

Resonance ${ }^{\circ}$
Educating for better tomorrow

2024

 QUESTIONS \& SOLUTIONS
SHIFT-2

DATE \& DAY: $01^{\text {st }}$ February 2024 \& Thursday

PAPER-1

Duration: 3 Hrs.
Time: 03:00 PM - 06:00 PM

SUBJECT: PHYSICS

ADMISSIONS OPEN FOR CLASS 12+

SCHOLARSHIP ON THE BASIS OF JEE (MAIN) 2024 \%ILE/AIR
〇 REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029): CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

PART : PHYSICS

1. From the statements given below:
(A) The angular momentum of an electron in n orbit is an integral multiple of th.
(B) Nuclear forces do not obey inverse square law.
(C) Nuclear forces are spin dependent.
(D) Nuclear forces are central and charge independent.
(E) Stability of nucleus is inversely proportional to the value of packing fraction.

Choose the correct answer from the options given below:
(1) (B), (C), (D), (E) only
(2) (A), (C), (D), (E) only
(3) (A), (B), (C), (E) only
(4) (A), (B), (C), (D) only

Ans. (3)
2. A body of mass 4 kg experiences two forces $\vec{F}_{1}=5 \hat{i}+8 \hat{j}+7 \hat{k}$ and $\vec{F}_{2}=3 \hat{i}-4 \hat{j}-3 \hat{k}$. The acceleration acting on the body is:
(1) $2 \hat{i}+\hat{j}+\hat{k}$
(2) $4 \hat{i}+2 \hat{j}+2 \hat{k}$
(3) $-2 \hat{i}-\hat{j}-\hat{k}$
(4) $2 \hat{i}+3 \hat{j}+3 \hat{k}$

Ans. (1)
Sol. $\vec{a}=\frac{\vec{F}_{1}+\vec{F}_{2}}{m}$
$\vec{F}_{1}+\vec{F}_{2}=8 \hat{i}+4 \hat{j}+4 \hat{k}$
$\vec{a}=\frac{8 \hat{j}+4 \hat{j}+4 \hat{k}}{4}=2 \hat{i}+\hat{j}+\hat{k}$
3. Monochromatic light of frequency $6 \times 10^{14} \mathrm{~Hz}$ is produced by a laser. The power emitted is $2 \times 10^{-3} \mathrm{~W}$. How many photons per second on an average, are emitted by the source? (Given $\mathrm{h}=6.63 \times 10^{-34} \mathrm{Js}$)
(1) 1.5×10^{15}
(2) 7×10^{16}
(3) 6×10^{15}
(4) 9×10^{18}

Ans. (1)
Sol. $P=2 \times 10^{-3} \mathrm{~W}$
$P=\left(\frac{\Delta n}{\Delta T}\right) \times E_{P}$
$\Rightarrow \frac{\Delta \mathrm{n}}{\Delta \mathrm{T}}=\frac{2 \times 10^{-3}}{6.63 \times 10^{-34} \times 6 \times 10^{14}}=5.0276 \times 10^{15} \approx 5 \times 10^{15} / \mathrm{sec}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

4. $\quad \mathrm{C}_{1}$ and C_{2} are two hollow concentric cubes enclosing charges 2 Q and $3 Q$ respectively as shown in figure. The ratio of electric flux passing through C_{1} and C_{2} is:

(1) $3: 2$
(2) $5: 2$
(3) $2: 5$
(4) $2: 3$

Ans. (3)
Sol. $\quad \frac{\phi_{\text {in }}}{\phi_{\text {out }}}=\frac{q_{\text {in }}}{q_{\text {out }}}=\frac{2}{2+3}=\frac{2}{5}$
5. A galvanometer (G) of 2Ω resistance is connected in the given circuit. The ratio of charge stored in C_{1} and C_{2} is:

(1) 1
(2) $\frac{2}{3}$
(3) $\frac{3}{2}$
(4) $\frac{1}{2}$

Ans. (4)
Sol. For DC source capacitor will act as an open circuit.

$\therefore \mathrm{i}=\frac{6}{12}=0.5 \mathrm{~A}$
$\Rightarrow V_{A C}=i R=0.5 \times 6=3 V$
$V_{B D}=i R=0.5 \times 8=4 V$
Q=CV
$Q_{4 \mu F}=4 \times 3=12 \mu C$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 180025855557340010333 f facebook.com/ResonanceEdu $\quad Y$ twitter.com/ResonanceEdu wimw wwoutube.com/resowatch Θ blog.resonance.ac.in
6. Match List I with List - II.

