

SHIFT-2

DATE \& DAY: 01 ${ }^{\text {st }}$ February 2024 \& Thursday

PAPER-1

Duration: 3 Hrs.
Time: 03:00 PM - 06:00 PM

SUBJECT: MATHEMATICS

ADMISSIONS OPEN FOR CLASS 12+

SCHOLARSHIP ON THE BASIS OF JEE (MAIN) 2024 \%ILE/AIR
〇 REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029): CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

PART : MATHEMATICS

1. If the domain of the function $f(x)=\frac{\sqrt{x^{2}-25}}{\left(4-x^{2}\right)}+\log _{10}\left(x^{2}+2 x-15\right)$ is $(-\infty, \alpha) \cup[\beta, \infty)$, then $\alpha^{2}+\beta^{3}$ is equal to :
(1) 140
(2) 175
(3) 125
(4) 150

NTA (4)
Reso. (4)
Sol. $\quad x^{2}-25 \geq 0$
$x \in(-\infty,-5] \cup[5, \infty)$
$4-x^{2} \neq 0$
$x \neq \pm 2$
$x^{2}+2 x-15>0$
$(x-3)(x+5)>0$
$x \in(-\infty,-5) \cup(3, \infty]$
$x \in($ i) \cap (ii) \cap (iii)
$x \in(-\infty,-5) \cup[5, \infty)$
$\Rightarrow \alpha=-5, \beta=5$
$\alpha^{2}+\beta^{3}=25+125=150$
2. If z is a complex number such that $|z| \geq 1$, then the minimum value of $\left|z+\frac{1}{2}(3+4 i)\right|$ is :
(1) 2
(2) $\frac{5}{2}$
(3) $\frac{3}{2}$
(4) 3

NTA (3)
Reso. Bonus
(There is a correction $|z| \leq 1$ then Ans. (3))
Sol.

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555 Q 7340010333 facebook.com/ResonanceEdu y twitter.com/ResonanceEdu vire www.youtube.com/resowatch Θ blog.resonance.ac.in

$\underset{\text { Reducating for better tomorrow }}{\text { R }}$ | JEE(Main) 2024 | DATE: 01-02-2024 (SHIFT-2) | PAPER-1 ||MATHEMATICS

$$
\begin{aligned}
& \left|z-\left(\frac{-3}{2}-2 i\right)\right|_{\min }=P A=O P-r \\
& =\sqrt{\frac{9}{4}+4}-1=\frac{5}{2}-1=\frac{3}{2}
\end{aligned}
$$

3. consider a $\triangle A B C$ where $A(1,3,2), B(-2,8,0)$ and $C(3,6,7)$. If the angle bisector of $\angle B A C$ meets the line $B C$ at D, then the length of the projection of the vector $\overrightarrow{A D}$ on the vector $\overrightarrow{A C}$ is :
(1) $\frac{37}{2 \sqrt{38}}$
(2) $\sqrt{19}$
(3) $\frac{39}{2 \sqrt{38}}$
(4) $\frac{\sqrt{38}}{2}$

NTA (1)
Reso. (1)
Sol. $\quad \overrightarrow{A B}=-3 \hat{i}+5 \hat{\mathbf{j}}-2 \hat{k} \Rightarrow|\overrightarrow{A B}|=\sqrt{38}$
$\overrightarrow{A C}=2 \hat{i}+3 \hat{j}+5 \hat{k} \Rightarrow|\overrightarrow{A C}|=\sqrt{38}$
Hence AB = AC
So median and angle bisector of angle A is same
coordinate of D are $\left(\frac{1}{2}, 7, \frac{7}{2}\right)$
$\Rightarrow \overrightarrow{A D}=-\frac{1}{2} \hat{i}+4 \hat{j}+\frac{3}{2} \hat{k}$
Projection of $\overrightarrow{A D}$ on $\overrightarrow{A C} \Rightarrow \overrightarrow{A C}=\frac{\overrightarrow{A D} \cdot \overrightarrow{A C}}{|\overrightarrow{A C}|}=\frac{-1+12+\frac{15}{2}}{\sqrt{38}}=\frac{37}{2 \sqrt{38}}$
4. Consider the relations R_{1} and R_{2} defined as $a R_{1} b \Leftrightarrow a^{2}+b^{2}=1$ for all $a, b \in R$ and (a, b) $R_{2}(c, d) \Leftrightarrow a+d=b+c$ for all $(a, b),(c, d) \in N \times N$
(1) R_{1} and R_{2} both are equivalence relations
(2) Only R_{1} is an equivalence relation
(3) Only R_{2} is an equivalence relation
(4) Neither R_{1} nor R_{2} is an equivalence relation

NTA (3)
Reso. (3)
Sol. $\quad R_{1}=\left\{(a, b) \in R \times R: a^{2}+b^{2}=1\right\}$
R_{1} is not reflexive
$\therefore \mathrm{R}_{1}$ is not equivalence
$R_{2}:(a, b) R(c, d) \Rightarrow a+d=b+c$
Reflexive : $(a, b) R(a, b) \Rightarrow a+b=b+a$ True

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu www.youtube.com/resowatch Θ blog.resonance.ac.in

$\underset{\text { Reducating tor better tomorrow }}{\text { R }}$ | JEE(Main) 2024 | DATE: 01-02-2024 (SHIFT-2) | PAPER-1 ||MATHEMATICS

Symmetric : $(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \Rightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$

$$
\begin{aligned}
& \Rightarrow d+a=c+b \\
& \Rightarrow c+b=d+a \\
& \Rightarrow(c, d) R(a, b) \quad \text { True }
\end{aligned}
$$

