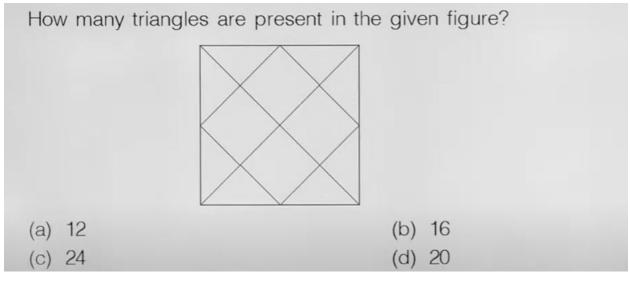
GATE 2023 Electrical Engineering Question Paper PDF

(Memory Based)


General Aptitude

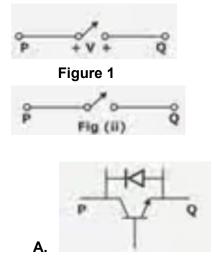
Question.

The digit in the unit's place of	the product $3^{999} \times 7^{1000}$ is
(a) 9	(b) 7
(c) 1	(d) 3

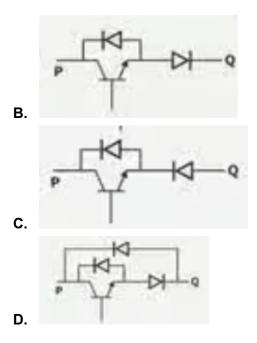
Answer. 7

Question.

Answer. D

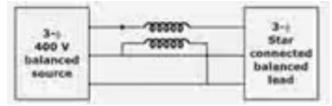

Given a fair six faced dice where the faces are labelled as 1, 2, 3, 4, 5 and 6. What is the probability of getting a 1 on the first roll of the dice and 4 on the second roll of the dice?

(a)	$\frac{5}{6}$	(b)	$\frac{1}{6}$
(C)	$\frac{1}{36}$	(d)	$\frac{1}{3}$


Answer. C

Electrical Engineering

Question. A semiconductor switch needs to block the voltage V of only one polarity (v>0) during off state as shown in figure 1 and carry current in both directions during on state shown in figure 2. Which of the following switch centrations will realize the same.



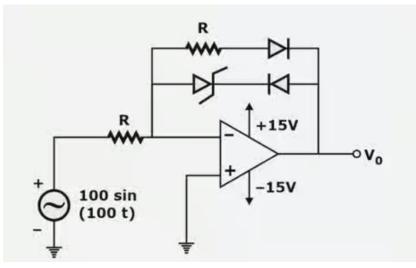
Question. A three phase, star connected, balanced load is supplied from a 3-phase, 400 V (rms), balanced voltage source with wattmeter reading is -400 W and rhw line current is I_R = 2A (rms), then power factor of the load per phase is

- A. 0.707 lagging
- B. 0.5 leading
- C. 0.866 leading
- D. Unity

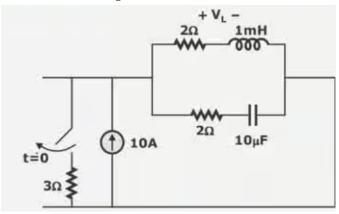
Answer. C

Question. In a given 8-bit general-purpose mic controller, there are the following flags, C-carry, A-auxiliary Larry, and 0 overflows.

P- parity for even \perp for odd).


R0 and R1 are the general purpose register of the microcontroller. After execution of the following instruction, the decimal equivalent of the binary sequence of the flag path [CAOP] will be MOV R0, + X60

MOV R0, + X60 MOV R1, +X 46



AOD R0, R1

Question. Find the minimum and maximum value of output voltage. Assume ideal diode $V_z = 5$ Volt.