List - I	List - II
(Number)	(Signific
(A) 1001	(I) 3
(B) 010.1	(II) 4
(C) 100.100	(III) 5
(D) 0.0010010	(IV) 6

Choose the correct answer from the options given below :
(1) (A)-(II), (B)-(1), (C)-(IV), (D)-(III)
(2) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
(3) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(4) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

Ans. (1)
7. A big drop is formed by coalescing 1000 small droplets of water. The surface energy will become:
(1) $\frac{1}{100}$ th
(2) $\frac{1}{10}$ th
(3) 100 times
(4) 10 times

Ans. (2)
Sol. Based on volume conservation
$R=n^{1 / 3} r$
$R=(1000)^{1 / 3} r$
$R=10 r$
The surface energy $U=T A$

$$
\begin{aligned}
& \frac{U_{r}}{U_{R}}=1000 \frac{A_{r}}{A_{R}} \\
& \frac{U_{r}}{U_{R}}=\frac{1000 \times r^{2}}{100 r^{2}} \\
& U_{R}=\frac{U_{r}}{10}
\end{aligned}
$$

8. A cricket player catches a ball of mass 120 g moving with $25 \mathrm{~m} / \mathrm{s}$ speed. If the catching process is completed in 0.1 s then the magnitude of force exerted by the ball on the hand of player will be (in SI unit):
(1) 30
(2) 24
(3) 12
(4) 25

Ans. (1)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol. Impulse $=\Delta \mathrm{P}$

$$
\begin{aligned}
& \Rightarrow F_{\text {avg. }} \times \Delta t=m v \\
& \Rightarrow F_{\text {avg. }} \times 0.1=\left(\frac{120}{1000}\right) 25 \\
& \Rightarrow F_{\text {avg. }}=30 \mathrm{~N}
\end{aligned}
$$

9. In a metre-bridge when a resistance in the left gap is 2Ω and unknown resistance in the right gap. the balance length is found to be 40 cm . On shunting the unknown resistance with 2Ω, the balance length changes by:
(1) 62.5
(2) 22.5
(3) 20 cm
(4) 65 cm

Ans. (2)
Sol. $\quad \frac{2}{R}=\frac{40}{60} \Rightarrow R=3 \Omega$

$$
\begin{aligned}
& =\frac{2}{\left(\frac{6}{5}\right)}=\frac{x}{100-x} \\
& \frac{10}{6}=\frac{x}{100-x} \\
& 500-5 x=3 x \Rightarrow x=\frac{500}{8} \\
& x=62.5 \mathrm{~cm} \\
& \text { change in length }=62.5-40=22.5 \mathrm{~cm}
\end{aligned}
$$

10. A diatomic gas $(\gamma=1.4)$ does 300 J of work when it is gas in the process is: is expanded isobarically. The heat given to the gas in the process is :
(1) 800 J
(2) 600 J
(3) 700 J
(4) 850 J

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol. $\quad W=n R \Delta T=200$
$Q=\mathrm{nC}_{\mathrm{p}} \Delta T$
$=\frac{n \gamma R \Delta T}{\gamma-1}$
$Q=\left(\frac{1.4}{0.4}\right) \times 200$
$Q=14 \times 50$
$Q=700 \mathrm{~J}$
11. Train A is moving along two parallel rail tracks towards north with speed $72 \mathrm{~km} / \mathrm{h}$ and train B is moving towards south with speed $108 \mathrm{~km} / \mathrm{h}$. Velocity of train B with respect to A and velocity of ground with respect to B are (in ms^{-1}) :
(1) -50 and -30
(2) -50 and 30
(3) -30 and 50
(4) 50 and -30

Ans. (2)
Sol. $\quad V_{A}=72 \mathrm{~km} / \mathrm{h}=20 \mathrm{~m} / \mathrm{s}$
$V_{B}=-108 \mathrm{~km} / \mathrm{h}=-30 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \quad V_{B A}=V_{B}-V_{A}=-30-(20)=-50 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \quad V_{G B}=V_{G}-V_{B}=0-(-30)=30 \mathrm{~m} / \mathrm{s}$
12. A light planet is revolving around a massive star in a circular orbit of radius R with a period of revolution T. If the force of attraction between planet and star is proportional to R then choose the correct option:
(1) $T^{2} \propto R^{7 / 2}$
(2) $T^{2} \propto R^{3}$
(3) $T^{2} \propto R^{5 / 2}$
(4) $T^{2} \propto R^{3 / 2}$

