

SHIFT-2

DATE \& DAY: 01 ${ }^{\text {st }}$ February 2024 \& Thursday

PAPER - 1

Duration: 3 Hrs.
Time: 03:00 PM - 06:00 PM

SUBJECT: CHEMISTRY

ADMISSIONS OPEN FOR CLASS 12+

SCHOLARSHIP ON THE BASIS OF JEE (MAIN) 2024 \%ILE/AIR
〇 REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029): CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

PART : CHEMISTRY

61. In the given reaction identify A and B.

$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}+\mathrm{H}_{2} \xrightarrow{\mathrm{Na} / \text { Liquid } \mathrm{H}_{3}} " \mathrm{~B} "$
(1) A : n-Pentane
B: Cis-2-Butene
(2) A : 2-Pentyne
B : Cis-2-Butene
(3) A : n-Pentane
B : trans-2-Butene
(4) A : 2-Pentyne
B : trans-2-Butene

Ans. (4)
Sol. Pd / C cause syn hydrogenation of alkyne to cis alkene whereas H_{2} in $\mathrm{Na} / \mathrm{NH}_{3}(\mathrm{I})$ cause anti hydrogenation of alkyne to trans alkene.
62. Solubility of calcium phosphate (molecular mass M) in water is W g , per 100 ml . at $25^{\circ} \mathrm{C}$ It's solubility products at $25^{\circ} \mathrm{C}$ will be approximately.
(1) $10^{7}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{3}$
(2) $10^{3}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{5}$
(3) $10^{7}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{5}$
(4) $10^{5}\left(\frac{\mathrm{~W}}{\mathrm{M}}\right)^{5}$

Ans. (3)
Sol. $\quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \longrightarrow 3 \mathrm{Ca}^{+2}+2 \mathrm{PO}_{4}{ }^{3-}$
3 S
$\mathrm{S} \rightarrow \mathrm{Mol} / \mathrm{L}$
$S=\frac{10 \mathrm{~W}}{\mathrm{M}}$
$=(3 S)^{3} \times(2 S)^{2}$
$=\left(\frac{10 W}{M}\right)^{3} \times\left(\frac{10 W}{M}\right)^{2} \times 3^{3} \times 2^{2}$
$=108 \times 10^{5} \times\left(\frac{W}{M}\right)^{5}$
$\approx 100 \times 10^{5} \times\left(\frac{W}{M}\right)^{5} \approx 10^{7} \times\left(\frac{W}{M}\right)^{5}$
63. Given below are two statements :

Statement (I): SiO_{2} and GeO_{2} are acidic while SnO and PbO are amphoteric nature.
Statement (II) : Allotropic forms of carbon are due to property of catenation and $p \pi-d \pi$ bonds.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is false but Statement II is true.
(2) Both Statement I and Statement II are false.
(3) Both Statement I and Statement II are true.
(4) Statement I is true but Statement II is false.

Ans. (4)
Sol. Graphite has $p \pi-p \pi$ bonds.
64. The set of meta directing functional groups from the following sets is :
(1) $-\mathrm{CH}_{2},-\mathrm{NH}_{2},-\mathrm{NHR},-\mathrm{OCH}_{3}$
(2) $-\mathrm{CN},-\mathrm{CHO},-\mathrm{NHCOCH}_{3},-\mathrm{COOR}$
(3) $-\mathrm{NO}_{2},-\mathrm{NH}_{2},-\mathrm{COOH},-\mathrm{COOR}$
(4) $-\mathrm{NO}_{2},-\mathrm{CHO},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{COR}$

Ans. (4)
Sol. $-\mathrm{NO}_{2},-\mathrm{CHO},-\mathrm{C}-\mathrm{R},-\mathrm{SO}_{3} \mathrm{H}$ groups exhibit strong -M and -I effect, and they are meta directing groups.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

65. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$ are respectively known as :
(1) Inner orbital Complex, Spin paired Complex
(2) Spin paired Complex, Spin free Complex
(3) Spin free Complex, Spin paired Complex
(4) Outer orbital Complex, Inner orbital Complex