Transitive

$$
\begin{aligned}
& \text { (a,b) } R(c, d) \Rightarrow a+d=b+c \ldots \ldots(1 \\
& (c, d) R(e, f) \Rightarrow c+f=d+e \ldots .(2) \\
& \Rightarrow a+f=b+e \text { by } \quad \text { (1) and (2) } \\
& \Rightarrow(a, b) R(e, f) \text { transitive } \\
& \therefore R_{2} \text { is equivalence }
\end{aligned}
$$

5. Let the system of equations $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to:
(1) 22
(2) 17
(3) 15
(4) 28

NTA (2)
Reso. (2)
Sol. System of equation's are

$$
x+2 y+3 z=5
$$

$2 x+3 y+z=9$
$4 x+3 y+\lambda z=\mu$
have infinite many solutions only if $\Delta=0$ and $\Delta_{1}=0, \Delta_{2}=0 \& \Delta_{3}=0$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
4 & 3 & \lambda
\end{array}\right|=0 \\
& \Rightarrow 3 \lambda+18+8-36-3-4 \lambda=0 \\
& \Rightarrow \lambda=-13
\end{aligned}
$$

$$
\text { Now } \Delta_{1}=\left|\begin{array}{ccc}
5 & 2 & 3 \\
9 & 3 & 1 \\
\mu & 3 & -13
\end{array}\right|
$$

$$
=5(-42)-9(-35)+\mu(-7)
$$

$$
=-210+315-7 \mu
$$

$$
=105-7 \mu=7(15-\mu)
$$

$$
\begin{aligned}
& \Delta_{2}=\left|\begin{array}{ccc}
1 & 5 & 3 \\
2 & 9 & 1 \\
4 & \mu & -13
\end{array}\right| \\
&=4(-22)-\mu(-5)-13(-1) \\
&=-88+5 \mu+13 \\
&=5 \mu-75
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

$$
=5(\mu-15)
$$

$$
\Delta 3=\left|\begin{array}{ccc}
1 & 2 & 5 \\
2 & 3 & 9 \\
4 & 3 & \mu
\end{array}\right|
$$

$$
=4(3)-3(-1)+\mu(-1)
$$

$$
=(15-\mu)
$$

since for $\mu=15$, all $\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
So equations have infinite many solutions for $\lambda=-13 \& \mu=15$
now $\lambda+2 \mu=-13+30=17$
6. If $\int_{0}^{\frac{\pi}{3}} \cos ^{4} x d x=a \pi+b \sqrt{3}$, where a and b are rational numbers, then $9 a+8 b$ is equal to :
(1) 2
(2) 1
(3) 3
(4) $\frac{3}{2}$

NTA (1)
Reso. (1)
Sol. $\quad \int_{0}^{\pi / 3}\left(\frac{1+\cos 2 x}{2}\right)^{2} d x=\frac{1}{4} \int_{0}^{\pi / 3}\left(1+2 \cos 2 x+\frac{1+\cos 4 x}{2}\right) d x$

$$
=\frac{1}{8} \int_{0}^{\pi / 3}(3+4 \cos 2 x+\cos 4 x) d x
$$

$=\frac{1}{8}\left(3 x+2 \sin 2 x+\frac{1}{4} \sin 4 x\right)_{0}^{\frac{\pi}{3}}$
$=\frac{1}{8}\left(\pi+2 \sin \frac{2 \pi}{3}+\frac{1}{4} \sin \frac{4 \pi}{3}\right)$
$=\frac{1}{8}\left(\pi+\sqrt{3}-\frac{\sqrt{3}}{8}\right)$
$=\frac{1}{8}\left(\pi+\frac{7 \sqrt{3}}{8}\right)$
$\Rightarrow \mathrm{a}=\frac{1}{8}, \mathrm{~b}=\frac{7}{64}$
$9 a+8 b=\frac{9}{8}+\frac{7}{8}=2$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

Rescinancea

7. Let α and β be the roots of the equation $p x^{2}+q x-r=0$, where $p \neq 0$. If p, q and r be the consecutive terms of a non constant G.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^{2}$ is :
(1) 8
(2) 9
(3) $\frac{20}{3}$
(4) $\frac{80}{9}$

NTA (4)
Reso. (4)
Sol.
$\alpha+\beta=\frac{-q}{p}$ and $\alpha \beta=\frac{-r}{p}$
$\because \frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4} \Rightarrow \frac{\alpha+\beta}{\alpha \beta}=\frac{3}{4}$
$\frac{q}{r}=\frac{3}{4}$ hence common ratio $=\frac{4}{3}$
$(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta=\left(\frac{q}{p}\right)^{2}+4\left(\frac{r}{p}\right)=\frac{16}{9}+4 \cdot\left(\frac{4}{3}\right)^{2}=\frac{80}{9}$
8. Let Ajay will not appear in JEE exam with probability $\mathrm{p}=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $\mathrm{q}=\frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is :
(1) $\frac{9}{35}$
(2) $\frac{3}{35}$
(3) $\frac{24}{35}$
(4) $\frac{18}{35}$

NTA (4)

Reso. (4)
Sol. A : - Event that Ajay appear in Exam
B : - Event that Vijay appear in Exam
Given $\mathrm{p}=\mathrm{P}(\overline{\mathrm{A}})=\frac{2}{7}$ and $\mathrm{q}=\mathrm{P}(\overline{\mathrm{A}} \cap \overline{\mathrm{B}})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{5}$

$$
\begin{aligned}
& \Rightarrow P(A)=1-p=\frac{5}{7} \\
& \Rightarrow P(B)=\frac{7}{25}
\end{aligned}
$$

