Resonance ${ }^{\circledR}$

Educating for better tomorrow

－$=$（MAIN）
 J頻 2024

QUESTIONS \＆SOLUTIONS

SHIFT－1

DATE \＆DAY：01 ${ }^{\text {st }}$ February 2024 \＆Thursday

PAPER－1
Duration： 3 Hrs．
Time：09：00－12：00 IST

SUBJECT：PHYSICS

SCHOLARSHIP ON THE BASIS OF JEE（MAIN） 2024 \％ILE／AIR
〇 REGISTERED \＆CORPORATE OFFICE（CIN：U80302RJ2007PLC024029）： CG Tower，A－46 \＆52，IPIA，Near City Mall，Jhalawar Road，Kota（Rajasthan）－ 324005

PART : PHYSICS

1. With rise in temperature, the Young's modulus of elasticity
(1) changes erratically
(2) decreases
(3) increases
(4) remains unchanged

Ans. (1)
Sol. Conceptual Base
2. If R is the radius of the earth and the acceleration due to gravity on the surface of earth is $g=\pi^{2} \mathrm{~m} / \mathrm{s}^{2}$, then the length of the second's pendulum at a height $h=2 R$ from the surface of earth will be. :
(1) $\frac{2}{9} m$
(2) $\frac{1}{9} m$
(3) $\frac{4}{9}$
(4) $\frac{8}{9} m$

Ans (4)
Sol. $T=2 \pi \sqrt{\frac{\ell}{g}}$
$g=\frac{G M}{R^{2}}$
$g^{\prime}=\frac{G M}{(R+2 R)^{2}}=\frac{g}{9}$
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \Rightarrow 2=2 \pi \sqrt{\frac{\ell}{\mathrm{~g} / 9}} \Rightarrow \frac{1}{\pi^{2}}=\frac{9 \ell}{\mathrm{~g}}$
$\ell=\frac{1}{9}$ meter
3. In the given circuit if the power rating of Zener diode is 10 mW , the value of series resistance R_{s} to

(1) $5 \mathrm{k} \Omega$
(2) 10Ω
(3) $1 \mathrm{k} \Omega$
(4) $10 \mathrm{k} \Omega$

NTA Ans. (2)
Reso Ans. (Bonus)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol.

$\mathrm{i}=\mathrm{i}_{1}+\mathrm{i}_{2}=\frac{\mathrm{P}_{1}}{\mathrm{~V}_{1}}+\frac{\mathrm{V}_{2}}{1 \mathrm{k} \Omega}$
$\mathrm{i}=5 \mathrm{~mA}+2 \mathrm{~mA}=7 \mathrm{~mA}$
$\therefore \mathrm{Rs}=\frac{8-5}{7} \times 10^{3}=\frac{3}{7} \times 10^{3} \Omega$
nearest answer $=1 \mathrm{k} \Omega$
4. The reading in the ideal voltmeter (V) shown in the given circuit diagram is :

(1) 5 V
(2) 10 V
(3) 0 V
(4) 3 V

Ans. (3)
Sol.

$V=\frac{E_{2} r_{1}-E_{1} r_{2}}{r_{1}+r_{2}}$
$\mathrm{V}=\frac{5 \times 1.8-45 \times 0.2}{1.8+0.2}$
$V=0$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

$\underset{\text { Educating for better tomorrow }}{\text { Res }}$ | JEE(Main) 2024 | DATE : 01-02-2024 (SHIFT-1) | PAPER-1 | PHYSICS

5. Two identical capacitors have same capacitance C. One of them is charged to the potential V and other to the potential 2 V . The negative ends of both are connected together. When the positive ends are also joined together, the decrease in energy of the combined system is :
(1) $\frac{1}{4} \mathrm{CV}^{2}$
(2) $2 \mathrm{CV}^{2}$
(3) $\frac{1}{2} \mathrm{CV}^{2}$
(4) $\frac{3}{4} \mathrm{CV}^{2}$

Ans. (1)

Sol.

