Paper:	B. Arch and B. Planning
Set Name:	Item05
Exam Date:	30 July 2022
Exam Shift:	1
Langauge:	English

Topic:	Mathematics - Part I-Section A
Item No:	1
Question ID:	101201
Question Type:	MCQ
Question:	Let f and g be two twice differentiable functions in $(-2,2)$ such that $\begin{aligned} & f(-1)=f(1)=0, f\left(\frac{1}{2}\right)=1, \text { and } \\ & g\left(-\frac{3}{2}\right)=g\left(\frac{3}{2}\right)=g(0)=0, g(1)=1 \end{aligned}$ Then, the minimum number of roots of the equation $f(x) g^{\prime \prime}(x)+f^{\prime \prime}(x) g(x)+2 f^{\prime}(x) g^{\prime}(x)=0$ in $(-2,2)$ is :
A:	2
B:	4
C:	3
D:	5

Topic:	Mathematics - Part I-Section A
Item No:	2
Question ID:	$\mathbf{1 0 1 2 0 2}$
Question Type:	MCQ
Question:	Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function defined as $f(x)=\alpha\|x\|+\|\beta x-\gamma\|$, where α, β, γ are distinct positive real numbers. Then, the maximum number of points at which $f(x)$ attains minima is equal to :
A:	1

B:	4
C:	2
D:	3

Topic:	Mathematics - Part I-Section A
Item No:	3
Question ID:	101203
Question Type:	MCQ
Question:	Which of the following logical statements is a tautology ?
A:	$\mathrm{p} \Rightarrow \sim \mathrm{q}$
B:	$\mathrm{p} \Rightarrow(\sim \mathrm{p}) \vee \mathrm{q}$
C:	$(\mathrm{p} \wedge q) \Rightarrow((\sim \mathrm{p}) \vee \mathrm{q})$
D:	$(\mathrm{p} \wedge(\sim \mathrm{q})) \Rightarrow((\sim \mathrm{p}) \vee \mathrm{q})$

Topic:	Mathematics - Part I-Section A
Item No:	4
Question ID:	101204
Question Type:	MCQ
Question:	The area of the region $\mathrm{S}=\left\{(x, y): 2 x-x^{2} \leq y^{2} \leq 2 x, x \leq 2, x \leq y\right\}$ is :
A:	$\frac{7}{4}-\frac{\pi}{4}$
B:	$\frac{2}{3}$
C:	$\frac{7}{6}-\frac{\pi}{4}$
D:	$\frac{5}{3}$

Topic:	Mathematics - Part I-Section A
Item No:	5
Question ID:	$\mathbf{1 0 1 2 0 5}$
Question Type:	MCQ
Question:	The area bounded by the parabola $x^{2}=12 y$ and the line L, where L passes through the focus S of the parabola and meets the parabola at A' and A with the condition that no point B is:
A:	$9 \sqrt{3}$
B:	18
C:	27
D:	24

Topic:	Mathematics - Part I-Section A
Item No:	6
Question ID:	101206
Question Type:	MCQ
Question:	The area of the triangle whose two sides have the equations $2 x-y=1$ and $x-2 y=-1$ and whose centroid is $(2,2)$, is :
A:	$\frac{3}{2}$
B:	$\frac{5}{2}$
C:	3
D:	$\frac{7}{2}$

Topic:	Mathematics - Part I-Section A
Item No:	7
Question ID:	101207

Question Type:	MCQ
Question:	The area of the region $\mathrm{A}=\left\{(x, y): x+2 y \leq 4 \leq(x-2)^{2}+(y-2)^{2}, x, y \geqslant 0\right\}$ is :
A:	$\frac{28}{5}-\pi-2 \sin ^{-1}\left(\frac{3}{5}\right)$
B:	$\frac{144}{25}-\pi-2 \sin ^{-1}\left(\frac{3}{5}\right)$
C:	$\frac{28}{5}-\pi+2 \sin ^{-1}\left(\frac{3}{5}\right)$
D:	$\frac{28}{5}-\frac{\pi}{2}-\sin ^{-1}\left(\frac{3}{5}\right)$

Topic:	Mathematics - Part I-Section A
Item No:	8
Question ID:	101208
Question Type:	MCQ
	Let the slope of the tangent to the curve $y=f(x)$ at any point $\mathrm{P}(x, y), x>-1$, be
Question:	$\frac{\sqrt{x^{2}+9}-3 x^{2} y}{1+x^{3}}$
A:	$\frac{9 \log _{\mathrm{e}} 3+10}{65}$
B:	$\frac{9 \log _{\mathrm{e}} 3+20}{65}$
C:	$\frac{9 \log _{\mathrm{e}} 3}{65}$