Ans. (2)
Sol. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3} \mathrm{~d}^{6}$ system $\left\{\mathrm{t} 2 \mathrm{~g}^{2,2,2,}, \mathrm{eg}^{00},\right\}, \mathrm{d}^{2} \mathrm{sp}^{3}$ hybridization $\{i n n e r$ orbital complex $\}$, spin paired complex. $\left[\mathrm{CoF}_{6}\right]^{3-}$, d^{6} system $\left\{\mathrm{t}_{2} \mathrm{~g}^{2,1,1}, \mathrm{eg}^{1,1}\right\}, \mathrm{sp}^{3} \mathrm{~d}^{2}$ \{outer orbital complex\}, spin free complex.
66. The transition metal having highest $3^{\text {rd }}$ ionisation enthalpy is :
(1) Mn
(2) Fe
(3) Cr
(4) V

Ans. (1)
Sol. (1) $\mathrm{Mn}-[\mathrm{Ar}] 3 \mathrm{~d}^{5}, 4 \mathrm{~s}^{2}$ (3 $3^{\text {rd }}$ electron)
(2) $\mathrm{Fe}-[\mathrm{Ar}] 3 \mathrm{~d}^{6}, 4 \mathrm{~s}^{2}$
(3) $\mathrm{Cr}-[\mathrm{Ar}] 3 \mathrm{~d}^{5}, 4 \mathrm{~s}^{1}$
(4) $V-[A r] 3 d^{3}, 4 s^{2}$
67. Match list-I with List-II.

List - I

Compound
(A) Carbon tetrachloride
(B) Methylene chloride
(C) DDT
(D) Freons

List - II
 Use

(I) Paint Remover
(II) Refrigerators and air conditioners
(III) Fire extinguisher
(IV) Non Biodegradable insecticide

Choose the correct from the options given below :
(1) (A) - (II), (B) - (III), (C) - (I), (D) - (IV)
(2) (A) - (III), (B) - (I), (C) - (IV), (D) - (II)
(3) (A) - (I), (B) - (II), (C) - (III), (D) - (IV)
(4) (A) - (IV), (B) - (III), (C) - (II), (D) - (I)

Ans. (2)
68. Match List-I with List-II.

List-I Reactants

(A) Phenol, Zn / Δ
(B) Phenol, $\mathrm{CHCl}_{3}, \mathrm{NaOH}, \mathrm{HCl}$
(C) Phenol, $\mathrm{CO}_{2}, \mathrm{NaOH}, \mathrm{HCl}$
(D) Phenol, Conc. HNO_{3}

List-II

Product
(I) Salicylaldehyde
(II) Salicylic acid
(III) Benzene
(IV) Picric acid

Choose the correct answer from the options given below :
(1) (A) - (IV),
(B) - (I), (C) - (II),
(D) - (III)
(2) (A) - (III), (B) - (I), (C) - (II), (D) - (IV)
(3) (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
(4) (A) - (III), (B) - (IV), (C) - (I), (D) - (II)

Ans. (2)
69. Given below are two statements:

Statement (I): Dimethyl glyoxime forms a six-membered covalent chelate when treated with NiCl_{2} solution in presence of $\mathrm{NH}_{4} \mathrm{OH}$.
Statement (II) : Prussian blue precipitate contains iron both in $(+2)$ and (+3) oxidation states.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is false but Statement II is true. (2) Both Statement I and Statement II are true.
(3) Statement I is true but Statement II is false. (4) Both Statement I and Statement II are false.

Ans. (1)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Sol.

H -bonded rings are six membered, covalent bonded rings are five membered.
S-II : $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$
70. $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \xrightarrow{\text { alc. } \mathrm{KOH}} \mathrm{A} \xrightarrow[\mathrm{CCl}_{4}]{\mathrm{Br}_{2}} \mathrm{~B} \xrightarrow[\text { Excess }]{\mathrm{KCN}} \mathrm{C} \xrightarrow[\text { Excess }]{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{D}$

Acid (D) formed in above reaction is:
(1) Malonic acid
(2) Oxalic acid
(3) Succinic acid
(4) Gluconic acid

Ans. (3)

Sol.