6. Two moles a monoatomic gas is mixed with six moles of a diatomic gas. The molar specific heat of the mixture at constant volume is :
(1) $\frac{9}{4} \mathrm{R}$
(2) $\frac{7}{4} R$
(3) $\frac{3}{2} R$
(4) $\frac{5}{2} R$

Ans. (1)
Sol. $\quad C_{v \text { mix }}=C_{V_{\text {mix }}}=\frac{n_{1} C_{V_{1}}+n_{2} C_{V_{2}}}{n_{1}+n_{2}}$
$\mathrm{n}_{1}=2, \mathrm{C}_{\mathrm{v} 1}=\frac{3 R}{2}$ (monoatomic)
$\mathrm{n}_{2}=6, \mathrm{C}_{\mathrm{v} 2}=\frac{5 \mathrm{R}}{2}$ (Diatomic)
$C_{v \text { mix }}=\frac{2 \times \frac{3 R}{2}+6 \times \frac{5 R}{2}}{8}=\frac{3 R+15 R}{8}=\frac{18 R}{8}=\frac{9}{4} R$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu www.youtube.com/resowatch Θ blog.resonance.ac.in
7. A ball of mass 0.5 kg is attached to string of length 50 cm . The ball is rotated on a horizontal circular path about its vertical axis. The maximum tension that the string can bear is 400 N . The maximum possible value of angular velocity of the ball in rad/s is :
(1) 1600
(2) 40
(3) 1000
(4) 20

Ans. (2)
Sol. $\quad T=m g \cos \theta+m \omega^{2} r$
$T_{\text {max }}=m g+m \omega^{2} r$
$\omega=\sqrt{\frac{400-5}{0.5 \times 50 \times 10^{-2}}}=40$
8. A parallel plate capacitor has a capacitance $C=200 \mathrm{pF}$. It is connected to 230 V ac supply with an angular frequency $300 \mathrm{rad} / \mathrm{s}$. The rms value of conduction current in the circuit and displacement current in the capacitor respectively are :
(1) $1.38 \mu \mathrm{~A}$ and $1.38 \mu \mathrm{~A}$
(2) $14.3 \mu \mathrm{~A}$ and $143 \mu \mathrm{~A}$
(3) $13.8 \mu \mathrm{~A}$ and $138 \mu \mathrm{~A}$
(4) $13.8 \mu \mathrm{~A}$ and $13.8 \mu \mathrm{~A}$

Ans. (4)
Sol. $\quad i=\frac{V}{X_{C}}$

$$
\begin{aligned}
& =\omega C V \\
& =200 \times 10^{-12} \times 230 \times 300 \\
& =13.6 \times 10^{-6} \mathrm{~A}
\end{aligned}
$$

9. The pressure and volume of an ideal gas are related as $P^{\frac{3}{2}}=K$ (Constant). The work done when the gas is taken from state $A\left(P_{1}, V_{1}, T_{1}\right)$ to state $B\left(P_{2}, V_{2}, T_{2}\right)$ is :
(1) $2\left(P_{1} V_{1}-P_{2} V_{2}\right)$
(2) $2\left(P_{2} V_{2}-P_{1} V_{1}\right)$
(3) $2\left(\sqrt{P_{1}} V_{1}-\sqrt{P_{2}} V_{2}\right.$
(4) $2\left(P_{2} \sqrt{V_{2}}-P_{1} \sqrt{V_{1}}\right)$

NTA Ans. (1)
Reso Ans. (1) and (2)
Sol. $P V^{\frac{3}{2}}=c$
Work done $=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-x}=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-\frac{3}{2}}=2\left(P_{1} \mathrm{~V}_{1}-P_{2} \mathrm{~V}_{2}\right)$
[Work done by gas]

If work done by external $=2\left(P_{2} V_{2}-P_{1} V_{1}\right)$
10. A galvanometer has a resistance of 50Ω and it allows maximum current of 5 mA . It can be converted into voltmeter to measure upto 100 V by connecting in series a resistor of resistance.
(1) 5975Ω
(2) 20050Ω
(3) 19950Ω
(4) 19500Ω

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol.