D:	$\frac{9 \log _{\mathrm{e}} 3-10}{65}$

Topic:	Mathematics - Part I-Section A
Item No:	9
Question ID:	101209
Question Type:	MCQ
Question:	Let $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ be non-coplanar vectors in space. Let the components of a vector $\overrightarrow{\mathrm{u}}$ along \vec{a}, \vec{b} and \vec{c} be $4,-5$ and 3 respectively. If the components of \vec{u} along the vectors $-\vec{a}+\vec{b}+2 \vec{c}, \vec{a}-\vec{b}-\vec{c}$ and $-\vec{a}-\vec{b}+\vec{c}$ are α, β, γ respectively, then the value of $\alpha+2 \beta+2 \gamma$ is :
A:	31
B:	35
C:	37
D:	61

Topic:	Mathematics - Part I-Section A							
Item No:	10							
Question ID:	101210							
Question Type:	MCQ							
Question:	If the mean of the distribution :							
	Class :	15-25	25-35	35-45	45-55	55-65	65-75	75-85
	Frequency:	2	4	7	α	8	4	2
	is $\frac{201}{4}$, then its variance is equals to :							
A:	$\frac{3319}{19}$							

B:	$\frac{3519}{29}$
C:	$\frac{3319}{16}$
D:	$\frac{3519}{16}$

Topic:	Mathematics - Part I-Section A
Item No:	11
Question ID:	101211
Question Type:	MCQ
Question:	The probability that a randomly chosen one-one function $f:\{1,2,3,4,5\} \rightarrow\{1,2,3,4,5,6\}$ satisfies $f(1)+f(2)=f(3)$ is :
A:	$\frac{1}{12}$
B:	$\frac{1}{10}$
C:	$\frac{1}{6}$
D:	$\frac{1}{5}$

Topic:	Mathematics - Part I-Section A
Item No:	12
Question ID:	$\mathbf{1 0 1 2 1 2}$
Question Type:	MCQ
Question:	Let $4, \mathrm{~A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}^{\prime}} 102$ and $12, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{n}^{\prime}}, 110$ be two arithmetic progressions. If $\mathrm{A}_{\mathrm{r}}=\mathrm{B}_{\mathrm{s}}$ with $1 \leq \mathrm{r}-\mathrm{s} \leq 100$, then the number of possible values of n is :
$\mathrm{A}:$	20

B:	25
C:	50
D:	75

Topic:	Mathematics - Part I-Section A
Item No:	13
Question ID:	101213
Question Type:	MCQ
Question:	The sum of all the coefficients in the expression $\left(1+x+x^{2}+\ldots+x^{49}\right)+(1+x)\left(1+x+x^{2}+\ldots+x^{48}\right)+\left(1+x+x^{2}\right)\left(1+x+x^{2}+\ldots+x^{47}\right)+\ldots+$ $\left(1+x+x^{2}+\ldots+x^{48}\right)(1+x)+\left(1+x+x^{2}+\ldots+x^{49}\right)$ is equal to :
A:	21675
B:	22525
C:	22100
D:	21660

Topic:	Mathematics - Part I-Section A
Item No:	14
Question ID:	101214
Question Type:	MCQ
Question:	The remainder when (2023) ${ }^{2021}$ is divided by 12 is :
A:	1
B:	5
C:	7
D:	11

Topic:	Mathematics - Part I-Section A
Item No:	15
Question ID:	$\mathbf{1 0 1 2 1 5}$
Question Type:	MCQ

Question:	The number of positive integers that are ≤ 1000 and divisible by 7 or 13 , is :
A:	218
B:	208
C:	228
D:	192

Topic:	Mathematics - Part I-Section A
Item No:	16
Question ID:	101216
Question Type:	MCQ
Question:	Let A and B be $n \times n$ real matrices such that $A=A^{T}$ and $B=-B^{T}$. If $C=A^{5} B^{2}-B^{2} A^{5}$ and $D=A^{4} B^{3}-B^{3} A^{4}$, then :
A:	C is symmetric and D is skew-symmetric
B:	Both C and D are symmetric
C:	Both C and D are skew-symmetric
D:	C is skew-symmetric and D is symmetric

Topic:	Mathematics - Part I-Section A
Item No:	17
Question ID:	$\mathbf{1 0 1 2 1 7}$
Question Type:	MCQ
Question:	The sum of the real and imaginary parts of all the complex numbers z satisfying $\bar{z}=i\left(\operatorname{Re}(z)+z^{2}\right)$ is equal to :
A:	0
B:	1
C:	-1

D:	$-\frac{\sqrt{3}}{2}$

Topic:	Mathematics - Part I-Section A
Item No:	18
Question ID:	101218
Question Type:	MCQ
Question:	Let a, b, c respectively be the sides of the triangle ABC opposite the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$. If $\sin \mathrm{C}$$=\frac{\sin (\mathrm{A}-\mathrm{B})}{\sin (\mathrm{B}-\mathrm{C})}$, then the value of $\frac{1+\cos (\mathrm{A}-\mathrm{B}) \cos \mathrm{C}}{1+\cos (\mathrm{A}-\mathrm{C}) \cos \mathrm{B}}-\frac{\mathrm{a}^{2}}{2 \mathrm{~b}^{2}}$ is equal to :
A:	$\frac{1}{4}$
B:	$\frac{1}{2}$
C:	1
D:	2