Hence $P(A \cap \bar{B})=P(A) . P(\bar{B})$

$$
=\frac{5}{7} \cdot \frac{18}{25}=\frac{18}{35}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
9. Let P be a point on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Let the line passing through P and parallel to y-axis meet the circle $x^{2}+y^{2}=9$ at point Q such that P and Q are on the same side of the x-axis. Then, the eccentricity of the locus of the point R on $P Q$ such that $P R: R Q=4: 3$ as P moves on the ellipse, is:
(1) $\frac{13}{21}$
(2) $\frac{\sqrt{139}}{23}$
(3) $\frac{\sqrt{13}}{7}$
(4) $\frac{11}{19}$

NTA (3)
Reso. (3)
Sol. $P \equiv(3 \cos \theta, 2 \sin \theta)$
$Q \equiv(3 \cos \theta, 3 \sin \theta)$
$R \equiv(h, k) \quad h=3 \cos \theta, \quad k=\frac{12+6}{7} \sin \theta$
locus of R is
$\frac{x^{2}}{9}+\frac{49 y^{2}}{(18)^{2}}=1$
$e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\left(\frac{18}{3 \times 7}\right)^{2}}=\sqrt{\frac{49-36}{49}}=\frac{\sqrt{13}}{7}$

10. Consider 10 observations x_{1}, x_{2}, x_{10} such that $\sum_{i=1}^{10}\left(x_{i}-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_{i}-\beta\right)^{2}=40$ where α, β are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. Then $\frac{\beta}{\alpha}$ is equal to
(1) 2
(2) 1
(3) $\frac{5}{2}$
(4) $\frac{3}{2}$

NTA (1)
Reso. (1)
Sol. Mean $\Rightarrow \quad \alpha+\frac{\sum_{i=1}^{10}\left(x_{i}-\alpha\right)}{10}=\frac{6}{5}$

$$
\Rightarrow \quad \alpha+\frac{2}{10}=\frac{6}{5}
$$

$$
\Rightarrow \quad \alpha=1
$$

Also variance $\Rightarrow \frac{\sum\left(x_{i}-\beta\right)^{2}}{10}-\left(\frac{\sum\left(x_{i}-\beta\right)}{10}\right)^{2}=\frac{84}{25}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

$$
\begin{gathered}
\Rightarrow \quad \frac{40}{10}-\left(\frac{\sum\left(x_{i}-\beta\right)}{10}\right)^{2}=\frac{84}{25} \\
\Rightarrow \quad\left(\frac{\sum\left(x_{i}-\beta\right)}{10}\right)^{2}=4-\frac{84}{25}=\frac{16}{25} \\
\Rightarrow \quad \frac{\sum\left(x_{i}-\beta\right)}{10}= \pm \frac{4}{5} \\
\Rightarrow \quad \sum\left(x_{i}-\beta\right)= \pm 8
\end{gathered}
$$

Case-I When $\sum\left(x_{i}-\beta\right)=8$
by mean $\frac{6}{5}=\beta+\frac{\sum\left(x_{i}-\beta\right)}{10}$
$\Rightarrow \quad \frac{6}{5}=\beta+\frac{8}{10} \Rightarrow \beta=\frac{2}{5}$ (Not integer)
Case-II When $\sum\left(x_{i}-\beta\right)=-8$
By mean $\frac{6}{5}=\beta-\frac{8}{10} \Rightarrow \beta=2$
Hence $\frac{\beta}{\alpha}=2$ Ans.
11. Let $f(x)=\left|2 x^{2}+5\right| x|-3|, x \in R$. If m and n denote the number of points where f is not continuous and not differentiable respectively, then $m+n$ is equal to:
(1) 5
(2) 3
(3) 2
(4) 0

NTA (2)
Reso. (2)
Sol. $f(x)=\left|2 x^{2}+5\right| x|-3|$
$2 x^{2}+5 x-3=(2 x-1)(x+3)$
$f(x)$ is continuous for $x \in R$
and non-differentiable at
$x= \pm \frac{1}{2}, 0$

$\Rightarrow \mathrm{m}=0, \mathrm{n}=3$
$m+n=3$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
12. The number of solutions of the equation $4 \sin ^{2} x-4 \cos ^{3} x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ is :
(1) 0
(2) 3
(3) 1
(4) 2

NTA (1)
Reso. (1)
Sol. $\quad 4-4 \cos ^{2} x-4 \cos ^{3} x-4 \cos x+9=0$
$4 \cos ^{3} x+4 \cos ^{2} x+4 \cos x-13=0$
$\left(\cos ^{2} x+\frac{1}{2}\right)^{2}+\frac{3}{4}=\frac{13}{4} \sec x$
L.H.S $\in[1,3]$
R.H.S $\in\left[-\infty,-\frac{13}{4}\right] \cup\left[\frac{13}{4}, \infty\right]$

Number of solution $=0$
13. Let the locus of the midpoint of the chords of the circle $x^{2}+(y-1)^{2}=1$ drawn from the origin intersect the line $x+y=1$ at P and Q. Then, the length of $P Q$ is :
(1) $\frac{1}{2}$
(2) 1
(3) $\frac{1}{\sqrt{2}}$
(4) $\sqrt{2}$