$i_{\text {max }}(R+50)=100$
$5 \times 10^{-3}(R+50)=100$
$R+50=20 \times 1000$
$R=19950 \Omega$
11. The de Broglie wavelengths of a proton and an α particle are λ and 2λ respectively. The ratio of the velocities of proton and α particle will be :
(1) $1: 8$
(2) $1: 2$
(3) $4: 1$
(4) $8: 1$

Ans. (4)
Sol. $\lambda=\frac{h}{p}$
$p=\frac{h}{\lambda}$
$\Rightarrow \mathrm{mv}=\frac{\mathrm{h}}{\lambda}$
$\Rightarrow v=\frac{h}{m \lambda}$
$\Rightarrow \frac{v_{p}}{v_{\alpha}}=\frac{m_{\alpha}}{m_{p}} \cdot \frac{\lambda_{\alpha}}{\lambda_{p}}$
$\Rightarrow \frac{v_{p}}{v_{\alpha}}=\frac{4 m}{m} \frac{2 \lambda}{\lambda}$
$\Rightarrow \frac{\mathrm{v}_{\mathrm{p}}}{\mathrm{v}_{\alpha}}=8$
12. 10 divisions on the min scale of a Vernier calliper coincide with 11 divisions on the Vernier scale. If each division on the main scale is of 5 mints, the least count of the instrument is
(1) $\frac{1}{2}$
(2) $\frac{10}{11}$
(3) $\frac{50}{11}$
(4) $\frac{5}{11}$

Ans. (4)
Sol. $L C=\left(1-\frac{n-1}{n}\right) M S D$
$\mathrm{LC}=\left(\frac{1}{11}\right) \times 5=\frac{5}{11}$ unit

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu www.youtube.com/resowatch Θ blog.resonance.ac.in

$\underset{\text { ducating for better tomorrow }}{\text { Res }}$ | JEE(Main) 2024 | DATE : 01-02-2024 (SHIFT-1)| PAPER-1 | PHYSICS

13. In series LCR circuit, the capacitance is changed from C to 4C. To keep the resonance frequency unchanged, the new inductance should be :
(1) reduced by $\frac{1}{4} \mathrm{~L}$
(2) increased by 2 L
(3) reduced by $\frac{3}{4} \mathrm{~L}$
(4) increased to 4L

Ans. (3)
Sol. $\quad W_{r}=\frac{1}{\sqrt{L C}}=$ Constant
LC = Constant

$$
\begin{aligned}
& \text { If } C \rightarrow 4 C \\
& \text { Then } L \rightarrow \frac{L}{4}
\end{aligned}
$$

Reduced by $\frac{3}{4} L$
14. The radius (r), length (ℓ) and resistance (R) of a metal wire was measured in the laboratory as
$r=(0.35 \pm 0.05) \mathrm{cm}$
$R=(100 \pm 10)$ ohm
$\ell=(15 \pm 0.2) \mathrm{cm}$
The percentage error in resistivity of the material of the wire is :
(1) 25.6%
(2) 39.9%
(3) 37.3%
(4) 35.6%

Ans. (2)
Sol. $R=\frac{\rho \ell}{\pi r^{2}}$
$\rho=\frac{\pi r^{2} R}{\ell}$
$\frac{\Delta \rho}{\rho} \times 100 \%=\left(\frac{2 \Delta r}{r} \times 100+\frac{\Delta R}{R} \times 100+\frac{\Delta \ell}{\ell} \times 100\right) \%$
$\frac{\Delta \rho}{\rho} \times 100 \%=2 z+x+y$
$=\left(2 \times \frac{0.05}{0.35}+\frac{10}{100}+\frac{0.2}{15}\right) \times 100$
= 39.9\%

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Rescinancea

15. The dimensional formula of angular impulse is :
(1) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-1}\right]$
(2) $\left[M L^{2} T^{-2}\right]$
(3) $\mathrm{M} \mathrm{L} \mathrm{T}^{-1}$]
(4) $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}\right]$

Ans. (4)
Sol. $\mathrm{L}=\mathrm{mvr}=\left[\mathrm{MLT}^{-1} \mathrm{~L}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
16. A simple pendulum of length I m has a wooden bob of mass 1 kg . It is struck by a bullet of mass $10^{-2} \mathrm{~kg}$ moving with a speed of $2 \times 10^{2} \mathrm{~ms}^{-1}$. The bullet gets embedded into the bob. The height to which the bob rises before swinging back is. (use $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) 0.30 m
(2) 0.20 m
(3) 0.35 m
(4) 0.40 m

Ans. (2)
Sol.

