

QUESTIONS & SOLUTIONS

SHIFT-1

DATE & DAY: 01st February 2024 & Thursday

PAPER-1

Duration: 3 Hrs. Time: 09:00 - 12:00 IST

SUBJECT: CHEMISTRY

CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

😵 0744-2777777 🛛 🕥 73400 10345 🛛 🎪 contact@resonance.ac.in 🛛 🌐 www.resonance.ac.in 🛛 Follow Us: 🔠 🗹 🗗 in 💟 @ResonanceEdu 🖉 @Resonance_Edu

 61. If one strand of a DNA has the sequence ATGCTTCA, sequence of the base in complementary is: (1) CATTAGCT (2) TACGAAGT (3) GTACTTAC (4) ATGCGACT 62. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as (R). Assertion (A) : Haloalkanes react with KCN to form alkyl cyanides as a main product while with 	TRY
 61. If one strand of a DNA has the sequence ATGCTTCA, sequence of the base in complementary is: (1) CATTAGCT (2) TACGAAGT (3) GTACTTAC (4) ATGCGACT 62. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as (R). Assertion (A) : Haloalkanes react with KCN to form alkyl cyanides as a main product while with 	
 is: (1) CATTAGCT (2) TACGAAGT (3) GTACTTAC (4) ATGCGACT Ans. (2) Sol. Theory based. 62. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as (R). Assertion (A) : Haloalkanes react with KCN to form alkyl cyanides as a main product while with 	strand
 Ans. (2) Sol. Theory based. 62. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as (R). Assertion (A) : Haloalkanes react with KCN to form alkyl cyanides as a main product while with 	
 Sol. Theory based. 62. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as (R). Assertion (A) : Haloalkanes react with KCN to form alkyl cyanides as a main product while with 	
62. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as (R). Assertion (A) : Haloalkanes react with KCN to form alkyl cyanides as a main product while wit	
(R). (R). Assertion (A) : Haloalkanes react with KCN to form alkyl cyanides as a main product while with	Beesen
form isocyanide as the main product. Reason (R) : KCN and AgCN both are highly ionic compounds. In the light of the above statements, choose the most appropriate answer from the options given (1) (A) is correct but (R) is not correct (2) Both (A) and (D) are correct but (C) is not the correct explanation of (A)	h AgCN below :
(2) Both (A) and (R) are correct but (R) is not the correct explanation of (A)	
(4) Both (A) and (R) are correct and (R) is the correct explanation of (A)	
Ans. (1)	
Sol. AgCN is more covalent and replace Halogen by isocyanide group whereas KCN is ionic and rep halogen by cyanide group.	lace
63. In acidic medium, $K_2Cr_2O_7$ shows oxidising action as represented in the half reaction : $Cr_2O_7^{2^-} + XH^+ + Ye^{\Theta} \longrightarrow 2A + ZH_2O$ X, Y, Z and A are respectively are : (1) 8, 6, 4 and Cr_2O_3 (2) 14, 7, 6 and Cr^{3^+} (3) 8, 4, 6 and Cr_2O_3 (4) 14, 6, 7 and Cr^{3^+} Ans. (4)	
Sol $Cr O^{2-} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_{2}O$	
$301. Cl_2O_7 + 1411 + 0e \longrightarrow 2017 + 71120$	
64. Which of the following reactions are disproportionation reactions ? (A) $Cu^+ \rightarrow Cu^{2+} + Cu$ (B) $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + 2H_2O$ (C) $2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$ (D) $2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$	
(1) (A), (B) (2) (B), (C), (D) (3) (A), (B), (C) (4) (A), (D)	
Cilia: Vir Resonance" Resonance" Resonance" Resonance	
Sol. In redux disproportionation reaction same element of same substance get oxidised as well as re	aucea
65. In case of isoelectronic species the size of F ⁻ . Ne and Na ⁺ is affected by :	
 (1) Principal quantum number (n) (2) None of the factors because their size is the same (3) Electron-electron interaction in the outer orbitals (4) Nuclear charge (z) 	
Ans. (4) Resonance Resonance Resonance Resonance Resona	
Sol. For isoelectronic species (10 e⁻) Z ↑ r ↓	

