Mathematics Section A

Section Id: 864351828

Section Number: 5

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions: 20

Number of Questions to be attempted: 20

Section Marks: 80

Enable Mark as Answered Mark for Review and

Clear Response :

Yes

1

Sub-Section Number :

Sub-Section Id: 8643511055

Question Shuffling Allowed: Yes

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

Let P and Q be two distinct points on a circle which has center at C(2, 3) and which passes through origin O. If OC is perpendicular to both the line segments CP and CQ, then the set{P, Q} is equal to:

$$\{(2+2\sqrt{2},3+\sqrt{5}),(2-2\sqrt{2},3-\sqrt{5})\}$$

$$\{(2+2\sqrt{2},3-\sqrt{5}),(2-2\sqrt{2},3+\sqrt{5})\}$$

$$_{3}$$
 {(-1, 5), (5, 1)}

$$\{(4, 0), (0, 6)\}$$

Correct Marks: 4 Wrong Marks: 1

Let $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + 2\overrightarrow{k}$ and $\overrightarrow{b} = -\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$. Then the vector product

$$\begin{pmatrix} \overrightarrow{a} & \overrightarrow{b} \end{pmatrix} \times \begin{pmatrix} \begin{pmatrix} \overrightarrow{a} \times \begin{pmatrix} \begin{pmatrix} \overrightarrow{a} & \overrightarrow{b} \end{pmatrix} \times \overrightarrow{b} \end{pmatrix} \times \overrightarrow{b} \end{pmatrix} \times \overrightarrow{b} \end{pmatrix}$$
 is equal to :

Options:

$$5(30\hat{i} - 5\hat{j} + 7\hat{k})$$

$$(30\hat{i} - 5\hat{j} + 7\hat{k})$$

$$5(34\hat{i} - 5\hat{j} + 3\hat{k})$$

$$(34\hat{i} - 5\hat{j} + 3\hat{k})$$

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

If the coefficients of x^7 in $\left(x^2 + \frac{1}{bx}\right)^{11}$ and x^{-7} in $\left(x - \frac{1}{bx^2}\right)^{11}$, $b \ne 0$, are equal, then the

value of b is equal to:

Options:

- 1. 1
- 2. 2
- $_{3.}-2$
- 4. 1

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

If the area of the bounded region

$$R = \left\{ (x, y) : \max\{0, \log_e x\} \le y \le 2^x, \frac{1}{2} \le x \le 2 \right\}$$

is, $\alpha(log_e2)^{-1}+\beta(log_e2)+\gamma,$ then the value of $(\alpha+\beta-2\gamma)^2$ is equal to :

- 1. 1
- 2. 2
- 4
- 4. 8

Correct Marks: 4 Wrong Marks: 1

Let $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$. If $A^{-1} = \alpha I + \beta A$, α , $\beta \in \mathbb{R}$, I is a 2×2 identity matrix, then $4(\alpha - \beta)$ is

equal to:

Options:

- 1. 2
- 2. 4
- 3. 5
- $\frac{8}{4}$

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

Two tangents are drawn from the point P(-1, 1) to the circle $x^2 + y^2 - 2x - 6y + 6 = 0$. If these tangents touch the circle at points A and B, and if D is a point on the circle such that length of the segments AB and AD are equal, then the area of the triangle ABD is equal to:

- 1. 2
- 2. 4

$$(3\sqrt{2} + 2)$$

$$(\sqrt{2}-1)$$

Correct Marks: 4 Wrong Marks: 1

Let C be the set of all complex numbers. Let

$$S_1 = \{z \in \mathbb{C} \mid |z - 3 - 2i|^2 = 8\},\$$

$$S_2 = \{z \in \mathbb{C} \mid \operatorname{Re}(z) \ge 5\}$$
 and

$$S_3 = \{ z \in \mathbb{C} \mid |z - \overline{z}| \ge 8 \}.$$

Then the number of elements in $S_1 \cap S_2 \cap S_3$ is equal to :

Options:

- 1. 0
- 2. 1
- 3. 2
- 4. Infinite

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

Let the plane passing through the point (-1, 0, -2) and perpendicular to each of the planes 2x+y-z=2 and x-y-z=3 be ax+by+cz+8=0. Then the value of a+b+c is equal to :

- 1. 5
- 2. 3

3. 4

4. 8

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

Let α , β be two roots of the equation $x^2 + (20)^{\frac{1}{4}}x + (5)^{\frac{1}{2}} = 0$. Then $\alpha^8 + \beta^8$ is equal to :