Ans. (3)
Sol. Lassaigne's test is generally used for the detection of N, S, P and halogen in organic compound.
72. The strongest reducing agent among the following is :
(1) SbH_{3}
(2) NH_{3}
(3) BiH_{3}
(4) PH_{3}

Ans. (3)
Sol. In periodic table, on moving down the group the reducing power increases so, BiH_{3} has highest reducing power.
73. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R) Assertion (A) : In aqueous solution Cr^{2+} is reducing while Mn^{3+} is oxidising in nature.
Reason (R): Extra stability to half filled electronic configuration is observed than incompletely filled electronic configuration.
In the light of the above statements, choose the most appropriate answer from the option given below :
(1) (A) is true but (R) is false
(2) Both (A) and (R) are true and (R) is the correct explanation of (A)
(3) Both (A) and (R) are true but (R) is not the correct explanation of (A)
(4) (A) is false but (R) is true.

Ans. (2)
Sol. $\quad \mathrm{Cr}^{2+}$ is reducing as its configuration changes from d^{4} to d^{3}, the latter having a half-filled $\mathrm{t}_{2 \mathrm{~g}}$ level. On the other hand, the change from Mn^{3+} to Mn^{2+} results in the half-filled (d^{5}) configuration which has extra stability.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

74. The functional group that shows negative resonance effect is :
(1) -OH
(2) -OR
(3) -COOH
(4) $-\mathrm{NH}_{2}$

Ans. (3)
Sol. It is fact.
75. The number of radial node/s for $3 p$ orbital is:
(1) 3
(2) 2
(3) 1
(4) 4

Ans. (3)
Sol. $\quad \ell=$ angular nodes
$(n-1)=$ total nodes
Radial nodes $=\mathrm{n}-\ell-1=3-1-1=1$
76. Which among the following has highest boiling point ?
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
(4) $\mathrm{H}_{5} \mathrm{C}_{2}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$

Ans. (1)
Sol. Butanol has highest boiling point as it has intermolecular hydrogen bonding.
77. Given below are two statements:

Statement (I) : A π bonding MO has lower electron density above and below the inter-nuclear axis.
Statement (II) : The π^{*} antibonding MO has a node between the nuclei.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both Statement I and Statement II are true
(2) Both Statement I and Statement II are false.
(3) Statement I is true but Statement II is false.
(4) Statement I is false but Statement II is true.

Ans. (4)

78. Given below are two statements :

Statement (I) : Both metals and non-metals exist in p and d-block elements.
Statement (II) : Non-metals have higher ionisation enthalpy and higher electronegativity than the metals. In the light of the above statements, choose the most appropriate answer from the option given below :
(1) Both Statement I and Statement II are false.
(2) Both Statement I and Statement II are true.
(3) Statement I is false but Statement II is true.
(4) Statement I is true but Statement II is false.

Ans. (3)
Sol. Theory based.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

79. Which of the following compounds show colour due to d-d transition ?
(1) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(2) $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$
(3) KMnO_{4}
(4) $\mathrm{K}_{2} \mathrm{CrO}_{4}$

Ans. (2)
Sol. $\mathrm{Cu}:[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
Cu^{+2} : $[\mathrm{Ar}] 3 \mathrm{~d}^{9}$
d-electron (unpaired electron)
80. Select the compound from the following that will show intermolecular hydrogen bonding.
(1)

(2) $\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(4) NH_{3}

Ans. (1)

Sol.