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 555
Tol

Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

(1) Ans. (4) Sol. Great 73. Ionic (A) ho (B) he (C) fre (D) pr (E) se (1) (A (2) (C (3) (B (4) (D) Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) Nz Ans. (3) Sol. On th 75. We ha 0.001 (1) ia Ans. NTA Sol. NaCl I = 1 - in = iz	(2) (2) er the e ⁻ density on benzen reactions with organic comp product bond cleavage eterolytic bond cleavage et	CH ₃ ne ring, faster th pounds proceed olytic bond clear creasing ionic c	(3) CI he rate of EAS reaction d through :	
(1) Ans. (4) Sol. Great 73. Ionic (A) ho (B) he (C) fre (D) pr (E) se (1) (A (2) (C (3) (B (4) (D Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N2 Ans. (3) Sol. On th 75. We ha 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1- in = i2	(2) er the e ⁻ density on benzen reactions with organic componelytic bond cleavage eterolytic bond cleavage er radical formation imary free radical condary; free radical only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc $F_3 < N_2 < SO_2 < K_2O < LiF$ $< SO_2 < CIF_3 < K_2O < LiF$	ne ring, faster th pounds proceed	(3) he rate of EAS reaction d through : vage.	
Ans. (4) Sol. Great 73. Ionic (A) hc (B) he (C) fre (D) pr (E) se (1) (A (2) (C (3) (B (4) (D Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N2 Ans. (3) Sol. On th 75. We ha 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - in = i2	er the e ⁻ density on benzen reactions with organic comp prolytic bond cleavage eterolytic bond cleavage of the bonds in order of inc F ₃ < N ₂ < SO ₂ < ClF ₃ < K ₂ O < LiF	ne ring, fa <mark>ster</mark> ti pounds proceer olytic bond clear creasing ionic c	he rate of EAS reaction d through : vage.	
Ans. (4) Sol. Great 73. Ionic (A) hc (B) he (C) fre (D) pr (E) se (1) (A (2) (C (3) (B Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N ₂ Ans. (3) Sol. On th 75. We have 0.001 (1) ia Ans. NTA (3) Sol. NaCl I = 1 - in = i2	er the e ⁻ density on benzen reactions with organic comp omolytic bond cleavage eterolytic bond cleavage ee radical formation imary free radical condary; free radical condary; free radical) only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc F ₃ < N ₂ < SO ₂ < K ₂ O < LiF	ne ring, faster ti pounds proceed olytic bond clear creasing ionic c	he rate of EAS reaction d through : vage.	
Sol. Great 73. Ionic (A) hc (B) he (C) frequence (C) frequence (D) pr (E) sec (1) (A (2) (C) (3) (B) (4) (D) Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N2 Ans. (3) Sol. On th 75. We have a constant 0.001 (1) ia Ans. NTA (Sol. Sol. NaCl I = 1 - in = iz	reactions with organic component of the endersity on benzen provide the provide the providet the providet the providet the pr	olytic bond clear	vage.	
 73. Ionic (A) hc (B) he (C) fre (D) pr (E) se (1) (A (2) (C (3) (B Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N2 74. Arran (1) Cl (3) N2 75. We have a second secon	reactions with organic component products bond cleavage eterolytic bond cleavage eradical formation imary free radical condary; free radical) only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc $F_3 < N_2 < SO_2 < K_2O < LiF$ $< SO_2 < CIF_3 < K_2O < LiF$	pounds proceer	d through :	
 (A) ho (B) he (C) fred (D) pr (E) see (1) (A (2) (C (3) (B (4) (D (3) (B (4) (D (3) Sol. Ionic 74. Arran (1) Cl (3) N2 Ans. (3) Sol. On th 75. We have a second se	prolytic bond cleavage eterolytic bond cleavage ee radical formation imary free radical condary; free radical) only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc $F_3 < N_2 < SO_2 < K_2O < LiF$ $< SO_2 < CIF_3 < K_2O < LiF$	lytic bond clear	vage.	