Ans. (3)
Sol. $F \propto R \omega^{2}$
given $F \propto R^{-3 / 2}$
$R^{-3 / 2} \propto R \omega^{2}$
$\omega^{2} \propto R^{-5 / 2}$
$\frac{1}{\mathrm{~T}^{2}} \propto \mathrm{R}^{-5 / 2}$
$\mathrm{T}^{2} \propto \mathrm{R}^{5 / 2}$
13. A microwave of wavelength 2.0 cm falls normally on a slit of width 4.0 cm . The angular spread of the central maxima of the diffraction pattern obtained on a screen 1.5 m away from the slit, will be:
(1) 60°
(2) 45°
(3) 15°
(4) 30°

Ans. (1)

Sol. $\quad \operatorname{asin} \theta=\mathrm{n} \lambda$
$\sin \theta=\frac{\lambda}{\mathrm{a}}=\frac{2 \times 10^{-2}}{4 \times 10^{-2}}=\frac{1}{2}$
$\theta=30^{\circ}$
Angular spread $=2 \theta=60^{\circ}$
14. If the root mean square velocity of hydrogen molecule at a given temperature and pressure is $2 \mathrm{~km} / \mathrm{s}$, the root mean square velocity of oxygen at the same condition in km / s is:
(1) 1.0
(2) 1.5
(3) 2.0
(4) 0.5

Ans. (4)
Sol. $\quad\left(\frac{\mathrm{V}_{\mathrm{O}_{2}}}{\mathrm{~V}_{\mathrm{H}_{2}}}\right)=\sqrt{\frac{\mathrm{M}_{\mathrm{H}_{2}}}{\mathrm{M}_{\mathrm{O}_{2}}}}$ (At same temperature)
$\frac{\mathrm{V}_{\mathrm{O}_{2}}}{2 \mathrm{~km} / \mathrm{s}}=\sqrt{\frac{2}{32}}$
$\mathrm{V}_{\mathrm{O}_{2}}=\frac{1}{2} \mathrm{~km} / \mathrm{s}$
15. If frequency of electromagnetic wave is 60 MHz and it travels in air along z direction then the corresponding electric and magnetic field vectors will be mutually perpendicular to each other and the wavelength of the wave (in m) is:
(1) 2.5
(2) 5
(3) 10
(4) 2

Ans. (2)
Sol. $\quad \lambda f=c$
$3 \times 10^{8}=\lambda \times 60 \times 10^{6}$
$\lambda=\frac{3 \times 10^{8}}{60 \times 10^{6}}=\frac{300}{60}$
$\lambda=5 \mathrm{~m}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

16. To measure the temperature coefficient of resistivity a of a semiconductor, an electrical arrangement shown in the figure is prepared. The arm BC is made up of the semiconductor. The experiment is being conducted at $25^{\circ} \mathrm{C}$ and resistance of the semiconductor arm is $3 \mathrm{~m} \Omega$. Arm BC is cooled at a constant rate of $2^{\circ} \mathrm{C} / \mathrm{s}$. If the galvanometer G shows no deflection after 10 s . then α is:

(1) $-1 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}$
(3) $-2.5 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}$
(2) $-2 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}$
(4) $-1.5 \times 10^{-2}{ }^{\circ} \mathrm{C}^{-1}$

Ans. (1)
Sol. $\quad T_{\text {initial }}=25^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {final }}=25^{\circ} \mathrm{C}-\left(2 \times 10^{\circ} \mathrm{C}\right)$

$$
=5^{\circ} \mathrm{C}
$$

$\Delta \mathrm{T}=5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$

$$
=-20^{\circ} \mathrm{C}
$$

When deflection of galvanometer is 0 , this is balanced Wheatstone bridge.
$\frac{0.8}{1}=\frac{\left(R_{A B}\right)_{T}}{3}=\left(R_{A B}\right)_{T}=2.4$
$\Rightarrow\left(R_{A B}\right)_{T}=R_{A B}\left[1+\alpha\left(T-25^{\circ} C\right)\right]$
$\Rightarrow 2.4=3(1+\alpha \Delta \mathrm{T})$
$\Rightarrow-0.2=\alpha \Delta T$
$\Rightarrow \alpha=\frac{-0.2}{\Delta \mathrm{~T}}=\frac{-0.2}{-20^{\circ} \mathrm{C}}=1 \times 10^{-2}$
semiconductor has -ve temperature coefficient
So $\alpha=-1 \times 10^{-2}$
17. Conductivity of a photodiode starts changing only if the wavelength of incident light is less than 660 nm .