COLM (conservation \& linear momentum)

$$
\begin{aligned}
& 10^{-2} \times 2 \times 10^{2}=\left(1+10^{-2}\right) V \\
& \Rightarrow V \approx 2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

By COE
$\frac{1}{2} m v^{2}=m g h$
$h=\frac{v^{2}}{2 g}=0.2 \mathrm{~m}$
17. A particle moving in a circle of radius R with uniform speed takes time T to complete one revolution. If this particle is projected with the same sped at an angle θ to the horizontal, the maximum height attained by it is equal to $4 R$. The angle of projection θ is then given by :
(1) $\sin ^{-1}\left[\frac{2 g T^{2}}{\pi R^{2} R}\right]^{\frac{1}{2}}$
(2) $\sin ^{-1}\left[\frac{\pi^{2} R}{2 g T^{2}}\right]^{\frac{1}{2}}$
(3) $\cos ^{-1}\left[\frac{2 g T^{2}}{\pi^{2} R}\right]^{\frac{1}{2}}$
(4) $\cos ^{-1}\left[\frac{\pi^{2} R}{2 g T^{2}}\right]^{\frac{1}{2}}$

Ans. (1)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol. $\quad T=\frac{2 \pi R}{v} \Rightarrow v=\frac{2 \pi R}{T}$
$h_{\text {projectile }}=\frac{v^{2} \sin ^{2} \theta}{2 g}$
$h_{\text {max }}=4 R$
$4 R=\frac{\left(\frac{4 \pi^{2} R^{2}}{T^{2}}\right) \sin ^{2} \theta}{2 g}$
$\sin ^{2} \theta=\frac{2 g T^{2}}{\pi^{2} R}$
$\theta=\sin ^{-1}\left(\frac{2 g T^{2}}{\pi^{2} R}\right)^{1 / 2}$
18. Consider a block and trolley system as shown in figure. If the coefficient of kinetic friction between the trolley and the surface is 0.04 , the acceleration of the system in ms^{-2} is :
(Consider that the string is massless and unstretchable and the pulley is also massless and frictionless)

(1) 3
(2) 4
(3) 2
(4) 1.2

NTA Ans. (3)
Reso Ans. (Bonus)
Sol. $\mathrm{a}=\frac{\text { Net force alongstring }}{\text { total mass }}$
$a=\frac{(6 \times 10)-(20 \times 10) \times 0.04}{20+6}$
$a=\frac{52}{26}=2 \mathrm{~m} / \mathrm{s}^{2} \quad$ (Figure doubtful)

Alternate :

As per given figure, solution is
$a=\frac{\text { Net force alongstring }}{\text { total mass }}$
$\mathrm{a}=\frac{60+(6 \times 10)-(20 \times 10) \times 0.04}{20+6}$
$\mathrm{a}=4.3 \mathrm{~m} / \mathrm{s}^{2}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Resconance \mid JEE(Main) 2024 | DATE : 01-02-2024 (SHIFT-1) | PAPER-1 | PHYSICS

19. The minimum energy required by a hydrogen atom in ground state to emit radiation in Balmer series is nearly:
(1) 1.5 eV
(2) 13.6 eV
(3) 1.9 eV
(4) 12.1 eV