NTA (3)
Reso. (3)
Sol. Let mid point is $\left(x_{1}, y_{1}\right)$
$x^{2}+y^{2}-2 y=0$
$x x_{1}+y y_{1}-\left(y+y_{1}\right)=x_{1}^{2}+y_{1}^{2}-2 y_{1}$
It is passing through origin
So, $0+0-\left(0+y_{1}\right)=x_{1}^{2}+y_{1}^{2}-2 y_{1}$
$\Rightarrow-y_{1}=x_{1}^{2}+y_{1}^{2}-2 y_{1}$
$\Rightarrow \mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}-\mathrm{y}_{1}=0$
Locus is $x^{2}+y^{2}-y=0$
\because it intersects the line $x+y=1$
so put $x=(1-y)$ is equation (1)
$(1-y)^{2}+y^{2}-y=0$
$2 y^{2}-3 y+1=0$
$(y-1)(2 y-1)=0$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
$y=1, \frac{1}{2}$
$P(0,1) \& Q\left(\frac{1}{2}, \frac{1}{2}\right)$
So, $P Q=\sqrt{\left(\frac{1}{2}-0\right)^{2}+\left(\frac{1}{2}-1\right)^{2}} \Rightarrow P Q=\frac{1}{\sqrt{2}}$
14. Let α be a non-zero real number. Suppose $f: R \rightarrow R$ is a differentiable function such that $f(0)=2$ and $\lim _{x \rightarrow-\infty} f(x)=1$. if $f^{\prime}(x)=\alpha f(x)+3$, for all $x \in R$, then $f\left(-\log _{e} 2\right)$ is equal to \qquad
(4) 5
(1) 7
(2) 9
(3) 3

NTA (2)
Reso. (2) or Bonus
Sol. $\quad f^{\prime}(x)=\alpha f(x)+3$
$\Rightarrow \frac{f^{\prime}(x)}{\alpha f(x)+3}=1$
$\Rightarrow \frac{1}{\alpha} \log _{e}|\alpha f(x)+3|=x+c$
given $f(0)=2$
$\Rightarrow \frac{1}{\alpha} \log _{\mathrm{e}}|2 \alpha+3|=\mathrm{c}$
$\Rightarrow \frac{1}{\alpha} \log _{\mathrm{e}}|\alpha \mathrm{f}(\mathrm{x})+3|=\mathrm{x}+\frac{1}{\alpha} \log _{\mathrm{e}}|2 \alpha+3|$
$\Rightarrow \frac{1}{\alpha} \log _{e}\left|\frac{\alpha f(x)+3}{2 \alpha+3}\right|=x$
$\Rightarrow\left|\frac{\alpha f(x)+3}{2 \alpha+3}\right|=e^{\alpha x}$
Since $\lim _{x \rightarrow-\infty} f(x)=1$
Case-I $\alpha>0$ then by equation (1)
$\Rightarrow 3+\alpha=0 \quad \Rightarrow \alpha=-3$ (ambiguity)
$\Rightarrow|f(x)-1|=e^{-3 x}$
$\Rightarrow f(x)=1 \pm e^{-3 x}$
$\Rightarrow f\left(-\log _{e} 2\right)=1 \pm e^{3 \log _{e} 2}$
$=1 \pm 8=9$ or -7

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Case-II $\alpha<0$ then by (1) $\left|\frac{\alpha+3}{2 \alpha+3}\right|=\infty$ not difined
15. Let P and Q be the points on the line $\frac{x+3}{8}=\frac{y-4}{2}=\frac{z+1}{2}$ which are at a distance of 6 units from the point $R(1,2,3)$. If the centroid of the triangle PQR is (α, β, γ), then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is :
(1) 18
(2) 24
(3) 26
(4) 36

NTA (1)
Reso. (1)
Sol. Let $\frac{x+3}{8}=\frac{y-4}{2}=\frac{z+1}{2}=\lambda$
$\Rightarrow \quad$ coordinated of any point on it is $P(8 \lambda-3,2 \lambda+4,2 \lambda-1)$
Its distance from $R(1,2,3)$ is 6 unit
$\Rightarrow \quad(8 \lambda-4)^{2}+(2 \lambda+2)^{2}+(2 \lambda-4)^{2}=36$
$\Rightarrow \quad(64+4+4) \lambda^{2}+(16+4+16)-(64-8+16) \lambda=36$
$\Rightarrow \quad 72 \lambda^{2}-72 \lambda=0$
$\Rightarrow \quad \lambda=0$ or 1
Hence $P(-3,4,-1) \& Q(5,6,1)$
Centroid of $\triangle \mathrm{PQR}$ is $(\alpha, \beta, \gamma)=(1,4,1)$

$$
\Rightarrow \quad \alpha^{2}+\beta^{2}+\gamma^{2}=18
$$

16. The value of $\int_{0}^{1}\left(2 x^{3}-3 x^{2}-x+1\right)^{1 / 3} d x$ is equal to :
(1) -1
(2) 2
(3) 0
(4) 1

NTA (3)
Reso. (3)
Sol. $\quad I=\int_{0}^{1}\left(2 x^{3}-3 x^{2}-x+1\right)^{\frac{1}{3}} d x$
$=\int_{0}^{1}\left((2 x-1)\left(x^{2}-x-1\right)\right)^{\frac{1}{3}} d x$
$=\int_{0}^{1}\left[(2(1-x)-1)\left((1-x)^{2}-(1-x)-1\right)\right]^{1} \frac{1}{3} \mathrm{dx}$
$=\int_{0}^{1}\left((1-2 x)\left(x^{2}-x-1\right)\right)^{\frac{1}{3}} d x$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
$=-\int_{0}^{1}\left((2 x-1)\left(x^{2}-x-1\right)\right)^{\frac{1}{3}} d x$
$I=-I$
$2 l=0$
$I=0$
17. If the mirror image of the point $P(3,4,9)$ in the line $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}$ is (α, β, γ) then $14(\alpha, \beta, \gamma)$ is :
(1) 102
(2) 138
(3) 132
(4) 108

