## SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
  answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Let f(x) be a continuously differentiable function on the interval  $(0, \infty)$  such that f(1) = 2 and

$$\lim_{t \to x} \frac{t^{10} f(x) - x^{10} f(t)}{t^9 - x^9} = 1$$

for each x > 0. Then, for all x > 0, f(x) is equal to

(A) 
$$\frac{31}{11x} - \frac{9}{11}x^{10}$$

(C) 
$$\frac{-9}{11x} + \frac{31}{11}x^{10}$$

(B) 
$$\frac{9}{11x} + \frac{13}{11}x^{10}$$

(D) 
$$\frac{13}{11x} + \frac{9}{11}x^{10}$$

#### SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
  answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If ONLY the correct option is chosen;

26th May 2024

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

A student appears for a quiz consisting of only true-false type questions and answers all the questions. The student knows the answers of some questions and guesses the answers for the remaining questions. Whenever the student knows the answer of a question, he gives the correct answer. Assume that the probability of the student giving the correct answer for a question, given that he has guessed it, is  $\frac{1}{2}$ . Also assume that the probability of the answer for a question being guessed, given that the student's answer is correct, is  $\frac{1}{2}$ . Then the probability that the student knows the answer of

that the student's answer is correct, is  $\frac{1}{6}$ . Then the probability that the student knows the answer of a randomly chosen question is

(A) 
$$\frac{1}{12}$$

(C) 
$$\frac{5}{7}$$

(D) 
$$\frac{5}{12}$$

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
  answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Let 
$$\frac{\pi}{2} < x < \pi$$
 be such that  $\cot x = \frac{-5}{\sqrt{11}}$ . Then

$$\left(\sin\frac{11x}{2}\right)\left(\sin6x - \cos6x\right) + \left(\cos\frac{11x}{2}\right)\left(\sin6x + \cos6x\right)$$

is equal to

(A) 
$$\frac{\sqrt{11}-1}{2\sqrt{3}}$$

(C) 
$$\frac{\sqrt{11+1}}{3\sqrt{2}}$$

(B) 
$$\frac{\sqrt{11}+1}{2\sqrt{3}}$$

(D) 
$$\frac{\sqrt{11-1}}{3\sqrt{2}}$$

#### SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
  answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

26th May 2024

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Consider the ellipse  $\frac{x^2}{Q} + \frac{y^2}{A} = 1$ . Let S(p,q) be a point in the first quadrant such that

 $\frac{p^2}{9} + \frac{q^2}{4} > 1$ . Two tangents are drawn from S to the ellipse, of which one meets the ellipse at one

end point of the minor axis and the other meets the ellipse at a point T in the fourth quadrant. Let R be the vertex of the ellipse with positive x-coordinate and O be the center of the ellipse. If the area of the triangle  $\triangle ORT$  is  $\frac{3}{2}$ , then which of the following options is correct?

(A) 
$$q = 2$$
,  $p = 3\sqrt{3}$ 

(B) 
$$q = 2$$
,  $p = 4\sqrt{3}$ 

(C) 
$$q = 1$$
,  $p = 5\sqrt{3}$ 

(D) 
$$q = 1$$
,  $p = 6\sqrt{3}$ 



• This section contains **THREE (03)** questions.

26th May 2024

Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).

Let 
$$S = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}, T_1 = \{(-1 + \sqrt{2})^n : n \in \mathbb{N}\}, \text{ and } T_2 = \{(1 + \sqrt{2})^n : n \in \mathbb{N}\}.$$

Then which of the following statements is (are) TRUE?

(A) 
$$\mathbb{Z} \cup T_1 \cup T_2 \subset S$$

(B) 
$$T_1 \cap \left(0, \frac{1}{2024}\right) = \phi$$
, where  $\phi$  denotes the empty set.

(C) 
$$T_2 \cap (2024, \infty) \neq \phi$$

(D) For any given 
$$a, b \in \mathbb{Z}$$
,  $\cos\left(\pi\left(a+b\sqrt{2}\right)\right) + i\sin\left(\pi\left(a+b\sqrt{2}\right)\right) \in \mathbb{Z}$  if and only if  $b = 0$ , where  $i = \sqrt{-1}$ .



This section contains THREE (03) questions.

26th May 2024

Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).