The band gap of photodiode is found to be $\frac{x}{8} e V$. The value of X is:
(Given, $\mathrm{h}=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$)
(1) 11
(2) 13
(3) 15
(4) 21

Ans. (3)

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Sol. Energy of band gap = energy of photons

$$
\begin{aligned}
& E_{G}=\frac{h c}{\lambda} \\
& =\left(\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{660 \times 10^{-9} \times 1.6 \times 10^{-19}}\right) \mathrm{eV}=\frac{15}{8} \mathrm{eV} \\
& \text { So } \quad x=15
\end{aligned}
$$

18. A transformer has an efficiency of 80% and works at 10 V and 4 kW . If the secondary voltage is 240 V , then the current in the secondary coil is:
(1) 1.33 A
(2) 13.33 A
(3) 1.59 A
(4) 15.1 A

Ans. (2)
Sol. $V_{i}=10 \mathrm{~V}, \quad P_{i}=4 \mathrm{~kW}$
efficiency is 80%

$$
\begin{array}{ll}
\therefore & P_{i} \times \frac{80}{100}=\left(V_{\text {output }}\right) \text { Ioutput } \\
\Rightarrow & \left(4 \times 10^{3}\right) \frac{80}{100}=240 \times \text { Ioutput } \\
\Rightarrow & \text { Ioutput }=\frac{40}{3}=13.33 \mathrm{~A}
\end{array}
$$

19. In an ammeter, 5% of the main current passes through the galvanometer. If resistance of the galvanometer is G , the resistance of ammeter will be:
(1) 199 G
(2) 200 G
(3) $\frac{G}{200}$
(4) $\frac{G}{199}$

Ans. (Bonus)

Sol.

$=I_{g} R_{g}=I_{s} S$
$\frac{\frac{5}{100} \times G}{\frac{95}{100}}=S$
$\frac{G}{19}=S$
$R_{A}=\frac{G \times S}{G+S}=\frac{G \times \frac{G}{19}}{G+\frac{G}{19}}=\frac{G}{20}$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029
Toll Free : 18002585555 Q 7340010333 facebook.com/ResonanceEdu \boldsymbol{y} twitter.com/ResonanceEdu vere www.youtube.com/resowatch \boldsymbol{Z} blog.resonance.ac.in
20. A disc of radius R and mass M is rolling horizontally without slipping with speed v. It then moves up an inclined smooth surface as shown in figure. The maximum height that the disc can go up the incline is:
(1) $\frac{3}{4} \frac{v^{2}}{g}$
(2) $\frac{v^{2}}{g}$
(3) $\frac{2}{3} \frac{v^{2}}{g}$
(4) $\frac{1}{2} \frac{v^{2}}{g}$

Ans. (1)
Sol. $\quad \frac{1}{2} \mathrm{I} \omega^{2}+\frac{1}{2} m v^{2}=m g h$
$\frac{1}{2}\left(\frac{m R^{2}}{2}\right)\left(\frac{v^{2}}{R^{2}}\right)+\frac{1}{2} m v^{2}=m g h$
$\frac{3 v^{2}}{4}=g h$
$h=\frac{3 v^{2}}{4 g}$
21. A mass m is suspended from a spring of negligible mass and the system oscillates with a frequency f_{1}. The frequency of oscillations if a mass 9 m is suspended from the same spring is f_{2}. The value of $\frac{f_{1}}{f_{2}}$ is :
Ans. 03.00
Sol. $\frac{1}{f_{1}}=2 \pi \sqrt{\frac{m}{k}}$
$\frac{1}{f_{2}}=2 \pi \sqrt{\frac{9 m}{k}}$
$\frac{f_{1}}{f_{2}}=3$
22. In an electrical circuit drawn below the amount of charge stored in the capacitor is \qquad $\mu \mathrm{C}$.

Ans. 60.00
Sol.

$i=\frac{10}{6+4}=1 A$
\therefore P.D. across capacitor
$V=i R=1 \times 6=6 V$

$$
\therefore \mathrm{Q}_{\mathrm{c}}=\mathrm{CV}=10 \times 6=60 \mu \mathrm{C}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Resionancea

23. A particle initially at rest starts moving from reference point $x=0$ along x-axis, with velocity v that varies as $v=4 \sqrt{x} \mathrm{~m} / \mathrm{s}$. The acceleration of the particle is \qquad ms^{-2}.