NTA (4)
Reso. (4)
Sol. Let $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}=\lambda$
Let foot of perpendicular from $P(3,4,9)$ on line is M
$\mathrm{M}(1+3 \lambda,-1+2 \lambda, 2+\lambda)$
direction ratio of $\mathrm{PM}: 3 \lambda-2,2 \lambda-5, \lambda-7$
direction ratio of line $L: 3,2,1$
now $\mathrm{PM} \perp \mathrm{L} \Rightarrow 3(3 \lambda-2)+2(2 \lambda-5)+(\lambda-7)=0$
$9 \lambda-6+4 \lambda-10+\lambda-7=0$

$14 \lambda=23 \Rightarrow \lambda=\frac{23}{14}$
Now M is mid point of $P Q$
$\frac{\alpha+3}{2}=1+3 \lambda$
$\frac{\beta+4}{2}=-1+2 \lambda$
$\frac{\gamma+9}{2}=2+\lambda$
$\therefore \frac{\alpha+\beta+\gamma+16}{2}=2+6 \lambda=\frac{166}{14}$
$\alpha+\beta+\gamma=\frac{166}{7}-16=\frac{54}{7}$
$\therefore 14(\alpha+\beta+\gamma)=108$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Rescinancce

18. Let S_{n} denote the sum of the first n terms of an arithmetic progression. If $S_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $\mathrm{S}_{15}-\mathrm{S}_{5}$ is equal to :
(1) 800
(2) 890
(3) 790
(4) 690

NTA (3)
Reso. (3)
Sol. $\quad S_{n}=\frac{n}{2}(2 a+(n-1) d)$
and $\quad T_{n}=a+(n-1) d$
Now $\quad \frac{T_{5}}{T_{10}}=\frac{7}{15} \Rightarrow \frac{a+4 d}{a+9 d}=\frac{7}{15} \Rightarrow 8 a=3 d$
also $\quad S_{10}=5(2 a+9 d)=390$

$$
\Rightarrow 2 a+9 d=78
$$

$$
\Rightarrow 2 \mathrm{a}+24 \mathrm{a}=78
$$

$$
\Rightarrow a=3 \& d=8
$$

Hence $\mathrm{S}_{15}-\mathrm{S}_{5}=\frac{15}{2}(6+14 \times 8)-\frac{5}{2}(6+4 \times 8)$

$$
\begin{aligned}
& =45+15 \times 14 \times 4-15-5 \times 16 \\
& =45+840-15-80 \\
& =885-95 \\
& =790
\end{aligned}
$$

19. Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of
$\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)$. Then $\left(\frac{n}{m}\right)^{\frac{1}{3}}$ is
(1) $\frac{1}{9}$
(2) $\frac{1}{4}$
(3) $\frac{4}{9}$
(4) $\frac{9}{4}$

NTA (4)
Reso. (4)
Sol. $\quad m={ }^{18} C_{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{2}\right)^{6}$
$\mathrm{n}={ }^{18} \mathrm{C}_{12}\left(\frac{1}{3}\right)^{6}\left(\frac{1}{2}\right)^{12}=\frac{{ }^{18} \mathrm{C}_{12}}{(12)^{6}}$
$\frac{\mathrm{n}}{\mathrm{m}}=\left(\frac{18}{12}\right)^{6} \frac{{ }^{18} \mathrm{C}_{12}}{{ }^{18} \mathrm{C}_{6}}=\frac{3^{6}}{2^{6}}$
$\left(\frac{n}{m}\right)^{\frac{1}{3}}=\frac{9}{4}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
20. Let $f(x)=\left\{\begin{aligned} x-1 & \text { xiseven } \\ 2 x, & \text { xisodd }\end{aligned} x \in N\right.$. If for some $a \in N, f(f(f(a)))=21$ then $\lim _{x \rightarrow a^{-}}\left\{\frac{|x|^{3}}{a}-\left[\frac{x}{a}\right]\right\}$ where[t] denotes the greatest integer less than or equal to t, is equal to :
(1) 169
(2) 121
(3) 225
(4) 144

NTA (4)
Reso. (4)
Sol. Let a is even then $f(a)=a-1$ (odd)
$f(f(a))=f(a-1)=2 a-2$ (even)
$f(f(f(a)))=(2 a-2)-1=2 a-3$
$\Rightarrow 2 \mathrm{a}-3=21 \Rightarrow \mathrm{a}=12$
Now $\lim _{x \rightarrow a^{-}}\left(\frac{|x|^{3}}{12}-\left[\frac{x}{12}\right]\right)$
$=144-0=144$
If a is odd then $f(f(f(a)))=21 \Rightarrow a \notin N$
21. Three points $O(0,0), P\left(a, a^{2}\right), Q\left(-b, b^{2}\right), a>0, b>0$, are on the parabola $y=x^{2}$. Let S_{1} be the area of the region bounded by the line $P Q$ and the parabola, and S_{2} be the area of the triangle $O P Q$. If the minimum value of $\frac{S_{1}}{S_{2}}$ is $\frac{m}{n}, \operatorname{gcd}(m, n)=1$, then $m+n$ is equal to \qquad -.

NTA (7)
Reso. (7)
Sol.