81. The number of tripeptides formed by three different amino acid using each amino acid once is \qquad
Ans. (6)
Sol. If A, B and C are three amino acid, then six tripeptides will form. These are $\mathrm{A}-\mathrm{B}-\mathrm{C}, \mathrm{A}-\mathrm{C}-\mathrm{B}, \mathrm{B}-\mathrm{A}-\mathrm{C}, \mathrm{B}-\mathrm{C}-\mathrm{A}, \mathrm{C}-\mathrm{A}-\mathrm{B}$ and $\mathrm{C}-\mathrm{B}-\mathrm{A}$
82. Mass of ethylene glycol (antifreeze) to be added to 18.6 kg of water to protect the freezing point at $-24^{\circ} \mathrm{C}$ is \qquad kg (Molar mass in $\mathrm{g} \mathrm{mol}^{-1}$ for ethylene glycol $62, \mathrm{~K}_{\mathrm{f}}$ of water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
Ans. (15)
Sol. ΔT_{f} or $\left|\Delta T_{f}\right|=i \times K_{f} \times m$
$\mathrm{i}=1$;
$24=\frac{1.86 \times \mathrm{X} \times 1000}{62} \times \frac{1}{18.6}$
$X=\frac{24 \times 62 \times 18.6}{18.6 \times 1000} \approx 15$
83. Total number of isomeric compounds (including stereoisomers) formed by monochlorination of 2-methylbutane is.
Ans. (6)

Sol.

(2)

(1)

(2)

(1)
84. The following data were obtained during the first order thermal decomposition of a gas A at constant volume :
$\mathrm{A}(\mathrm{g}) \longrightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
S.No. Time/s Total pressure/(atm)

1. $\quad 0 \quad 0.1$
2. $115 \quad 0.28$

The rate constant of the reaction is $\quad \times 10^{-2} \mathrm{~s}^{-1}$ (nearest integer)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Ans. (2)
Sol. $\quad A(g) \longrightarrow 2 B(g)+C(g)$
$\mathrm{t}=0 \quad 0.1 \mathrm{~atm} \quad 0 \quad 0$
$t=1150.1-x \quad 2 x \quad x$
$\mathrm{P}_{\mathrm{T}}=0.1+2 \mathrm{x}$
$0.28=0.1+2 x \Rightarrow \quad x=0.09$
$\left(P_{A}\right)_{t}=0.1-x=0.01$
$K=\frac{2.303}{t} \log \frac{0.1}{0.01}$
$K=\frac{2.303}{115} \log 10$
$K=0.02$
$\mathrm{K}=2 \times 10^{-2}$
Ans. (2)
85. For a certain reaction at $300 \mathrm{~K}, \mathrm{~K}=10$, then $\Delta \mathrm{G}^{\circ}$ for the same reaction is \qquad $\times 10^{-1} \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Given

$$
\left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)
$$

Ans. (57)
Sol. $\Delta \mathrm{r}^{0}{ }^{0}=-R T \ln \mathrm{~K}_{\text {eq }}$.
$=-2.303$ RT logK ${ }_{\text {eq }}$
$=-2.303 \times 8.314 \times 300 \log (10)$
$=\frac{-2.303 \times 8.314 \times 300}{1000} \mathrm{~kJ} / \mathrm{Mol}$
$=5.74 \mathrm{~J} / \mathrm{Mol}$
$=57.4 \times 10^{-1} \mathrm{~kJ} / \mathrm{Mol}$
$\sim 57 \times 10^{-1} \mathrm{~kJ} / \mathrm{Mol}$
86. The amount of electricity in Coulomb required for the oxidation of 1 mol of $\mathrm{H}_{2} \mathrm{O}$ to O_{2} is \qquad $\times 10^{5} \mathrm{C}$.
Ans. (2)
Sol. $\mathrm{H}_{2} \mathrm{O} \rightarrow \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
1 mol
$1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \rightarrow 2$ mole $^{-} \Rightarrow 2 \mathrm{~F}$
Electricity required $=2 \mathrm{~F}$

$$
\begin{aligned}
& =2 \times 96500 \\
& =1.93 \times 10^{5} \\
& \approx 2 \times 10^{5} \mathrm{C}
\end{aligned}
$$