Ans. (4)
Sol. H-atom in G.S.
$E_{\text {min }}$ to emit in $n=3$
$\Delta E=E_{3}-E_{1}=-1.51+13.6=12.1 \mathrm{eV}$
20. A monochromatic light of wavelength $6000 \AA$ is incident on the single slit of width 0.01 mm . If the diffraction pattern is formed at the focus of the convex lens of focal length 20 cm , the linear width of the central maximum is :
(1) 60 mm
(2) 24 mm
(3) 120 mm
(4) 12 mm

Ans. (2)
Sol. width $=2 \frac{f \lambda}{d}$
$=2 \frac{0.2 \times 6000 \times 10^{-10}}{0.01 \times 10^{-3}}=\frac{2.4 \times 10^{-7}}{10^{-5}}$
Width $=24 \times 10^{-3}=24 \mathrm{~mm}$
21. A regular polygon of 6 sides is formed by bending a wire of length 4π meter. If an electric current of $4 \pi \sqrt{3} \mathrm{~A}$ is flowing through the sides of the polygon, the magnetic field at the centre of the polygon would be $x \times 10^{-7} \mathrm{~T}$. The value of x is \qquad
Ans. 72
Sol. $\mathrm{d}=\mathrm{a} \cos 30^{\circ}$

$$
=\frac{\sqrt{3} a}{2}
$$

$$
\begin{aligned}
\mathrm{B}_{\mathrm{c}} & =6 \times \frac{\mu_{0} \mathrm{i}}{4 \pi\left(\frac{\sqrt{3} \mathrm{a}}{2}\right)}\left(\sin 30^{\circ}+\sin 30^{\circ}\right) \\
& =6 \times \frac{\mu_{0} \mathrm{i}}{4 \pi \frac{\sqrt{3}}{2} a}=6 \times \frac{\mu_{0} \mathrm{i}}{4 \pi \frac{\sqrt{3}}{2}}\left(2 \times \frac{1}{2}\right)
\end{aligned}
$$

$$
\mathrm{B}_{\mathrm{c}}=\frac{\sqrt{3} \mu_{0} \mathrm{i}}{\pi \mathrm{a}}
$$

$$
=\frac{\sqrt{3} \mu_{0} \times 4 \pi \sqrt{3}}{\pi \times \frac{4 \pi}{6}}=72 \times 10^{-7} \mathrm{~T}
$$

$$
x=72
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Rescnance ${ }_{\text {Educating for better tomorrow }}^{\text {® }}$ | JEE(Main) 2024 | DATE : 01-02-2024 (SHIFT-1)| PAPER-1 | PHYSICS

22. A rectangular loop of sides 12 cm and 5 cm , with its sides parallel to the x-axis and y-axis respectively, moves with a velocity of $5 \mathrm{~cm} / \mathrm{s}$ in the positive x-axis direction, in a space containing a variable magnetic field in the positive z-direction. The field has a gradient of $10^{-3} \mathrm{~T} / \mathrm{cm}$ along the negative x -direction and it is decreasing with time at the rate of $10^{-3} \mathrm{~T} / \mathrm{s}$. If the resistance of the loop is $6 \mathrm{~m} \Omega$, the power dissipated by the loop as heat is \qquad $\times 10^{-9} \mathrm{~W}$.

Ans. 216

Sol.

B_{0} is the magnetic field at origin
$\frac{\mathrm{dB}}{\mathrm{dx}}=\frac{10^{-3}}{10^{-2}}$
$\int_{B_{0}}^{B} d B=-\int_{0}^{x} 10^{-1} d x$
$B-B_{0}=-10^{-1 x}$
$B=\left(B_{0}-\frac{x}{10}\right)$
Motional emf in $A B=0$
Motional emf in $\mathrm{CD}=0$
Motional emf in $\mathrm{AD}=\varepsilon_{\mathrm{i}}=\mathrm{B}_{0} \ell \mathrm{v}$
Magnetic field on rod BC B
$=\left(\mathrm{B}_{0}-\frac{\left(-12 \times 10^{-2}\right)}{10}\right)$
motional emf in $\mathrm{BC}=\varepsilon_{2}=\left(\mathrm{B}_{0}+\frac{12 \times 10^{-2}}{10}\right) \ell \times v$
$\varepsilon_{\text {eqi }}=\varepsilon 2-\varepsilon 1=300 \times 10^{-7}$
For time variation
$\left(\varepsilon_{\text {eqi }}\right)^{\prime}=A \frac{d B}{d t}=60 \times 10^{-7} \mathrm{~V}$
$\left(\varepsilon_{\text {eqi }}\right)_{n e t}=\left(\varepsilon_{\text {eqi }}\right)+\left(\varepsilon_{\text {eqi }}\right)^{\prime}=360 \times 10^{-7} \mathrm{~V}$
Power $=\frac{\left(\varepsilon_{\text {eq }}\right)_{\text {net }}^{2}}{R}=216 \times 10^{-9} \mathrm{~W}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
23. The distance between object and its 3 times magnified virtual image as produced by a convex lens is 20 cm . The focal length of the lens used is \qquad cm .