Question. Find V_L at L = 0⁺

Question. The expressions of fuel cost of two thermal generating units as a function of the respective power generation P_{Q1} , & $F_1(P_{Q1}) = 0.1 aP_{Q1}^2 + 40P_{Q1} + 120 Rs/hr$ $OMW \leq P_{Q1} \leq 350 MW$ $F_2(P_{Q2}) = 0.2P_{Q2}^2 + 100 Rs/hr$ $OMW \leq P_{Q2} \leq 350 MW$

where a is a constant. for given value of a optimal as $P_{Q3} = 175 \text{ MW } \& P_{Q2} = 115 \text{ MW}$. With the load remaining dispatch is carried out Then changes in P_{Q1} & the total cost of generation, $F(=F_1 + F_2)$ in Rs/hr will be as follows.

- A. Both P_{Q1} and F will increase
- B. P_{Q1} will decrease and F will increase
- C. P_{Q1} will increase and F will decrease
- D. Both P_{Q1} and F will decrease

The discrete-time fourier transform of a signal x[n] is $X[\Omega] = (1 + \cos \Omega)e^{-j\Omega}$. Consider that $x_p[n]$ is a periodic signal of period N = 5 such that $x_p[n] = x[n]$, for n = 0, 1, 2.

Note that $x_p[n] = \sum_{k=0}^{N-1} a_k e^{j\frac{2\pi}{N}kN}$. The magnitude of the fourier series coefficient is _____

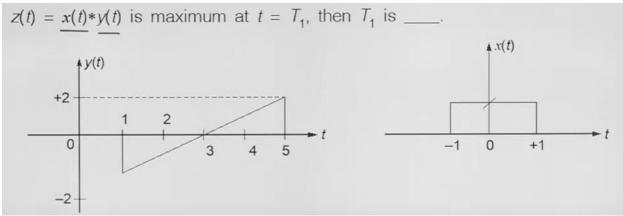
(round off to 3 decimal palces.

Answer. 0.038

Question.

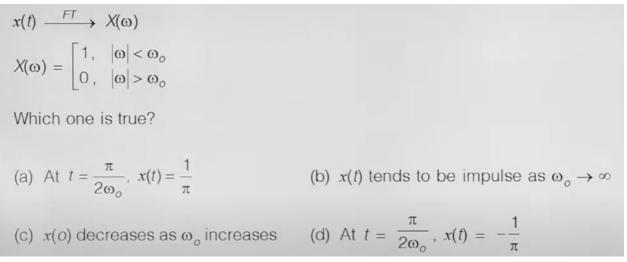
A signal $x(t) = 2\cos(180\pi t)\cos(60\pi t)$ is sampled at 200 Hz and then passed through an ideal low pass filter having cut-off frequency of 100 Hz. The maximum frequency present in the filtered signal in Hz is ____ (round off to the nearest interger).

Answer. 80


Question.

The period of the discrete-time signal x[n] described by the equation below is N =____ (round off to the nearest integer).

$$x[n] = 1 + 3\sin\left(\frac{15\pi}{8}n + \frac{3\pi}{4}\right) - 5\sin\left(\frac{\pi}{3}n - \frac{\pi}{4}\right)$$


collegedunia

Answer. 58

Question.

Answer. B

Which one of the following is TRUE?

- (a) DTFT of x[n] converges if ROC is such that x[n] is right handed side sequence.
- (b) DTFT of x[n] converges if ROC is $\frac{2}{3} < |z| < 3$
- (c) DTFT of x[n] converges if ROC is |z| > 3
- (d) DTFT of x[n] converges if ROC is such that x[n] is left handed side sequence.

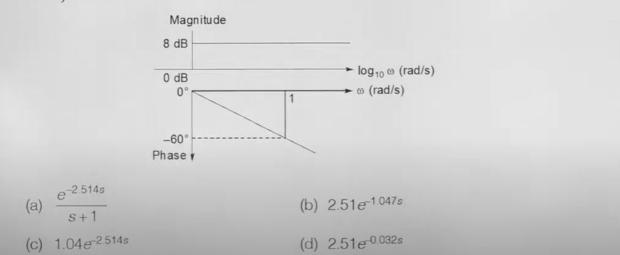
Answer. B

Question.