Equation of line $P Q$ is

$$
\begin{aligned}
& y-a^{2}=\frac{b^{2}-a^{2}}{-b-a}(x-a) \\
& \Rightarrow y-a^{2}=(a-b)(x-a) \\
& \Rightarrow y=(a-b) x+a b \\
& S_{1}=\int_{-b}^{a}\left\{(a-b) x+a b-x^{2}\right) d x
\end{aligned}
$$

Resonance Eduventures Ltd.

$=\left|\left\{(a-b) \frac{x^{2}}{2}+a b x-\frac{x^{3}}{3}\right\}\right|_{-b}^{a}$
$=\left\{\frac{1}{2}\left(a^{3}-a^{2} b\right)+a^{2} b-\frac{a^{3}}{3}\right\}-\left\{\frac{a b^{2}}{2}-\frac{b^{3}}{2}-a b^{2}+\frac{b^{3}}{3}\right\}$
$=\frac{1}{6} a^{3}+\frac{1}{2} a^{2} b+\frac{1}{2} a b^{2}+\frac{1}{6} b^{3}=\frac{1}{6}\left(a^{3}+b^{3}\right)+\frac{1}{2} a b(a+b)=\frac{1}{6}(a+b)^{3}$
Also area $S_{2}=\frac{1}{2}\left(a^{2} b+a b^{2}\right)=\frac{1}{2} a b(a+b)$
$\Rightarrow \frac{S_{1}}{S_{2}}=\frac{1}{3} \frac{(a+b)^{2}}{a b}=\frac{1}{3}\left(\frac{a}{b}+\frac{b}{a}+2\right)$
$\Rightarrow\left(\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}\right)_{\min }=\frac{1}{3}(2+2)=\frac{4}{3} \Rightarrow \mathrm{~m}+\mathrm{n}=7$
22. The sum of squares of all possible values of k, for which area of the region bounded by the parabolas $2 y^{2}=k x$ and $k y^{2}=2(y-x)$ is maximum, is equal to \qquad
NTA (8)
Reso. (8)
Sol. On solving $2 y^{2}=k x$ and $k y^{2}=2(y-x)$ we have $k y^{2}=2 y-2\left(\frac{2 y^{2}}{k}\right)$

$$
\begin{aligned}
& \left(\mathrm{k}^{2}+4\right) \mathrm{y}^{2}-2 \mathrm{ky}=0 \\
& \Rightarrow \mathrm{y}=0 \text { and } \mathrm{y}=\frac{2 \mathrm{k}}{\mathrm{k}^{2}+4}
\end{aligned}
$$

or

Required area $=\int_{0}^{\frac{2 k}{k^{2}+4}}\left\{\left(\frac{2 y-k y^{2}}{2}\right)-\left(\frac{2 y^{2}}{k}\right)\right\} d y=\left.\left(\frac{y^{2}}{2}-\frac{k y^{3}}{6}-\frac{2 y^{3}}{3 k}\right)\right|_{0} ^{\frac{2 k}{k^{2}+4}}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
$=\frac{y^{2}}{2}-\left.\frac{\left(k^{2}+4\right) y^{3}}{6 k}\right|_{0} ^{\frac{2 k}{k^{2}+4}}=\frac{2 k^{2}}{\left(k^{2}+4\right)^{2}}-\frac{4 k^{2}}{3\left(k^{2}+4\right)^{2}}=\frac{2 k^{2}}{3\left(k^{2}+4\right)^{2}}$
Area $=\frac{2 k^{2}}{3\left(k^{2}+4\right)^{2}}$ is maximum (at $k= \pm 2$ by A.M.- G.M.)
So sum of square of values of k is $(2)^{2}+(-2)^{2}=8$
23. $y=\frac{(\sqrt{x}+1)\left(x^{2}-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^{2} x-5\right) \cos ^{3} x$, then $96 y^{\prime}\left(\frac{\pi}{6}\right)$ is equal to \qquad $-$

NTA (105)
Reso. (105)
Sol. $y=\frac{(\sqrt{x}+1)(\sqrt{x}-1)\left((\sqrt{x})^{2}+\sqrt{x}+1\right)}{(x+\sqrt{x}+1)}+\frac{1}{15}\left(3 \cos ^{5} x-5 \cos ^{3} x\right)$
$y=(x-1)+\frac{1}{15}\left(3 \cos ^{5} x-5 \cos ^{3} x\right)$
$y^{\prime}=1+\left(\cos ^{4} x(-\sin x)+\cos ^{2} x \sin x\right)$
$=1+\cos ^{2} x \sin x\left(1-\cos ^{2} x\right)$
$y^{\prime}=1+\cos ^{2} x \operatorname{six}^{3} x$
$y^{\prime}(\pi / 6)=1+\frac{3}{4} \cdot \frac{1}{8}=\frac{32+3}{32}=\frac{35}{32}$
$96 y^{\prime}(\pi / 6)=105$
24. If $\frac{d x}{d y}=\frac{1+x-y^{2}}{y}, x(1)=1$, then $5 x(2)$ is equal to \qquad .
NTA (5)
Reso. (5)
Sol. $\quad \frac{d x}{d y}=\frac{1+x-y^{2}}{y} \Rightarrow \frac{d x}{d y}-\frac{1}{y} x=\frac{1-y^{2}}{y}$ linear differential equation
I.F. $=e^{-\int \frac{1}{y} d y}=e^{-\ln y}=\frac{1}{y}$
solution is
$x \cdot \frac{1}{y}=\int \frac{1-y^{2}}{y} \cdot \frac{1}{y} d y+C$
$\frac{x}{y}=\int\left(\frac{1}{y^{2}}-1\right) d y+C$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

$$
\begin{aligned}
& \frac{x}{y}=-\frac{1}{y}-y+C \\
& x=-1-y^{2}+C y \\
& \therefore x(1)=1 \Rightarrow 1=-1-1+C \\
& C=3 \\
& \therefore x=-1-y^{2}+3 y \\
& \therefore x(2)=-1-4+6=1
\end{aligned}
$$