Ans. 15.00
Sol. $m=\frac{v}{u}=3$
$v=3 u$
$v-u=20 \mathrm{~cm}$
$2 u=20 \mathrm{~cm} \Rightarrow \mathrm{u}=10 \mathrm{~cm}$
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}=-\frac{1}{3 u}=\frac{1}{v}-\frac{2}{3 u}$
$f=\frac{3(10)}{2}=15 \mathrm{~cm}$
24. Two identical charged spheres are suspended by string of equal lengths. The strings make and angle θ with each other. When suspended in water the angle remains the same. If density of the material of the sphere is $1.5 \mathrm{~g} / \mathrm{cc}$, the dielectric constant of water will be \qquad (Take density of water $=1 \mathrm{~g} / \mathrm{cc}$)

Ans. 03.00
Sol. $\quad \tan \theta=\frac{F_{E}}{\rho v g}$
θ is same
$\therefore \frac{F_{E}}{\rho V g}=\frac{F_{E}^{\prime}}{\left(\rho-\rho_{w}\right) V g}$
$\Rightarrow \frac{F_{E}}{(1.5)}=\frac{F_{E}}{K(1.5-1)} \Rightarrow K=3$
25. The radius of a nucleus of mass number 64 is 4.8 Fermi. Then the mass number of another nucleus having radius of 4 Fermi is $\frac{1000}{x}$, where x is \qquad -

Ans. 27.00
Sol. Density of nucleus is constant
$\therefore \frac{\text { mass }}{\text { volume }}=\frac{\text { Atomic number }}{R^{3}}=$ constant
$\therefore \frac{\mathrm{A}_{1}}{\mathrm{R}_{1}^{3}}=\frac{\mathrm{A}_{2}}{\mathrm{R}_{2}^{3}}$
$\Rightarrow \quad A_{2}=\left(\frac{R_{2}}{R_{1}}\right)^{3} A_{1}$
$\Rightarrow \quad \mathrm{A}_{2}=\left(\frac{4}{4.8}\right)^{3} 64$
$\Rightarrow \quad \mathrm{A}_{2}=37.037=\frac{1000}{\mathrm{x}} \Rightarrow \mathrm{x}=27$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
26. The identical spheres each of mass 2 M are placed at the corners of a right angled triangle with mutually perpendicular sides equal to 4 m each. Taking point of intersection of these two sides as origin, The magnitude of position vector of the centre of mass of the system is $\frac{4 \sqrt{2}}{x}$ where the value of x is \qquad
Ans. 03.00
Sol. $\quad \vec{r}_{\mathrm{cm}}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+m_{3} \vec{r}_{3}}{m_{1}+m_{2}+m_{3}}=\frac{2 M(4 \hat{i})+2 M(4 \hat{j})+2 M(0)}{2 M+2 M+2 M}$
$\vec{r}_{c m}=\frac{4}{3} \hat{i}+\frac{4}{3} \hat{j}$
$|\vec{r}|=\frac{4 \sqrt{2}}{3}$
$x=3$
27. A tuning fork resonates with a sonometer wire of length 1 m stretched with a tension of 6 N . When the tension in the wire is changed to 54 N . The same tuning fork produces 12 beats per second with it. The frequency of the tuning fork is \qquad Hz .
Ans. 06.00

Sol.