Let  $\mathbb{R}^2$  denote  $\mathbb{R} \times \mathbb{R}$ . Let

$$S = \{(a,b,c) : a,b,c \in \mathbb{R} \text{ and } ax^2 + 2bxy + cy^2 > 0 \text{ for all } (x,y) \in \mathbb{R}^2 - \{(0,0)\}\}.$$

Then which of the following statements is (are) TRUE?

$$(A)\left(2,\frac{7}{2},6\right) \in S$$

(B) If 
$$(3,b,\frac{1}{12}) \in S$$
, then  $|2b| < 1$ .

(C) For any given  $(a,b,c) \in S$ , the system of linear equations

$$ax + by = 1$$

$$bx + cy = -1$$

has a unique solution.

(D) For any given  $(a,b,c) \in S$ , the system of linear equations

$$(a+1)x + by = 0$$

$$bx + (c+1)y = 0$$

has a unique solution.



- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).

Let  $\mathbb{R}^3$  denote the three-dimensional space. Take two points P = (1,2,3) and Q = (4,2,7). Let dist(X,Y) denote the distance between two points X and Y in  $\mathbb{R}^3$ . Let

$$S = \left\{ X \in \mathbb{R}^3 : \left( dist(X, P) \right)^2 - \left( dist(X, Q) \right)^2 = 50 \right\} \text{ and}$$

$$T = \left\{ Y \in \mathbb{R}^3 : \left( dist(Y, Q) \right)^2 - \left( dist(Y, P) \right)^2 = 50 \right\}.$$

Then which of the following statements is (are) TRUE?

- (A) There is a triangle whose area is 1 and all of whose vertices are from S.
- (B) There are two distinct points L and M in T such that each point on the line segment LM is also in T.
- (C) There are infinitely many rectangles of perimeter 48, two of whose vertices are from S and the other two vertices are from T.
- (D) There is a square of perimeter 48, two of whose vertices are from S and the other two vertices are from T.

## **SECTION 3 (Maximum Marks: 24)**

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

Let 
$$a = 3\sqrt{2}$$
 and  $b = \frac{1}{5^{1/6}\sqrt{6}}$ . If  $x, y \in \mathbb{R}$  are such that 
$$3x + 2y = \log_a \left(18\right)^{\frac{5}{4}} \quad \text{and}$$
$$2x - y = \log_b \left(\sqrt{1080}\right),$$

then 4x + 5y is equal to \_\_\_\_\_.

Paper-1

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.

26th May 2024

- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks: 0 In all other cases.

Let  $f(x) = x^4 + ax^3 + bx^2 + c$  be a polynomial with real coefficients such that f(1) = -9. Suppose that  $i\sqrt{3}$  is a root of the equation  $4x^3 + 3ax^2 + 2bx = 0$ , where  $i = \sqrt{-1}$ . If  $\alpha_1, \alpha_2, \alpha_3$ , and  $\alpha_4$  are all the roots of the equation f(x) = 0, then  $|\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2 + |\alpha_4|^2$  is equal to \_\_\_\_\_.

### **SECTION 3 (Maximum Marks: 24)**

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

Let 
$$S = \left\{ A = \begin{pmatrix} 0 & 1 & c \\ 1 & a & d \\ 1 & b & e \end{pmatrix} : a, b, c, d, e \in \{0, 1\} \text{ and } |A| \in \{-1, 1\} \right\}$$
, where |A| denotes the

determinant of A. Then the number of elements in S is \_\_\_\_\_.

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

*Full Marks* : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

A group of 9 students,  $s_1, s_2, ..., s_9$ , is to be divided to form three teams X, Y, and Z of sizes 2,3, and 4, respectively. Suppose that  $s_1$  cannot be selected for the team X, and  $s_2$  cannot be selected for the team Y. Then the number of ways to form such teams, is

JEE Adv. 2024



- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks: 0 In all other cases.

Let 
$$\overrightarrow{OP} = \frac{\alpha - 1}{\alpha} \hat{i} + \hat{j} + \hat{k}$$
,  $\overrightarrow{OQ} = \hat{i} + \frac{\beta - 1}{\beta} \hat{j} + \hat{k}$  and  $\overrightarrow{OR} = \hat{i} + \hat{j} + \frac{1}{2} \hat{k}$  be three vectors, where  $\alpha, \beta \in \mathbb{R} - \{0\}$  and  $O$  denotes the origin. If  $(\overrightarrow{OP} \times \overrightarrow{OQ}) \cdot \overrightarrow{OR} = 0$  and the point  $(\alpha, \beta, 2)$  lies on the plane  $3x + 3y - z + l = 0$ , then the value of  $l$  is \_\_\_\_\_.