25. Let $f:(0, \infty) \rightarrow R$ and $F(x)=\int_{0}^{x} t f(t) d t$. If $F\left(x^{2}\right)=x^{4}+x^{5}$, then $\sum_{r=1}^{12} f\left(r^{2}\right)$ is equal to \qquad .
NTA (219)
Reso. (219)
Sol. $\quad F(x)=\int_{0}^{x} t f(t) d t$ and $F(x)^{2}=x^{4}+x^{5}$

$$
F^{\prime}(x)=x f(x) \text { and } 2 x F^{\prime}\left(x^{2}\right)=4 x^{3}+5 x^{4}
$$

$$
2 F^{\prime}\left(x^{2}\right)=4 x^{2}+5 x^{3}
$$

$$
2 F^{\prime}(x)=4 x+5 x^{\frac{3}{2}}
$$

$\Rightarrow 2 x+\frac{5}{2} x^{\frac{3}{2}}=x f(x)$
$\Rightarrow f(x)=2+\frac{5}{2} x^{\frac{1}{2}}$
$\Rightarrow f\left(x^{2}\right)=2+\frac{5}{2} x$
$\sum_{r=1}^{12} f\left(r^{2}\right)=\sum_{r=1}^{12}\left(2+\frac{5}{2} r\right)$
$=24+\frac{5}{2} \sum_{r=1}^{12} r$
$=24+\frac{5}{2} \times \frac{12 \times 13}{2}$
$24+195=219$
26. Let $A B C$ be an isosceles triangle in which A is at $(-1,0), \angle A=\frac{2 \pi}{3}, A B=A C$ and B is on the positive x-axis. If $B C=4 \sqrt{3}$ and the line $B C$ intersects the line $y=x+3$ at (α, β), then $\frac{\beta^{4}}{\alpha^{2}}$ is \qquad
NTA (36)
Reso. (36)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol.

Let $B(p, 0)$
$\Rightarrow A B=P+1, P>1$
Hence coordinate of C are $\left(-\frac{1}{2} p-\frac{3}{2}, \frac{\sqrt{3}}{2}(p+1)\right)$
$\Rightarrow \mathrm{BC}^{2}=\left(-\frac{3}{2}(\mathrm{p}+1)\right)^{2}+\left(\frac{\sqrt{3}}{2}(\mathrm{p}+1)\right)^{2}$
$\Rightarrow B C=\sqrt{3}(p+1)=4 \sqrt{3} \Rightarrow p=3$
Thus equation of $B C$ is

$$
y=-\frac{1}{\sqrt{3}}(x-3)
$$

Solve with line $y=x+3$ we have $x+3=-\frac{1}{\sqrt{3}}(x-3)$
$(\sqrt{3}+1) x=3(1-\sqrt{3})$
$\Rightarrow x=-3\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)=\frac{-3}{2}(4-2 \sqrt{3})$
$\Rightarrow \alpha=-3(2-\sqrt{3})$
$\& \beta=-3+3 \sqrt{3}$
$\Rightarrow \frac{\beta^{4}}{\alpha^{2}}=\frac{81(\sqrt{3}-1)^{4}}{9(2-\sqrt{3})^{2}}=\frac{9(4-2 \sqrt{3})^{2}}{(2-\sqrt{3})^{2}}=36$
27. Let $A=I_{2}-2 M M^{\top}$, where M is a real matrix of order 2×1 such that the relation $M^{\top} M=I_{1}$ holds. If λ is a real number such that the relation $A X=\lambda X$ holds for some non-zero real matrix X of order 2×1, then the sum of squares of all possible values of λ is equal to

NTA (2)
Reso. (2)
Sol. Let $M=\left[\begin{array}{l}a \\ b\end{array}\right]$

$$
\Rightarrow M^{\top} M=\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[a^{2}+b^{2}\right]=I_{1} \text { (given) }
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Rescinance ${ }^{\text {Reduating for beter tomorow }}$ | JEE(Main) 2024 | DATE : 01-02-2024 (SHIFT-2) | PAPER-1 | |MATHEMATICS

Hence $a^{2}+b^{2}=1$
Let $a=\cos \theta, b=\sin \theta$
then

$$
\begin{aligned}
& A=I_{2}-2\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
2 \cos ^{2} \theta & 2 \sin \theta \cos \theta \\
2 \sin \theta \cos \theta & 2 \sin ^{2} \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
1-2 \cos ^{2} \theta & -2 \sin \theta \cos \theta \\
-2 \sin \theta \cos \theta & 1-2 \sin ^{2} \theta
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\cos 2 \theta & -\sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta
\end{array}\right]
\end{aligned}
$$

Now $\quad A x=\lambda x$ for some non-zero real matrix x

$$
\begin{aligned}
& \Rightarrow(\mathrm{A}-\lambda \mathrm{I}) \mathrm{x}=0 \\
& \Rightarrow|\mathrm{~A}-\lambda \mathrm{I}|=0 \\
& \Rightarrow\left|\begin{array}{cc}
-\cos 2 \theta-\lambda & -\sin 2 \theta \\
-\sin 2 \theta & \cos 2 \theta-\lambda
\end{array}\right|=0 \\
& \Rightarrow-(\cos 2 \theta+\lambda)(\cos 2 \theta-\lambda)-\sin ^{2} 2 \theta=0 \\
& \Rightarrow \cos ^{2} 2 \theta-\lambda^{2}+\sin ^{2} 2 \theta=0 \\
& \Rightarrow \lambda^{2}=1 \\
& \Rightarrow \lambda= \pm 1
\end{aligned}
$$