$f=\frac{1}{2} \sqrt{\frac{T}{\mu}}$
$f_{1}=\frac{1}{2} \sqrt{\frac{6}{\mu}} \quad f_{2}=\frac{1}{2} \sqrt{\frac{54}{\mu}}$
$\frac{f_{1}}{f_{2}}=\frac{1}{3}$
$f_{2}-f_{1}=12$
$f_{2}=3 f_{1}$
$3 f_{1}-f_{1}=12$
$\mathrm{f}_{1}=6 \mathrm{~Hz}$
28. A plane is in level flight at constant speed and each of its two wings has an area of $40 \mathrm{~m}^{2}$. If the speed of the air is $180 \mathrm{~km} / \mathrm{h}$ over the lower wing surface and $252 \mathrm{~km} / \mathrm{h}$ over the upper wing surface, the mass of the plane is \qquad kg . (Take air density to be $1 \mathrm{~kg} \mathrm{~m}^{-3}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
Ans. 9600

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol. $A=40 \mathrm{~m}^{2} \quad$ Total area $=80 \mathrm{~m}^{2}$
$F=\frac{1}{2} \times \rho\left(V_{1}^{2}-V_{2}^{2}\right) A_{\text {total }}$
$\mathrm{mg}=\frac{1}{2} \times 1 \times\left(70^{2}-50^{2}\right) \times 80$
$\mathrm{mg}=96000$
$\mathrm{m}=9600 \mathrm{~kg}$
29. The current in a conductor is expressed as $I=3 t^{2}+4 t^{3}$, where I is in Ampere and t is in second. The amount of electric charge that flows through a section of the conductor during $t=1 \mathrm{sec}$ to $t=2 \mathrm{sec}$ is
\qquad C.

Ans. 22.00
Sol. $\quad \mathrm{I}=\frac{\mathrm{dQ}}{\mathrm{dt}}=3 \mathrm{t}^{2}+4 \mathrm{t}^{3}$
$\int d Q=\int_{1}^{2}\left(3 t^{2}+4 t^{3}\right) d t$
$Q=\frac{3 t^{3}}{3}+\left.\frac{4 t^{4}}{4}\right|_{1} ^{2}=\left.\left(t^{3}+t^{4}\right)\right|_{1} ^{2}$
$=(8+16)-(1+1)$
$=24-2=22 C$
30. A particle is moving in one dimension (along x axis) under the action of a variable force. It's initial position was 16 m right of origin. The variation of its position (x) with time (t) is given as $x=-3 t^{3}+18 t^{2}+16 t$, where x is in m and t is in s . The velocity of the particle when its acceleration becomes zero is \qquad m / s.

Ans. 52.00
Sol. $\quad x=-3 t^{3}+18 t^{2}+16 t$
$v=-9 t^{2}+36 t+16$
$a=-18 t+36$
$\mathrm{a}=0$ when $\mathrm{t}=2 \mathrm{sec}$
$t=2, \quad v=-9(2)^{2}+36(2)+16$
$\mathrm{v}=52 \mathrm{~m} / \mathrm{s}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu www.youtube.com/resowatch Θ blog.resonance.ac.in

Educating for better tomorrow

《JEE (Advanced) 2023 RESULT

JEE (Main) 2023 RESULT

22 वर्षो सो लगातार... श्रेष्ठ शिक्षण, श्रेष्ठ परिणाम...
6 AlRs in TOP-50

$\text { AIR } 5$	$\text { AIR } 26$	$\text { AIR } 29$	$\text { AIR } 31$	$\operatorname{AIR} 34$	$\text { AIR } 50$
300/300 Marks	100\%ile	100\%ile	100\%ile	100\%ile	100\%ile (Maths)
KAUSHAL VIAAVERGITA	SOHAM DAS	ASHIK STENYY	KRISH GUPTA	MAYANK SONI	HARSHAL LaSOD

§ REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029) CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