Ans. 5



- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

Let X be a random variable, and let P(X = x) denote the probability that X takes the value x. Suppose that the points (x, P(X = x)), x = 0,1,2,3,4, lie on a fixed straight line in the xy-plane, and P(X = x) = 0 for all  $x \in \mathbb{R} - \{0,1,2,3,4\}$ . If the mean of X is  $\frac{5}{2}$ , and the variance of X is  $\alpha$ , then the value of  $24\alpha$  is

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.

26th May 2024

- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).

Let  $\alpha$  and  $\beta$  be the distinct roots of the equation  $x^2 + x - 1 = 0$ . Consider the set  $T = \{1, \alpha, \beta\}$ . For a  $3 \times 3$  matrix  $M = (a_{ij})_{3 \times 3}$ , define  $R_i = a_{i1} + a_{i2} + a_{i3}$  and  $C_j = a_{1j} + a_{2j} + a_{3j}$  for i = 1, 2, 3 and j = 1, 2, 3.

Match each entry in List-I to the correct entry in List-II.

#### List-I

- (P) The number of matrices  $M = (a_{ij})_{3\times 3}$  with all entries in T such that  $R_i = C_j = 0$  for all i, j, is
- (Q) The number of symmetric matrices  $M = (a_{ij})_{3\times 3}$  with all entries in T such that  $C_j = 0$  for all j, is
- (R) Let  $M = (a_{ij})_{3\times 3}$  be a skew symmetric matrix such that  $a_{ij} \in T$  for i > j. Then the number of elements in the set  $\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} : x, y, z \in \mathbb{R}, \ M \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a_{12} \\ 0 \\ -a_{22} \end{pmatrix} \right\}$  is
- (S) Let  $M = (a_{ij})_{3\times 3}$  be a matrix with all entries in T such that  $R_i = 0$  for all i.

  Then the absolute value of the determinant of M is

The correct option is

(A) 
$$(P) \to (4)$$
  $(Q) \to (2)$   $(R) \to (5)$   $(S) \to (1)$ 

(B) 
$$(P) \to (2)$$
  $(Q) \to (4)$   $(R) \to (1)$   $(S) \to (5)$ 

(C) 
$$(P) \rightarrow (2)$$
  $(Q) \rightarrow (4)$   $(R) \rightarrow (3)$   $(S) \rightarrow (5)$ 

(D) 
$$(P) \to (1)$$
  $(Q) \to (5)$   $(R) \to (3)$   $(S) \to (4)$ 

#### List-II

- (1) 1
- (2) 12
- (3) infinite

- (4) 6
- (5) 0

### **SECTION 4 (Maximum Marks: 12)**

- This section contains FOUR (04) Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).

Let the straight line y = 2x touch a circle with center  $(0, \alpha)$ ,  $\alpha > 0$ , and radius r at a point  $A_1$ . Let  $B_1$  be the point on the circle such that the line segment  $A_1B_1$  is a diameter of the circle. Let  $\alpha + r = 5 + \sqrt{5}$ .

Match each entry in List-I to the correct entry in List-II.

| List-I |
|--------|
|--------|

- (P)  $\alpha$  equals
- (Q) r equals
- (R)  $A_1$  equals
- (S)  $B_1$  equals

### List-II

- (1) (-2,4)
- (2)  $\sqrt{5}$
- (3) (-2,6)
- (4) 5
- (5)(2,4)

The correct option is

$$(A) (P) \rightarrow (4)$$

$$(Q) \rightarrow (2)$$

$$(R) \rightarrow (1)$$

$$(S) \rightarrow (3)$$

(B) 
$$(P) \rightarrow (2)$$

$$(Q) \rightarrow (4)$$

$$(R) \rightarrow (1)$$

$$(S) \rightarrow (3)$$

(C) (P) 
$$\rightarrow$$
 (4)

$$(Q) \rightarrow (2)$$

$$(R) \rightarrow (5)$$

$$(S) \rightarrow (3)$$

$$(D) (P) \rightarrow (2)$$

$$(Q) \rightarrow (4)$$

$$(R) \rightarrow (3)$$

$$(S) \rightarrow (5)$$

## SECTION 4 (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- **List-I** has **Four** entries (P), (Q), (R) and (S) and **List-II** has **Five** entries (1), (2), (3), (4) and (5).