Options:

1. 100

2. 10

3. 50

4. 160

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

Let
$$f: \left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \to \mathbb{R}$$
 be defined as

$$f(x) = \begin{cases} (1 + |\sin x|)^{\frac{3a}{|\sin x|}}, & -\frac{\pi}{4} < x < 0 \\ b, & x = 0 \\ e^{\cot 4x/\cot 2x}, & 0 < x < \frac{\pi}{4} \end{cases}$$

If f is continuous at x = 0, then the value of $6a + b^2$ is equal to :

Options:

$$1.1 + e$$

$$_{2}$$
, $1 - e$

3 €

$$4. e - 1$$

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

Let

$$A = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 2x^2 + 2y^2 - 2x - 2y = 1\},$$

$$B = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 4x^2 + 4y^2 - 16y + 7 = 0\}$$
 and

$$C = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 - 4x - 2y + 5 \le r^2\}.$$

Then the minimum value of $|\,r\,|$ such that $A\cup B\subseteq C$ is equal to :

$$\frac{3+\sqrt{10}}{2}$$

$$_{2.}$$
 1 + $\sqrt{5}$

$$\frac{2+\sqrt{10}}{2}$$

$$\begin{array}{c} 3 + 2\sqrt{5} \\ 4. \end{array}$$

Correct Marks: 4 Wrong Marks: 1

If the mean and variance of the following data:

are 9 and $\frac{37}{4}$ respectively, then $(a-b)^2$ is equal to :

Correct Marks: 4 Wrong Marks: 1

Let y = y(x) be solution of the differential equation $\log_e\left(\frac{dy}{dx}\right) = 3x + 4y$, with y(0) = 0.

If $y\left(-\frac{2}{3}\log_e 2\right) = \alpha \log_e 2$, then the value of α is equal to :

Options:

$$-\frac{1}{4}$$

$$\frac{1}{4}$$

$$-\frac{1}{2}$$

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

If $\sin \theta + \cos \theta = \frac{1}{2}$, then $16(\sin(2\theta) + \cos(4\theta) + \sin(6\theta))$ is equal to :

$$2. -23$$

$$4. -27$$

Correct Marks: 4 Wrong Marks: 1

The probability that a randomly selected 2-digit number belongs to the set $\{n \in N : (2^n-2) \text{ is a multiple of 3} \}$ is equal to :

Options:

$$\frac{1}{2}$$

$$\frac{1}{3}$$

$$\frac{2}{3}$$

$$\frac{1}{6}$$

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

A ray of light through (2, 1) is reflected at a point P on the *y*-axis and then passes through the

point (5, 3). If this reflected ray is the directrix of an ellipse with eccentricity $\frac{1}{3}$ and the

distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix

can be:

Options:

$$2x-7y-39=0$$
 or $2x-7y-7=0$

$$11x + 7y + 8 = 0 \text{ or } 11x + 7y - 15 = 0$$

$$2x-7y+29=0$$
 or $2x-7y-7=0$

4.
$$11x - 7y - 8 = 0$$
 or $11x + 7y + 15 = 0$

Question Type: MCQ Is Question Mandatory: No

Correct Marks: 4 Wrong Marks: 1

The compound statement $(P \lor Q) \land (\sim P) \Rightarrow Q$ is equivalent to :

$$\sim (P \Rightarrow Q)$$

$$_2$$
 $P \land \sim Q$

$$_{3}$$
 \sim $(P \Rightarrow Q) \Leftrightarrow P \land \sim Q$

$$_{4.} P \vee Q$$

Correct Marks: 4 Wrong Marks: 1

Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(2) = 4 and f'(2) = 1. Then, the value of

 $\lim_{x\to 2} \frac{x^2 f(2) - 4f(x)}{x - 2}$ is equal to:

Options:

1. 4

2. 8

3. 12

4. 16

Question Type : MCQ Is Question Mandatory : No

Correct Marks: 4 Wrong Marks: 1

The value of $\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n\frac{(2j-1)+8n}{(2j-1)+4n}$ is equal to :

$$5 + \log_{e} \left(\frac{3}{2}\right)$$

$$1 + 2\log_{e}\left(\frac{3}{2}\right)$$

$$2 - \log_{e} \left(\frac{2}{3}\right)$$

$$3 + 2 \log_{e} \left(\frac{2}{3}\right)$$

Correct Marks: 4 Wrong Marks: 1

The value of the definite integral

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1 + e^{x\cos x})(\sin^4 x + \cos^4 x)}$$

is equal to:

1.
$$\frac{\pi}{2\sqrt{2}}$$

$$-\frac{\pi}{4}$$

$$-\frac{\pi}{2}$$

$$\frac{\pi}{\sqrt{2}}$$

Mathematics Section B

Section Id: 864351829

Section Number: 6

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions: 10

Number of Questions to be attempted : 5

Section Marks: 20

Enable Mark as Answered Mark for Review and

Yes Clear Response:

Sub-Section Number:

Sub-Section Id: 8643511056

Question Shuffling Allowed: Yes

Question Type : SA

Correct Marks: 4 Wrong Marks: 0

Let a plane P pass through the point (3, 7, -7) and contain the line,

$$\frac{x-2}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$$
. If distance of the plane P from the origin is d, then d² is equal to

!----!

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

Let
$$f(x) = \begin{vmatrix} \sin^2 x & -2 + \cos^2 x & \cos 2x \\ 2 + \sin^2 x & \cos^2 x & \cos 2x \\ \sin^2 x & \cos^2 x & 1 + \cos 2x \end{vmatrix}, x \in [0, \pi].$$

Then the maximum value of f(x) is equal to _____.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

1

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

Let $F:[3, 5] \rightarrow \mathbb{R}$ be a twice differentiable function on (3, 5) such that

$$F(x) = e^{-x} \int_3^x (3t^2 + 2t + 4F'(t))dt.$$

If
$$F'(4) = \frac{\alpha e^{\beta} - 224}{(e^{\beta} - 4)^2}$$
, then $\alpha + \beta$ is equal to _____.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

Let $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, \overrightarrow{b} and $\overrightarrow{c} = \overrightarrow{j} - \overrightarrow{k}$ be three vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and

 $\overrightarrow{a} \cdot \overrightarrow{b} = 1$. If the length of projection vector of the vector \overrightarrow{b} on the vector $\overrightarrow{a} \times \overrightarrow{c}$ is l, then the value of $3l^2$ is equal to _____.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

1

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

Let the domain of the function

$$f(x) = \log_4 \left(\log_5 \left(\log_3 \left(18x - x^2 - 77 \right) \right) \right)$$
 be (a, b).

Then the value of the integral

$$\int_a^b \frac{\sin^3 x}{(\sin^3 x + \sin^3 (a + b - x))} dx$$

is equal to _____.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

1

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

If $\log_3 2$, $\log_3 (2^x - 5)$, $\log_3 \left(2^x - \frac{7}{2} \right)$ are in an arithmetic progression, then the value of x is

equal to _____.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas : PlainText

Possible Answers:

1

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

For real numbers α and β , consider the following system of linear equations :

$$x+y-z=2$$
, $x+2y+\alpha z=1$, $2x-y+z=\beta$.

If the system has infinite solutions, then $\alpha + \beta$ is equal to _____.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

1

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

Let $S = \{1, 2, 3, 4, 5, 6, 7\}$. Then the number of possible functions $f : S \to S$ such that $f(m \cdot n) = f(m) \cdot f(n)$ for every m, $n \in S$ and $m \cdot n \in S$ is equal to ______.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

1

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

If y = y(x), $y \in \left[0, \frac{\pi}{2}\right]$ is the solution of the differential equation

 $\sec y \frac{\mathrm{d}y}{\mathrm{d}x} - \sin(x+y) - \sin(x-y) = 0$, with y(0) = 0, then $5y'\left(\frac{\pi}{2}\right)$ is equal to _____.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas : PlainText

Possible Answers:

Question Type: SA

Correct Marks: 4 Wrong Marks: 0

Let $f: [0, 3] \to \mathbf{R}$ be defined by

 $f(x) = \min\{x - [x], 1 + [x] - x\}$

where [x] is the greatest integer less than or equal to x.

Let P denote the set containing all $x \in [0, 3]$ where f is discontinuous, and Q denote the set containing all $x \in (0, 3)$ where f is not differentiable. Then the sum of number of elements in P and Q is equal to ______.

Response Type: Numeric

Evaluation Required For SA: Yes

Show Word Count: Yes

Answers Type: Equal

Text Areas: PlainText

Possible Answers:

1