(i) iiii (B) he (C) fre (D) pr (E) se (1) (A (2) (C (3) (B Ans. (3) Sol. lonic 74. Arran (1) Cl (3) N ₂ Ans. (3) Sol. On th 75. We have 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - in = iz	eterolytic bond cleavage ee radical formation imary free radical condary; free radical) only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc $F_3 < N_2 < SO_2 < K_2O < LiF$ $< SO_2 < CIF_3 < K_2O < LiF$	olytic bond clear	vage.	
(C) from (D) pro- (E) sec (1) (A (2) (C) (3) (B (4) (D) Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N2 Ans. (3) Sol. On th 75. We have 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - in = i2	the radical formation imary free radical econdary; free radical) only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc $F_3 < N_2 < SO_2 < K_2O < LiF$ $< SO_2 < CIF_3 < K_2O < LiF$	olytic bond clear	vage. character in the molecul	
(D) pr (E) se (1) (A (2) (C (3) (B (4) (D Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N ₂ Ans. (3) Sol. On th 75. We ha 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - in = i2	imary free radical econdary; free radical) only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc F ₃ < N ₂ < SO ₂ < K ₂ O < LiF < SO ₂ < CIF ₃ < K ₂ O < LiF	olytic bond clear	vage. character in the molecul	
(E) se (1) (A (2) (C (3) (B (4) (D Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N ₂ Ans. (3) Sol. On th 75. We have 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - in = i2	econdary; free radical) only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc F ₃ < N ₂ < SO ₂ < K ₂ O < LiF < SO ₂ < CIF ₃ < K ₂ O < LiF	olytic bond clear	vage. character in the molecul	
(1) (A (2) (C (3) (B (4) (D Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N2 Ans. (3) Sol. On th 75. We have 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - in = i2) only) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc F ₃ < N ₂ < SO ₂ < K ₂ O < LiF < SO ₂ < CIF ₃ < K ₂ O < LiF	olytic bond clear creasing ionic c	vage. character in the molecul	
(2) (C (3) (B (4) (D Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) Nz Ans. (3) Sol. On th 75. We ha 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - in = iz) only) only) and (E) only reaction proceed via hetero ge the bonds in order of inc F ₃ < N ₂ < SO ₂ < K ₂ O < LiF < SO ₂ < CIF ₃ < K ₂ O < LiF	olytic bond clear creasing ionic c	vage. character in the molecul	
(3) (B (4) (D (3) Sol. Ionic 74. Arran (1) CI (3) N ₂ Ans. (3) Sol. On th 75. We have 0.001 (1) ia Ans. NTA (Sol. NaCI I = 1 - in = i2) only) and (E) only reaction proceed via hetero ge the bonds in order of inc F ₃ < N ₂ < SO ₂ < K ₂ O < LiF < SO ₂ < CIF ₃ < K ₂ O < LiF	lytic bond clear creasing ionic c	vage. character in the molecul	
(4) (D Ans. (3) Sol. Ionic 74. Arran (1) CI (3) N2 Ans. (3) Sol. On th 75. We have 0.001 (1) ia Ans. NTA (Sol. NaCI I = 1 - in = i2) and (E) only reaction proceed via hetero ge the bonds in order of inc F3 < N2 < SO2 < K2O < LiF < SO2 < CIF3 < K2O < LiF	olytic bond clear	vage. character in the molecul	
Ans. (3) Sol. Ionic 74. Arran (1) Cl (3) N2 Ans. (3) Sol. On th 75. We have a constraint of the second	reaction proceed via hetero ge the bonds in order of inc F3 < N2 < SO2 < K2O < LiF < SO2 < CIF3 < K2O < LiF	lytic bond clear creasing ionic c	vage. character in the molecul	