Sum of the square of values of λ is $=(1)^{2}+(-1)^{2}=2$
28. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=-\hat{i}-8 \hat{j}+2 \hat{k}$ and $\vec{c}=4 \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three vectors such that $\vec{b} \times \vec{a}=\vec{c} \times \vec{a}$. If the angle between the vector \vec{c} and the vector $3 \hat{i}+4 \hat{j}+\hat{k}$ is, θ then the greatest integer less than or equal to $\tan ^{2} \theta$ is

NTA (38)
Reso. (38)
Sol. $\vec{b} \times \vec{a}=\vec{c} \times \vec{a}$
$\Rightarrow(\vec{c}-\vec{b}) \times \vec{a}=0$
$\Rightarrow \overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}}=\lambda \overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}}+\lambda \overrightarrow{\mathrm{a}}$
$\Rightarrow \overrightarrow{\mathrm{c}}=(-1+\lambda) \hat{\mathrm{i}}+(-8+\lambda) \hat{\mathrm{j}}+(2+\lambda) \hat{\mathrm{k}}$
but $\Rightarrow \overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \hat{\mathrm{k}}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

$\underset{\text { Rducating for better tomorrow }}{\text { Red }}$ | JEE(Main) 2024 | DATE : 01-02-2024 (SHIFT-2) | PAPER-1 ||MATHEMATICS

$$
\Rightarrow \lambda=5, \quad \mathrm{c}_{2}=-3, \mathrm{c}_{3}=7
$$

Now angle between $\Rightarrow \overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$ and $\Rightarrow 3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ is θ

$$
\begin{aligned}
& \Rightarrow \cos \theta=\frac{12-12+7}{\sqrt{16+9+49} \sqrt{9+16+1}}=\frac{7}{\sqrt{74} \sqrt{26}} \\
& \Rightarrow \sec ^{2} \theta=\frac{74 \times 26}{49}=39.26 \\
& \Rightarrow \tan ^{2} \theta=\sec ^{2} \theta-1=38.26 \\
& \Rightarrow \quad\left[\tan ^{2} \theta\right]=38
\end{aligned}
$$

29. If three successive terms of a G.P. with common ratio $r(r>1)$ are the lengths of the sides of a triangle and $[r]$ denotes the greatest integer less than or equal to r, then $3[r]+[-r]$ is equal to \qquad .
NTA (1)
Reso. (1)
Sol. Let three terms of GP are $\frac{a}{r}$, a, $a r(r>1)$
Sum of two smaller sides $>$ third side

$$
\begin{aligned}
& \Rightarrow \quad \frac{a}{r}+a>a r \\
& \Rightarrow \quad r^{2}-r-1<0 \\
& \text { but } r>1 \Rightarrow r \in\left(1, \frac{1+\sqrt{5}}{2}\right) \\
& \Rightarrow[r]=1 \text { and }[-r]=-2 \\
& \text { So } 3[r]+[-r]=3-2=1
\end{aligned} \quad \Rightarrow \quad \frac{1-\sqrt{5}}{2}<r<\frac{1+\sqrt{5}}{2} .
$$

30. The lines $L_{1}, L_{2}, \ldots \ldots ., L_{20}$ are distinct. For $n=1,2,3, \ldots, 10$ all the lines $L_{2 n-1}$ are parallel to each other and all the lines $L_{2 n}$ pass through a given point P. The maximum number of points of intersection of pairs of lines from the set $\left\{L_{1}, L_{2}, \ldots \ldots, L_{20}\right\}$ is equal to \qquad
NTA (101)
Reso. (101)
Sol. Since $L_{1}, L_{3}, L_{5}, \ldots . ., L_{19}$ all 10 lines are parallel to each other so does not intersect each other again $L_{2}, L_{4}, L_{6}, \ldots . ., L_{20}$ all passes through a fixed point P.
So they intersect at only point P.
Now Each member of $L_{1}, L_{3}, L_{5}, \ldots ., L_{19}$ intersects each member of $L_{2}, L_{4}, L_{6}, \ldots . ., L_{20}$ at 10 distinct points (for maximum point of intersection)
\Rightarrow Number of such point of Intersection = $10 \times 10=100$
So Maximum Number of Point of Intersection = $100+1=101$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 facebook.com/ResonanceEdu Y twitter.com/ResonanceEdu www.youtube.com/resowatch Θ blog.resonance.ac.in

Educating for better tomorrow

《JEE (Advanced) 2023 RESULT

JEE (Main) 2023 RESULT

22 वर्षो सो लगातार... श्रेष्ठ शिक्षण, श्रेष्ठ परिणाम...
6 AlRs in TOP-50

$\text { AIR } 5$	$\text { AIR } 26$	$\text { AIR } 29$	$\text { AIR } 31$	$\operatorname{AIR} 34$	$\text { AIR } 50$
300/300 Marks	100\%ile	100\%ile	100\%ile	100\%ile	100\%ile (Maths)
KAUSHAL VIAAVERGITA	SOHAM DAS	ASHIK STENYY	KRISH GUPTA	MAYANK SONI	HARSHAL LaSOD

§ REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029) CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

