

Electrostatics JEE Main PYQ - 2

Total Time: 25 Minute

Total Marks: 40

Instructions

Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To des<mark>elect your c</mark>hosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.

Electrostatics

1. A capacitor *C* is fully charged with voltage V_0 . After disconnecting the voltage (+4, -1) source, it is connected in parallel with another uncharged capacitor of capacitance $\frac{C}{2}$. The energy loss in the process after the charge is distributed between the two capacitors is :

[Sep. 04,2020 (II)]

a. $\frac{1}{6}CV_0^2$

- **b.** $\frac{1}{2}CV_0^2$
- **C.** $\frac{1}{3}CV_0^2$
- **d.** $\frac{1}{4}CV_0^2$
- 2. A capacitor is made of two square plates each of side 'a' making a very small (+4, -1) angle a between them, as shown in figure. The capacitance will be close to :
 - a. $\frac{\epsilon_0 a^2}{d} \left(1 \frac{\alpha a}{4d}\right)$ b. $\frac{\epsilon_0 a^2}{d} \left(1 + \frac{\alpha a}{d}\right)$ c. $\frac{\epsilon_0 a^2}{d} \left(1 - \frac{\alpha a}{2d}\right)$ d. $\frac{\epsilon_0 a^2}{d} \left(1 - \frac{3\alpha a}{2d}\right)$
- A charge Q is uniformly distributed over a long rod AB of length L as shown in (+4, -1) the figure. The electric potential at the point O lying at distance L from the end A is

a.	$\frac{Q}{8p\varepsilon_0L}$	[Sep. 02, 2020 (II)]
b.	$rac{3Q}{4parepsilon_0 L}$	
C.	$rac{Q}{4parepsilon_0 LIn2}$	
d.	$\frac{Q \ln 2}{4p\varepsilon_0 L}$	

4. A parallel plate capacitor is made of two circular plates separated by a distance of 5 mm and with a dielectric of dielectric constant 2.2 between them. When the electric field in the dielectric is $3 \times 10^4 V/m$, the charge density of the positive plate will be close to

	$\overline{7}$ and $\overline{0}$	
a.	$6 imes 10^{-4} C/m^2$	

- **b.** $3 imes 10^{-7}C/m^2$
- C. $3 imes 10^4\,C/m^2$
- **d.** $6 imes 10^4 \, C/m^2$
- 5. A parallel plate capacitor of capacitance 90 pF is connected to a battery of (+4, -1) emf 20 V. If a dielectric material of dielectric constant $K = \frac{5}{3}$ is inserted between the plates, the magnitude of the induced charge will be :

- 6. A plane electromagnetic wave of frequency 50 MHz travels in free space (+4, -1) along the positive x-direction. At a particular point in space and time, $\vec{E} = 6.3\hat{j}V/m$. The corresponding magnetic field \vec{B} , at that point will be:
- 7. A solid conducting sphere, having a charge Q, is surrounded by an uncharged conducting hollow spherical shell. Let the potential difference

(+4, -1)

(+4, -1)

[2014]

between the surface of the solid sphere and that of the outer surface of the hollow shell be V. If the shell is now given a charge of -4Q, the new potential difference between the same two surfaces is :

	[8 April 2019 I]		
	a. V		
	b. 2V		
	c. -2V		
	d. 4V		
8.	A uniform electric field \vec{E} exists between the plates of a charged condenser. A charged particle enters the space between the plates and perpendicular to \vec{E} . The path of the particle between the plates is a :	(+4, -1	
	[Online April 9, 201	3]	
	a. straight line	1	
	b. hyperbola		
	c. parabola		

- The separation between the plate becomes twice and the space between them **-1**) is filled with a medium of dielectric constant 3.5. Then the capacitance becomes $\frac{x}{4}pF$ The value of x is _____ [31-Jan-2024 Shift 1]
- **10.** When $x = \frac{d}{3}$ then capacitance is $C_1 = 2 \mu F$ then if $x = \frac{2d}{3}$ then capacitance C_2 (+4, will be (in μF).

Answers

1. Answer: a

Explanation:

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C_1 and C_2 can easily get connected in series. When the **capacitor s** are connected in series then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

2. Answer: c

Explanation:

Assume small element dx at a distance x from left end Capacitance for small element dx is

$$egin{aligned} dC &= rac{arepsilon_0 a \, dx}{d+x \, lpha} \ C &= \int\limits_0^a rac{arepsilon_0 a \, dx}{d+x \, lpha} \ &= rac{arepsilon_0 a}{lpha} In \left(rac{1+lpha a}{d}\right) |_0^a \left(In \left(1+x
ight) pprox x - rac{x^2}{2}
ight) \ &= rac{arepsilon_0 a^2}{d} \left(1 - rac{lpha a}{2d}
ight) \end{aligned}$$

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C_1 and C_2 can easily get connected in series. When the **capacito rs are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

