Omega \, m$
- **d.** $1.6 imes 10^{-6} \Omega m$
- 8. The circuit shown here has two batteries of 8.0 V and 16.0 V and three (+4, -1) resistors 3Ω , 9Ω and 9Ω and a capacitor $5.0\mu F$.

How much is the current I in the circuit in steady state?

- **a.** 1.6 A
- **b.** 0.67 A
- **c.** 2.5 A
- **d.** 0.25 A
- 9. In an experiment to find emf of a cell using potentiometer, the length of null (+4, point for a cell of emf 15V is found to be 60 cm If this cell is replaced by another -1) cell of emf E, the length-of null point increases by 40 cm The value of E is $\frac{x}{10}V$ The value of x is _____

10. In the given circuit, the value of $\left|\frac{I_1+I_3}{I_2}\right|$ is ___ [Feb 01, 2023 (I)] (+4, -1)

Answers

1. Answer: b

Explanation:

 $vi = 10^{3}$ $i = \frac{1000}{220}$ $loss = i^{2}R = \left(\frac{50}{11}\right)^{2} \times 2$ efficiency $= \frac{1000}{1000+i^{2}R} \times 100 = 96\%$

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

2. Answer: d

Explanation:

Maximum power in external resistance is generated when it is equal to internal resistance of battery.

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with **alternating current**.

3. Answer: d

Explanation:

$$\begin{split} &220\,I = P = 15?45 + 15?100 + 15?10 + 2?10^3 \\ &I = \frac{4325}{220} = 19.66 \\ &I \simeq 20\,A \end{split}$$

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

4. Answer: b

Explanation:

Resistance of wire $AB = 400 \times 0.01 = 4\Omega$ $i = \frac{3}{6} = 0.5A$ Now voltmeter reading = i (Resistance of 50 cm length) $= (0.5A)(0.01 \times 50) = 0.25$ volt

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

Explanation:

Current $i = \frac{E}{r+R}$ Power generated in R $P = i^2 R$ $P = \frac{E^2 R}{(r+R)^2}$ for maximum power $\frac{dP}{dR} = 0$ $E^2 \left[\frac{(r+R)^2 \times 1 - R \times 2(r+R)}{(r+R)^4} \right] = 0$ $\Rightarrow r = R$

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

Explanation:

- $P = i^2 R.$
- \therefore for i_{max} , R must be minimum from color coding $R=50 imes10^2\Omega$
- $\therefore i_{max} = 20 \, mA$

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with **alternating current**.

7. Answer: c

Explanation:

The correct answer is C:1.6 imes $10^{-5}\Omega m$ i=neAV $_d$

$$\begin{split} \Rightarrow \frac{V}{R} &= \mathsf{neAV}_d \quad \left\{ R = \frac{\rho l}{A} \right\} \\ \Rightarrow \frac{V \times A}{\rho \ell} &= neAV_d \\ \Rightarrow \frac{5}{\rho \times 0.1} &= 8 \times 10^{28} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-4} \\ \Rightarrow \rho &= 1.56 \times 10^{-5} \,\Omega \,m \\ \Rightarrow \rho &\simeq 1.6 \times 10^{-5} \,\Omega \,m \end{split}$$

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with **alternating current**.

8. Answer: b

Explanation:

In steady state capacitor is fully charged hence no current will flow through line 2. By simplyfing the circuit

Hence resultant potential difference across resistances will be 8.0 V.

Thus current $I = \frac{V}{R} = \frac{8.0}{3+9} = \frac{8}{12}$ or, $I = \frac{2}{3} = 0.67 A$

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with **alternating current**.

9. Answer: 25 - 25

Explanation:

The correct answer is 25.

$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$

$$\frac{1.5}{E_2} = \frac{60}{60+40} = \frac{6}{10} = \frac{3}{5}$$

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with **alternating current**.

10. Answer: 2 - 2

Explanation:

The correct answer is 2.

Concepts:

1. Current Electricity:

<u>Current electricity</u> is defined as the flow of <u>electrons</u> from one section of the circuit to another.

Types of Current Electricity

There are two types of current electricity as follows:

Direct Current

The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.

Alternating Current