Let  $\gamma \in \mathbb{R}$  be such that the lines  $L_1: \frac{x+11}{1} = \frac{y+21}{2} = \frac{z+29}{3}$  and  $L_2: \frac{x+16}{3} = \frac{y+11}{2} = \frac{z+4}{2}$ 

intersect. Let  $R_1$  be the point of intersection of  $L_1$  and  $L_2$ . Let O = (0,0,0), and  $\hat{n}$  denote a unit normal vector to the plane containing both the lines  $L_1$  and  $L_2$ .

Match each entry in List-I to the correct entry in List-II.

#### List-I

- (P)  $\gamma$  equals
- (Q) A possible choice for  $\hat{n}$  is
- (R)  $\overrightarrow{OR}_1$  equals
- (S) A possible value of  $\overrightarrow{OR}_1 \cdot \hat{n}$  is

#### List-II

$$(1) -\hat{i} - \hat{j} + \hat{k}$$

(2) 
$$\sqrt{\frac{3}{2}}$$

(3) 1

(4) 
$$\frac{1}{\sqrt{6}}\hat{i} - \frac{2}{\sqrt{6}}\hat{j} + \frac{1}{\sqrt{6}}\hat{k}$$
  
(5)  $\sqrt{\frac{2}{3}}$ 

(5) 
$$\sqrt{\frac{2}{3}}$$

The correct option is

(A) (P) 
$$\to$$
 (3) (Q)  $\to$  (4) (R)  $\to$  (1) (S)  $\to$  (2)

$$(Q) \rightarrow (4)$$

$$(R) \rightarrow (1)$$

$$(S) \rightarrow (2)$$

(B) 
$$(P) \to (5)$$
  $(Q) \to (4)$   $(R) \to (1)$   $(S) \to (2)$    
  $(C) (P) \to (3)$   $(Q) \to (4)$   $(R) \to (1)$   $(S) \to (5)$ 

$$(O) \rightarrow (4)$$

$$(R) \rightarrow (1)$$

$$(S) \rightarrow (2$$

$$(C) (P) \rightarrow (3)$$

$$R) \rightarrow (1)$$

$$(S) \rightarrow (5)$$

(D) (P) 
$$\rightarrow$$
 (3) (Q)  $\rightarrow$  (1)

$$Q) \rightarrow (1)$$

$$(R) \rightarrow (4)$$

$$(S) \rightarrow (5)$$

### **SECTION 4 (Maximum Marks: 12)**

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.

26th May 2024

- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).

Let  $f: \mathbb{R} \to \mathbb{R}$  and  $g: \mathbb{R} \to \mathbb{R}$  be functions defined by

$$f(x) = \begin{cases} x \mid x \mid \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0, \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 1 - 2x, & 0 \le x \le \frac{1}{2}, \\ 0, & \text{otherwise}. \end{cases}$$

Let  $a, b, c, d \in \mathbb{R}$ . Define the function  $h: \mathbb{R} \to \mathbb{R}$  by

$$h(x) = a f(x) + b \left( g(x) + g \left( \frac{1}{2} - x \right) \right) + c \left( x - g(x) \right) + d g(x), \ x \in \mathbb{R}.$$

Match each entry in List-I to the correct entry in List-II.

List-I

- (P) If a = 0, b = 1, c = 0, and d = 0, then
- (Q) If a = 1, b = 0, c = 0, and d = 0, then
- (R) If a = 0, b = 0, c = 1, and d = 0, then
- (S) If a = 0, b = 0, c = 0, and d = 1, then

List-II

- (1) h is one-one.
- (2) *h* is onto.
- (3) h is differentiable on  $\mathbb{R}$ .
- (4) the range of h is [0,1].
- (5) the range of h is  $\{0,1\}$ .

The correct option is

(A) (P) 
$$\rightarrow$$
 (4) (Q)  $\rightarrow$  (3) (R)  $\rightarrow$  (1) (S)  $\rightarrow$  (2)

(B) 
$$(P) \to (5)$$
  $(Q) \to (2)$   $(R) \to (4)$   $(S) \to (3)$ 

(C) (P) 
$$\rightarrow$$
 (5) (Q)  $\rightarrow$  (3) (R)  $\rightarrow$  (2) (S)  $\rightarrow$  (4)

(D) (P) 
$$\rightarrow$$
 (4) (Q)  $\rightarrow$  (2) (R)  $\rightarrow$  (1) (S)  $\rightarrow$  (3)