74. Arran (1) CI (3) N2 Ans. (3) Sol. On th 75. We have a construction of the constr	ge the bonds in order of inc $F_3 < N_2 < SO_2 < K_2O < LiF_2O_2 < SO_2 < CIF_3 < K_2O < LiF_2O_2 < CIF_3 < K_2O < LiF_2O_2 < CIF_3 < K_2O_2 < CIF_3 < K_2O_2 < CIF_2O_2 < CIF$	creasing ionic c	vage. character in the molecul	
 74. Arran (1) CI (3) N2 Ans. (3) Sol. On th 75. We have a structure of the s	ge the bonds in order of inc F3 < N2 < SO2 < K2O < LiF < SO2 < CIF3 < K2O < LiF	creasing ionic c	haracter in the molecul	
(1) CI (3) N2 Ans. (3) Sol. On th 75. We ha 0.001 (1) ia Ans. NTA Sol. NaCl I = 1 - in = i2	$F_3 < N_2 < SO_2 < K_2O < LiF_2 < SO_2 < CIF_3 < K_2O < LiF_2 < SO_2 < CIF_3 < K_2O < LiF_2 < SO_2 < CIF_3 < K_2O < LiF_2 < SO_2 < SO$	sicusing forme o		AS LIF KOU NO SUO AND CIES
(1) Since (3) N2 (3) N2 Sol. On th 75. We have 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - in = i2	$< SO_2 < CIF_3 < K_2O < LiF_3$		$(2) \mid iE < K_2O < C \mid E_3 <$	$< SO_2 < N_2$
Ans. (3) Sol. On th 75. We ha 0.001 (1) ia Ans. NTA Sol. NaCl I = 1 - i1 = i2			(4) $N_2 < CIF_3 < SO_2 <$	$K_2O < LiF$
Sol. On th 75. We ha 0.001 (1) ia Ans. NTA Sol. NaCl I = 1 - i1 = i2			()	ng for better tomorrow
75. We ha 0.001 (1) ia Ans. NTA (Sol. NaCl I = 1 - iı = iz	e basis of electronegative d	lifference.		
75. We ha 0.001 (1) ia Ans. NTA Sol. NaCl l = 1 - i1 = i2				
0.001 (1) i _A Ans. NTA Sol. NaCl I = 1 - i ₁ = i ₂	ave three aqueous solutions	s of NaCl label	ld as 'A', 'b' and 'C' with	concentration 0.1 M, 0.01 M and
(1) IA Ans. NTA (Sol. NaCl I = 1 - i1 = i2	M, respectively. The value	of van t hoff fa	actor(i) for these solution	ns will be in the order :
Sol. NaCl $I = 1 - i_1 = i_2$	< IB < IC (2) IA $< IC$	с < Ів	$(3) I_{A} = I_{B} = I_{C}$	(4) IA > IB > IC
$I = 1 - i_1 = i_2$	Not C^{-}			
$i_1 = i_2$	\rightarrow ind $+$ Ci $(n = 1) \alpha = 1 + (2 = 1) \times 1$	- 2		
11 - 12	$r(11 - 1) = 1 + (2 - 1) \times 1$	= 2		
	- 13 - 2			
76. In Kie	Idahl's method for estimation	on of nitrogen.	CuSO₄ acts as :	
(1) re	ducing agent (2) catal	vtic agent	(3) hydrolysis agent	(4) oxidising agent
Ans. (2)		,	(-)) -) - () - () - ()	
Sol. It is fa	ict.			
77. Given	below are two statements			
State	ment-I : Potassium hydrog	en phthal <mark>ate i</mark> s	a primary standard for	standardisation of sodium
hydro	xide solution.			
State	ment-II : In this titration phe	enolphthalein c	can be used as indicato	Educating for better tomorrow
Re In the	light of the above statemer	nts, choose the	e, most appropriate ans	wer from the options given below
(1) Bo	oth statements I and statem	ent II are corre	ect.	
(2) St	atement I is correct but stat	tement II is inc	orrect.	
(3) St	atement I is incorrect but st	tatement II is c	orrect.	
(4) Bo		ient II are incoi	rrect.	
ANS. (1)	oth statements I and statem			

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🛂 twitter.com/ResonanceEdu

Ph. No.: +91-744-2777777, 2777700 | **FAX No. :** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555 S 7340010333 🛉 facebook.com/ResonanceEdu 🗾 twitter.com/ResonanceEdu

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 **Ph. No.:** +91-744-2777777, 2777700 | **FAX No.:** +91-022-39167222

To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029 Toll Free : 1800 258 5555
Toll Free : 1800 258 5555
Toll Free : 1800 258 5555

REGISTERED & CORPORATE OFFICE (CIN: U80302RJ2007PLC024029)

JEE

(Advanced)

CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005 얓 0744-2777777 🛇 73400 10345 🙀 contact@resonance.ac.in 💮 www.resonance.ac.in 🛛 Follow Us: 🔠 🖬 🕅 @ResonanceEdu 🛛 🚱 @Resonance_Edu