SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Considering only the principal values of the inverse trigonometric functions, the value of

$$\tan \left(\sin^{-1} \left(\frac{3}{5} \right) - 2 \cos^{-1} \left(\frac{2}{\sqrt{5}} \right) \right)$$

is

(A)
$$\frac{7}{24}$$

(C)
$$\frac{-5}{24}$$

(B)
$$\frac{-7}{24}$$

(D)
$$\frac{5}{24}$$

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0, y \ge 0, y^2 \le 4x, y^2 \le 12 - 2x \text{ and } 3y + \sqrt{8} \ x \le 5\sqrt{8} \}$. If the area of the region S is $\alpha \sqrt{2}$, then α is equal to

(A)
$$\frac{17}{2}$$

(B)
$$\frac{17}{3}$$

(C)
$$\frac{17}{4}$$

(D)
$$\frac{17}{5}$$

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Let
$$k \in \mathbb{R}$$
. If $\lim_{x \to 0+} \left(\sin(\sin kx) + \cos x + x \right)^{\frac{2}{x}} = e^6$, then the value of k is

(A) 1

(B) 2

(C) 3

(D) 4

SECTION 1 (Maximum Marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct
 answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x^2 \sin\left(\frac{\pi}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

Then which of the following statements is TRUE?

- (A) f(x) = 0 has infinitely many solutions in the interval $\left[\frac{1}{10^{10}}, \infty\right]$.
- (B) f(x) = 0 has no solutions in the interval $\left[\frac{1}{\pi}, \infty\right]$.
- (C) The set of solutions of f(x) = 0 in the interval $\left(0, \frac{1}{10^{10}}\right)$ is finite.
- (D) f(x) = 0 has more than 25 solutions in the interval $\left(\frac{1}{\pi^2}, \frac{1}{\pi}\right)$.

- This section contains THREE (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).

Let S be the set of all $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$ such that

$$\lim_{x \to \infty} \frac{\sin(x^2)(\log_e x)^{\alpha} \sin\left(\frac{1}{x^2}\right)}{x^{\alpha\beta}(\log_e (1+x))^{\beta}} = 0.$$

Then which of the following is (are) correct?

(A)
$$(-1, 3) \in S$$

(B)
$$(-1, 1) \in S$$

(C)
$$(1, -1) \in S$$

(D)
$$(1, -2) \in S$$

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).

A straight line drawn from the point P(1,3,2), parallel to the line $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z-6}{1}$, intersects the plane L_1 : x-y+3z=6 at the point Q. Another straight line which passes through Q and is perpendicular to the plane L_1 intersects the plane L_2 : 2x-y+z=-4 at the point R. Then which of the following statements is (are) TRUE?

- (A) The length of the line segment PQ is $\sqrt{6}$
- (B) The coordinates of R are (1,6,3)
- (C) The centroid of the triangle PQR is $\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
- (D) The perimeter of the triangle PQR is $\sqrt{2} + \sqrt{6} + \sqrt{11}$

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).

Let A_1, B_1, C_1 be three points in the xy-plane. Suppose that the lines A_1C_1 and B_1C_1 are tangents to the curve $y^2 = 8x$ at A_1 and B_1 , respectively. If O = (0,0) and $C_1 = (-4,0)$, then which of the following statements is (are) TRUE?

- (A) The length of the line segment OA_1 is $4\sqrt{3}$
- (B) The length of the line segment A_1B_1 is 16
- (C) The orthocenter of the triangle $A_1B_1C_1$ is (0,0)
- (D) The orthocenter of the triangle $A_1B_1C_1$ is (1,0)

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$, and $g: \mathbb{R} \to (0, \infty)$ be a function such that g(x+y) = g(x)g(y) for all $x, y \in \mathbb{R}$. If $f\left(\frac{-3}{5}\right) = 12$ and $g\left(\frac{-1}{3}\right) = 2$, then the value of $\left(f\left(\frac{1}{4}\right) + g\left(-2\right) - 8\right)g(0)$

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

A bag contains N balls out of which 3 balls are white, 6 balls are green, and the remaining balls are blue. Assume that the balls are identical otherwise. Three balls are drawn randomly one after the other without replacement. For i=1,2,3, let W_i,G_i , and B_i denote the events that the ball drawn in the i^{th} draw is a white ball, green ball, and blue ball, respectively. If the probability $P(W_1 \cap G_2 \cap B_3) = \frac{2}{5N}$ and the conditional probability $P(B_3 \mid W_1 \cap G_2) = \frac{2}{9}$, then N equals _______.

Ans. 11

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks: 0 In all other cases.

Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{\sin x}{e^{\pi x}} \frac{\left(x^{2023} + 2024x + 2025\right)}{\left(x^2 - x + 3\right)} + \frac{2}{e^{\pi x}} \frac{\left(x^{2023} + 2024x + 2025\right)}{\left(x^2 - x + 3\right)}$$

Then the number of solutions of f(x) = 0 in \mathbb{R} is _____.