3. Answer: d

Explanation:

$$V = \int_{L}^{2L} \frac{kdQ}{x} = \int_{L}^{2L} \frac{k\left(\frac{Q}{L}\right)dx}{x} = \frac{Q}{4p\varepsilon_{0}L} \int_{L}^{2L} \left(\frac{1}{x}\right)dx$$

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C_1 and C_2 can easily get connected in series. When the **capacito rs are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

4. Answer: a

Explanation:

 $egin{aligned} E &= rac{\sigma}{Karepsilon_0} \ \sigma &= Karepsilon_0 E \ &= 2.2 imes 8.85 imes 10^{-12} imes 3 imes 10^4 pprox 6 imes 10^{-7} \, C/m^2 \end{aligned}$

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C₁ and C₂ can easily get connected in series. When the **capacito rs are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

5. Answer: a

Explanation:

$$C' = KC_0$$

$$Q = KC_0V$$

$$Q_{\text{induced}} = Q \left(1 - \frac{1}{K}\right)$$

$$= \frac{5}{3} \times 90 \times 10^{-12} \times 20 \left(1 - \frac{3}{5}\right)$$

$$= 1.2 \, nC$$

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing

ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C_1 and C_2 can easily get connected in series. When the **capacito rs are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

6. Answer: c

Explanation:

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C₁ and C₂ can easily get connected in series. When the **capacito rs are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

7. Answer: a

Explanation:

As given in the first condition : Both conducting spheres are shown

$$\begin{aligned} V_{in} - V_{out} &= \left(\frac{kQ}{r_1}\right) - \left(\frac{kQ}{r_2}\right) \\ &= kQ\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = V \\ V_{in} - V_{out} &= \left(\frac{kQ}{r_1} - \frac{4kQ}{r_2}\right) - \left(\frac{kQ}{r_2} - \frac{4kQ}{r_2}\right) \\ &= \frac{kQ}{r_1} - \frac{kQ}{r_2} \\ &= kQ\left(\frac{1}{r_1} - \frac{1}{r_2}\right) = V \end{aligned}$$

Hence, we also obtain that potential difference does not depend on charge of outer

sphere.

∴ P.d. remains same

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C₁ and C₂ can easily get connected in series. When the **capacito rs are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

8. Answer: c

Explanation:

When charged particle enters perpendicularly in an electric field, it describes a parabolic path $y = \frac{1}{2} \left(\frac{QE}{m}\right) \left(\frac{x}{4}\right)^2$

This is the equation of parabola.

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C_1 and C_2 can easily get connected in series. When the **capacito rs are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

9. Answer: 105 - 105

Explanation:

The correct answer is 105.

 $\begin{array}{l} C_0=\frac{\in_0A}{d}=15pF\\ C=\frac{K\in_0A}{2d}=\frac{3.5}{2}\times 15pF=\frac{105}{4}pF \end{array}$

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C₁ and C₂ can easily get connected in series. When the **capacito rs are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.

10. Answer: 3 - 3

Explanation:

$$egin{aligned} rac{1}{C_{eq}} &= rac{1}{C_{air}} + rac{1}{C_{di}} \ rac{1}{C_{eq}} &= rac{2d}{3(\epsilon_0 A)} + rac{d}{(3)4\epsilon_0 A} = rac{3d}{4A\epsilon_0} \ C_{eq} &= rac{4A\epsilon_0}{3d} = 2\mu F \ rac{A\epsilon_0}{d} &= 1.5\mu F \ rac{1}{C'_{eq}} &= rac{d}{3(\epsilon_0 A)} + rac{2d}{(3)4\epsilon_0 A} = rac{(4+2)d}{12\epsilon_0 A} = rac{6d}{12\epsilon_0 A} \Rightarrow C'_{eq} = 2[rac{\epsilon_0 A}{d}] = 3\mu F \end{aligned}$$

So, the correct answer is 3 µF

Concepts:

1. Electrostatic Potential and Capacitance:

Electrostatic Potential

The potential of a point is defined as the **work done** per unit charge that results in bringing a charge from infinity to a certain point.

Some major things that we should know about electric potential:

- They are denoted by V and are a scalar quantity.
- It is measured in volts.

Capacitance

The ability of a **capacitor** of holding the energy in form of an **electric charge** is defined as capacitance. Similarly, we can also say that capacitance is the storing ability of capacitors, and the unit in which they are measured is "farads".

Read More: Electrostatic Potential and Capacitance

The capacitor is in Series and in Parallel as defined below;

In Series

Both the Capacitors C_1 and C_2 can easily get connected in series. When the **capacit ors are connected in series** then the total capacitance that is C_{total} is less than any one of the capacitor's capacitance.

In Parallel

Both Capacitor C_1 and C_2 are connected in parallel. When the capacitors are connected parallelly then the total capacitance that is C_{total} is any one of the capacitor's capacitance.