Which one of the following is/are TRUE?

- (a) If LTI system is CAUSAL, it is stable.
- (b) If Impulse Response 0 < |h(n)| < 1 for all n, then LTI system is stable system.
- (c) If discrete LTI system has impulse response h[n] of finite duration the system is stable.
- (d) A discrete time LTI system is causal if and only if its response to a step input U[n] is zero for n < 0.

Answer. D

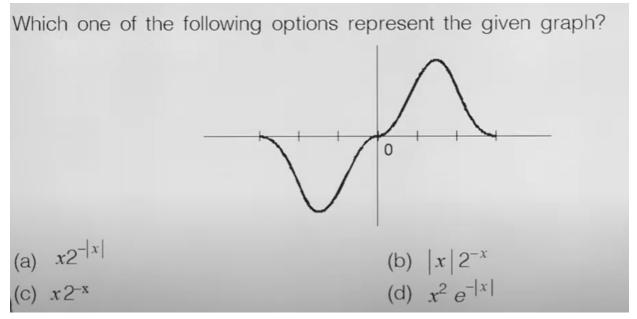

Question.

Consider the state-space description of an LTI system with matrices $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $C = \begin{bmatrix} 3 & -2 \end{bmatrix}$, D = 1. For the input, $5 \sin(\omega t)$, $\omega > 0$, the value of ω for which the steady state output of the system will be zero, is _____ (round off to the nearest integer).

Answer. 2

The magnitude and phase plots of an LTI system are shown in the figure. The TF of the system is

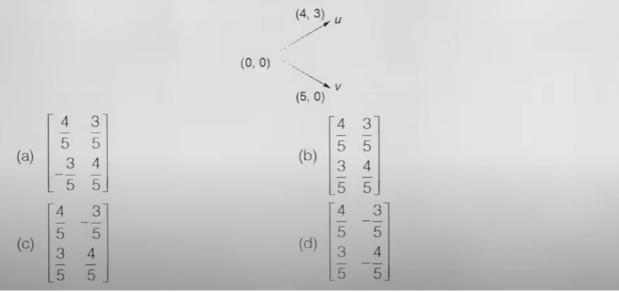
Answer. B


Question.

A continuous-time system that is initially at test is described by $\frac{dy(t)}{dt} + 3y(t) = 2x(t)$, where x(t) is the input voltage and y(t) is the output voltage. The impulse response of the system is (a) $\frac{1}{3}e^{-2t}u(t)$ (b) $2e^{-3t}$

(a) $\frac{1}{3}e^{-2t}u(t)$ (b) $2e^{-3t}$ (c) $3e^{-2t}$ (d) $2e^{-3t}u(t)$

Answer. D



Answer. A

Question.

In the figure, the vectors u and v are related as $Au = V_{t}$ by a transformation matrix A. The correct choice of A is

Answer. A

Three points in the x-y planes are (-1, 0.8) (0, 2.2) and (1, 2.8). The value of the slope of the best fit straight line in the least square sense is _____.

Answer. 1

Question.

For a given vector $\omega = [1 \ 2 \ 3]^T$, the vector normal to the plane defined by $\omega^T x = 1$ is (a) $[3 \ 2 \ 1]^T$ (b) $[-2, -2, \ 2]^T$ (c) $[1, \ 2, \ 3]^T$ (d) $[3, \ 0 \ -1]^T$

Answer. C

Question.

A quadratic function of 2 variables is given as

$$=(x_1, x_2) = x_1^2 + 2x_2^2 + 3x_1 + 3x_2 + x_1x_2 + 1$$

The magnitude of the maximum rate of change of the function at the point (1, 1) is ____.

Answer. 10

Question.

The expected number of trails for first occurrence of a 'head' in a biased coin is known to be 4. The probability of first occurrence of a 'head' in the second trails is ____.

Answer. 0.187