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks: 0 In all other cases.

Let
$$\vec{p} = 2\hat{i} + \hat{j} + 3\hat{k}$$
 and $\vec{q} = \hat{i} - \hat{j} + \hat{k}$. If for some real numbers α, β , and γ , we have
$$15\hat{i} + 10\hat{j} + 6\hat{k} = \alpha(2\vec{p} + \vec{q}) + \beta(\vec{p} - 2\vec{q}) + \gamma(\vec{p} \times \vec{q}),$$

then the value of γ is _____.

- This section contains **SIX (06)** questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks: 0 In all other cases.

A normal with slope $\frac{1}{\sqrt{6}}$ is drawn from the point $(0, -\alpha)$ to the parabola $x^2 = -4ay$, where

a > 0. Let L be the line passing through $(0, -\alpha)$ and parallel to the directrix of the parabola. Suppose that L intersects the parabola at two points A and B. Let r denote the length of the latus rectum and s denote the square of the length of the line segment AB. If r: s = 1:16, then the value of 24a is ______.

JEE Adv. 2024

SECTION 3 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

Let the function $f:[1,\infty)\to\mathbb{R}$ be defined by

$$f(t) = \begin{cases} (-1)^{n+1} 2, & \text{if } t = 2n-1, \ n \in \mathbb{N}, \\ \frac{(2n+1-t)}{2} f(2n-1) + \frac{(t-(2n-1))}{2} f(2n+1), & \text{if } 2n-1 < t < 2n+1, \ n \in \mathbb{N}. \end{cases}$$

Define $g(x) = \int_{1}^{x} f(t) dt$, $x \in (1, \infty)$. Let α denote the number of solutions of the equation

g(x) = 0 in the interval (1,8] and $\beta = \lim_{x \to 1^+} \frac{g(x)}{x-1}$. Then the value of $\alpha + \beta$ is equal to _____.

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.

PARAGRAPH "I"

Let $S = \{1, 2, 3, 4, 5, 6\}$ and X be the set of all relations R from S to S that satisfy both the following properties:

- i. R has exactly 6 elements.
- ii. For each $(a,b) \in R$, we have $|a-b| \ge 2$.

Let $Y = \{R \in X : \text{ The range of } R \text{ has exactly one element} \}$ and

 $Z = \{R \in X : R \text{ is a function from } S \text{ to } S\}.$

Let n(A) denote the number of elements in a set A.

(There are two questions based on PARAGRAPH "I", the question given below is one of them)

If $n(X) = {}^mC_6$, then the value of m is _____.

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.

PARAGRAPH "I"

Let $S = \{1, 2, 3, 4, 5, 6\}$ and X be the set of all relations R from S to S that satisfy both the following properties:

- i. R has exactly 6 elements.
- ii. For each $(a,b) \in R$, we have $|a-b| \ge 2$.

Let $Y = \{R \in X : \text{ The range of } R \text{ has exactly one element} \}$ and

 $Z = \{R \in X : R \text{ is a function from } S \text{ to } S\}.$

Let n(A) denote the number of elements in a set A.

(There are two questions based on PARAGRAPH "I", the question given below is one of them)

If the value of n(Y) + n(Z) is k^2 , then |k| is ______.

• This section contains **TWO (02)** paragraphs.

26th May 2024

- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a **NUMERICAL VALUE**.

PARAGRAPH "II"

Let
$$f: \left[0, \frac{\pi}{2}\right] \to [0,1]$$
 be the function defined by $f(x) = \sin^2 x$ and let $g: \left[0, \frac{\pi}{2}\right] \to [0, \infty)$ be

the function defined by
$$g(x) = \sqrt{\frac{\pi x}{2} - x^2}$$
.

(There are two questions based on PARAGRAPH "II", the question given below is one of them)

The value of $2\int_{0}^{\frac{\pi}{2}} f(x)g(x)dx - \int_{0}^{\frac{\pi}{2}} g(x)dx$ is ______

Ans. 0

- This section contains **TWO (02)** paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a **NUMERICAL VALUE**.

PARAGRAPH "II"

Let
$$f: \left[0, \frac{\pi}{2}\right] \to [0,1]$$
 be the function defined by $f(x) = \sin^2 x$ and let $g: \left[0, \frac{\pi}{2}\right] \to [0, \infty)$ be

the function defined by
$$g(x) = \sqrt{\frac{\pi x}{2} - x^2}$$
.

(There are two questions based on PARAGRAPH "II", the question given below is one of them)

The value of $\frac{16}{\pi^3} \int_0^{\frac{\pi}{2}} f(x)g(x)dx$ is _____

Ans. 0.25