Ans. 08.00
Sol. $\quad v=4 \sqrt{x}$
$\frac{d v}{d t}=\frac{d(4 \sqrt{x})}{d t}$
$\Rightarrow \quad a=\frac{4}{2 \sqrt{x}}\left(\frac{d x}{d t}\right)$
$\Rightarrow \quad a=\frac{4}{2 \sqrt{x}}(4 \sqrt{x}) \Rightarrow a=8 m / \mathrm{s}^{2}$
24. Suppose a uniformly charged wall provides a uniform electric field of $2 \times 10^{4} \mathrm{~N} / \mathrm{C}$ normally. A charged particle of mass 2 g being suspended through a silk thread of length 20 cm and remain stayed at a distance of 10 cm from the wall. Then the charge on the particle will be $\frac{1}{\sqrt{x}} \mu \mathrm{C}$ where $\mathrm{x}=$ \qquad
[use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{-2}$]
Ans. 03.00
Sol.

$\mathrm{T} \cos 30^{\circ}=\mathrm{mg} \quad \ldots . .(1)$
$\mathrm{T} \sin 30^{\circ}=\mathrm{qE}$
$\tan 30^{\circ}=\frac{q E}{m g}$
$q=\frac{\tan 30^{\circ} \times m g}{E}$
$q=\frac{1}{\sqrt{3}} \times \frac{2 \times 10^{-3} \times 10}{2 \times 10^{4}}$
$q=\frac{1}{\sqrt{3}} \times 10^{-6}$
$\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{3}} \times 10^{-6}$
$x=3$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

$\underset{\text { Reducting for better tomorrow }}{\text { Res }}$ | JEE(Main) 2024 | DATE : 01-02-2024 (SHIFT-2) | PAPER-1 | PHYSICS

25. A moving coil galvanometer has 100 turns and each turn has an area of $2.0 \mathrm{~cm}^{2}$. The magnetic field produced by the magnet is 0.01 T and the deflection in the coil is 0.05 radian when a current of 10 mA is passed through it. The torsional constant of the suspension wire is $x \times 10^{-5} \mathrm{~N}-\mathrm{m} / \mathrm{rad}$. The value of x is \qquad
Ans. 04.00
Sol. Torque due to magnetic field=Torque due to torsional wire $\mathrm{NiAB}=\mathrm{C} \theta$
$\mathrm{C}=\frac{\mathrm{NiAB}}{\theta}=\frac{100 \times 10 \times 10^{-3} \times 2 \times 10^{-4} \times 0.01}{0.05}=4 \times 10^{-5} \mathrm{Nm} / \mathrm{rad}$
26. One end of a metal wire is fixed to a ceiling and a load of 2 kg hangs from the other end. A similar wire is attached to the bottom of the load and another load of 1 kg hangs from this lower wire. Then the ratio of longitudinal strain of upper wire to that of the lower wire will be [Area of cross section of wire $=0.005$ $\mathrm{cm}^{2}, \mathrm{Y}=2 \times 10^{11} \mathrm{Nm}^{-2}$ and $\mathrm{g}=10 \mathrm{~ms}^{-2}$]
Ans. 03.00
Sol. $\quad \frac{\text { Strain-1 }}{\text { Strain-2 }}=\frac{\left(\Delta \ell_{1} / \ell\right)}{\left(\Delta \ell_{2} / \ell\right)}=\frac{F_{1} / A_{1} Y_{1}}{F_{2} / A_{2} Y_{2}}=\frac{F_{1}}{F_{2}}=\frac{30}{10}=3: 1$
27. In Young's double slit experiment, monochromatic light of wavelength $5000 \AA$ is used. The slits are 1.0 mm apart and screen is placed at 1.0 m away from slits. The distance from the centre of the screen where intensity becomes half of the maximum intensity for the first time is \qquad $\times 10^{-6} \mathrm{~m}$.