87. Following Kjeldahl's method, 1 g of organic compound released ammonia, that neutralised 10 ml of 2 M $\mathrm{H}_{2} \mathrm{SO}_{4}$. The percentage of nitrogen in the compound is \qquad \%.
Ans. (56)
Sol. m.moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=10 \mathrm{~mL} \times 2 \mathrm{M}=20 \mathrm{~m}$.mole m.moles of NH_{3} neutralised $=2 \times 20=40 \mathrm{~m}$.mole m.moles of N atom $=40 \mathrm{~m}$.mole
wt. of $N=\frac{40 \times 14}{1000}$
$\%$ of $\mathrm{N}=\frac{40 \times 14}{1000} \times 100=56 \%$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 ffacebook.com/ResonanceEdu Y twitter.com/ResonanceEdu 坚w www.youtube.com/resowatch Θ blog.resonance.ac.in
88. Consider the following redox reaction:
$\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{M}^{2+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
The standard reduction potentials are given as below ($\mathrm{E}^{\circ}{ }^{-}$. ${ }^{\text {a }}$)
$\mathrm{E}_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}}^{0}=+1.51 \mathrm{~V}$
$\mathrm{E}_{\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}}^{\mathrm{o}}=-0.49 \mathrm{~V}$
If the equilibrium constant of the above reaction is given as $K_{\text {eq }}=10^{x}$, then the value of $x=$ \qquad . (nearest integer)
Ans. (338)
Sol. $\left[\mathrm{Mn}^{+7}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{+2}\right] \times 2$
$\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}\right] \times 5$

$$
\begin{aligned}
& \mathrm{Mn}^{+7}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \longrightarrow 2 \mathrm{Mn}^{+2}+10 \mathrm{CO}_{2} \\
& \mathrm{E}^{\mathrm{o}} \mathrm{Cell}=0.49+1.51=2 \\
& \mathrm{E}^{\circ}{ }^{\text {Cell }}=\frac{0.0591}{\mathrm{n}} \text { logKeq } \\
& \frac{\mathrm{E}_{\text {cell }}^{\circ} \times \mathrm{n}}{0.059}=\log \mathrm{K}_{\text {eq. }} . \\
& \frac{2 \times 10}{0.0591}=\text { logK } \\
& \text { eq. } . \\
& 338=\operatorname{logK}_{\text {eq. }} . \\
& \mathrm{K}_{\text {eq. }}=10^{338} \Rightarrow x=338
\end{aligned}
$$

89. Number of compounds which giv reaction with Hinsberg's reagent is \qquad .

Ans. (5)
Sol. Both 1° and 2° amine gives ppt. with Hinsberg's reagent but precipitate of 1° amine is soluble in aq. KOH .
90. 10 ml . of gaseous hydrocarbon on combustion gives 40 ml . of $\mathrm{CO}_{2}(\mathrm{~g})$ and 50 ml . of water vapour. Total number of carbon and hydrogen atoms in the hydrocarbon is \qquad -.

Ans. (14)
Sol. $\mathrm{CXHy}_{\mathrm{X}}+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2} \longrightarrow \mathrm{XCO}_{2}+\frac{\mathrm{Y}}{2} \mathrm{H}_{2} \mathrm{O}$
$10 \mathrm{ml} \quad 40 \mathrm{ml} \quad 50 \mathrm{ml}$
$1 \mathrm{~mol} \quad 4 \mathrm{~mol} 10 \mathrm{~mol}$
$\mathrm{V} \propto \mathrm{n}$ (at constant T, P)
$\mathrm{C}_{4} \mathrm{H}_{10}$ (Butane)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Educating for better tomorrow

《JEE (Advanced) 2023 RESULT

JEE (Main) 2023 RESULT

22 वर्षो सो लगातार... श्रेष्ठ शिक्षण, श्रेष्ठ परिणाम...
6 AlRs in TOP-50

$\text { AIR } 5$	$\text { AIR } 26$	$\text { AIR } 29$	$\text { AIR } 31$	$\operatorname{AIR} 34$	$\text { AIR } 50$
300/300 Marks	100\%ile	100\%ile	100\%ile	100\%ile	100\%ile (Maths)
KAUSHAL VIAAVERGITA	SOHAM DAS	ASHIK STENYY	KRISH GUPTA	MAYANK SONI	HARSHAL LaSOD

§ REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029) CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