Ans. 125
Sol. $I_{\max }=4 I$

$$
\begin{aligned}
& \frac{I_{\max }}{2}=I_{1}+I_{2}+2 I_{1} I_{2} \cos \theta \quad\left(\therefore I_{1}=I_{2}=I\right) \\
& 2 I=2 I+2 I \cos \theta \\
& \cos \theta=0 \\
& \theta=\frac{\pi}{2} \\
& \frac{2 \pi}{\lambda} \Delta x=\frac{\pi}{2} \Rightarrow \Delta x=\frac{\lambda}{4} \\
& \frac{d y}{D}=\frac{\lambda}{4} \Rightarrow y=\frac{\lambda D}{4 d} \\
& y=\frac{5000 \times 10^{-10} \times 1}{4 \times 10^{-3}}=125 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

\backslash Ressonancea ${ }^{\text {Educating to beter tomorow }}$ | JEE(Main) 2024| DATE : 01-02-2024 (SHIFT-2) | PAPER-1| PHYSICS

28. A coil of 200 turns and area $0.20 \mathrm{~m}^{2}$ is rotated at half a revolution per second and is placed in uniform magnetic field of 0.01 T perpendicular to axis of rotation of the coil. The maximum voltage generated in the coil is $\frac{2 \pi}{\beta}$ volt. The value of β is \qquad
Ans. 05.00
Sol. $\quad \phi=B A \cos (\omega t)$
$e=\left|\frac{d \phi}{d t}\right|=B A \omega \sin \omega t$
$e_{\max }=B A \omega=200 \times 0.01 \times 0.20 \times \pi=\frac{2 \pi}{5}$
$\beta=5$
29. A uniform rod $A B$ of mass 2 kg and length 30 cm at rest on a smooth horizontal surface. An impulse of force 0.2 Ns is applied to end B . The time taken by the rod to turn through at right angles will be $\frac{\pi}{x} \mathrm{~s}$, where $\mathrm{x}=$ \qquad
Ans. 04.00
Sol. Angular Impulse = change in angular momentum
P. $\frac{\ell}{2}=\frac{m \ell^{2}}{12} . \omega$
about centre of mass
$\omega=\frac{6 \mathrm{P}}{\mathrm{m} \ell}$
For $\theta=\frac{\pi}{2} \Rightarrow \frac{\pi}{2}=\omega \mathrm{t}$
$t=\frac{\pi}{2 \omega}=t=\frac{\pi}{2 \omega}$
$\mathrm{t}=\frac{\pi \times 2 \times 0.3}{12 \times 0.2}=\frac{\pi}{4} \mathrm{sec}$.
$\frac{\pi}{4}=\frac{\pi}{x}$
So $\quad x=4$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222
To Know more : sms RESO at 56677 | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302RJ2007PLC024029

30. A particular hydrogen-like ion emits the radiation of frequency $3 \times 10^{15} \mathrm{~Hz}$ when it makes transition from $n=2$ to $n=1$. The frequency of radiation emitted in transition from $n=3$ to $n=1$ is $\frac{x}{9} \times 10^{15} H z$, when x $=$ \qquad
Ans. $\quad 32.00$
Sol. $\quad h f_{0}=13.6\left[1-\frac{1}{4}\right]$
$h f^{\prime}=13.6\left[1-\frac{1}{9}\right]$
$\mathrm{hf}_{0}=13.6 \times \frac{3}{4}$
$\mathrm{hf}_{0}{ }^{\prime}=13.6 \times \frac{8}{9}$
Equation (2) by (1),
$\frac{\mathrm{f}_{0}{ }^{\prime}}{\mathrm{f}_{0}}=\frac{8}{9} \times \frac{4}{3}$
$\mathrm{f}_{0}{ }^{\prime}=\frac{32}{27} \times 3 \times 10^{15}=\frac{32}{9} \times 10^{15}$
$x=32$

Resonance Eduventures Ltd.

Reg. Office \& Corp. Office : CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No. : +91-022-39167222

Educating for better tomorrow

《JEE (Advanced) 2023 RESULT

JEE (Main) 2023 RESULT

22 वर्षो सो लगातार... श्रेष्ठ शिक्षण, श्रेष्ठ परिणाम...
6 AlRs in TOP-50

$\text { AIR } 5$	$\text { AIR } 26$	$\text { AIR } 29$	$\text { AIR } 31$	$\operatorname{AIR} 34$	$\text { AIR } 50$
300/300 Marks	100\%ile	100\%ile	100\%ile	100\%ile	100\%ile (Maths)
KAUSHAL VIAAVERGITA	SOHAM DAS	ASHIK STENYY	KRISH GUPTA	MAYANK SONI	HARSHAL LaSOD

§ REGISTERED \& CORPORATE OFFICE (CIN: U80302RJ2007PLC024029) CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