Topic:	Mathematics - Part I-Section A
Item No:	19
Question ID:	101219
Question Type:	MCQ
	If $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ is the ortho-centre of the triangle whose sides have the equations
Question:	$\frac{x-2}{-3}=\frac{y-3}{-2}=\frac{z+2}{4}, \frac{x-2}{-1}=\frac{y-3}{-2}=\frac{z+2}{3}$ and $\frac{x}{1}=\frac{y-1}{0}=\frac{z-\frac{3}{2}}{-\frac{1}{2}}$, then $\mathrm{a}-2 \mathrm{~b}+2 \mathrm{c}$
As equal to -	9
B:	11
C:	13
D:	15

Topic:	Mathematics - Part I-Section A
Item No:	20
Question ID:	101220
Question Type:	MCQ
Question:	In the below diagram, let $\mathrm{OB}=\mathrm{OS}=\mathrm{AB}=\mathrm{AR}=3$. If the area of the triangle OAB is 1 then the maximum value of $(\mathrm{OP})^{2}$ is : A: B: $\frac{9+\sqrt{77}}{2}$ C: $\frac{9+\sqrt{77}}{2}$

Topic:	Mathematics - Part I-Section B
Item No:	21
Question ID:	101221
Question Type:	Numeric Answer
	The least value of $\alpha \in \mathbf{R}$ for which
Question:	$\lim _{x \rightarrow 0} \frac{\left(2^{x}-1\right)^{2} \tan ^{\alpha} x}{\left(\sin ^{-1} x\right) \log _{e}\left(1+x^{6}\right)}$
	exists and is finite, is equal to

Topic:	Mathematics - Part I-Section B
Item No:	22
Question ID:	$\mathbf{1 0 1 2 2 2}$
Question Type:	Numeric Answer
	Let $\overrightarrow{\mathrm{a}}=2 \hat{i}-\hat{j}+\hat{k}$ and $\overrightarrow{\mathrm{b}}=\hat{i}+\hat{j}-\hat{k}$. Let a vector \vec{c} be coplanar with the vectors $\overrightarrow{\mathrm{a}}$
Question:	and $\overrightarrow{\mathrm{b}}$. If $\|\vec{c}\|^{2}=66$ and $\vec{c} \cdot(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})=12$, then the value of $\|\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}-4\|$ is equal to

Topic:	Mathematics - Part I-Section B
Item No:	23
Question ID:	$\mathbf{1 0 1 2 2 3}$
Question Type:	Numeric Answer
Question:	Let P_{1} and P_{2} be the images of the point $\mathrm{P}(-1,1,1)$ in the planes $-2 x+y+z+1=0$ and $x-y-z+2=0$ respectively. If the length of the line segment joining P_{1} and P_{2} is α, then the value of $9 \alpha^{2}$ is equal to.

Topic:	Mathematics - Part I-Section B
Item No:	24
Question ID:	$\mathbf{1 0 1 2 2 4}$
Question Type:	Numeric Answer
Question:	If the line segment joining the points $\mathrm{A}(\mathrm{a}, 2)$ and $\mathrm{B}(2,3)$ subtends an angle $\frac{\pi}{4}$ at the origin, then the maximum absolute value of a is equal to

Topic:	Mathematics - Part I-Section B
Item No:	25
Question ID:	$\mathbf{1 0 1 2 2 5}$
Question Type:	Numeric Answer

| Let the slope of the tangent at (x, y) to a curve passing through the point $(2,4)$ be $\frac{(x+y)^{2}}{(x+1)(y-1)}$. |
| :--- | :--- |

Question:
If the equation of the curve is $(x+1)^{\alpha}(x+2 y-\beta)=\alpha^{5} \mathrm{e}^{\left.\frac{(2 y-\gamma x-4}{x+1}\right)}$, then the value of $\alpha+\beta+\gamma$ is equal to \qquad .

Topic:	Mathematics - Part l-Section B
Item No:	26
Question ID:	101226
Question Type:	Numeric Answer
Question:	Let $f(\mathrm{t})=\int_{-\mathrm{t}}^{\mathrm{t}} \mathrm{e}^{x^{2}}\left(\left(1+2 x^{2}\right) \sin x+x \cos x\right) \mathrm{d} x . \quad$ Then the value of $f\left(\frac{\pi}{2}\right)+f(\pi)$ is equal to

Topic:	Mathematics - Part I-Section B
Item No:	27
Question ID:	101227
Question Type:	Numeric Answer
Question:	All possible 6-digit odd numbers formed with the digits 1, 1, 2, 3, 7, 8 are written in descending order. If 378121 is the $\mathrm{K}^{\text {th }}$ term of the sequence so formed, then K is equal to \qquad -.

Topic:	Mathematics - Part I-Section B
Item No:	28
Question ID:	$\mathbf{1 0 1 2 2 8}$
Question Type:	Numeric Answer
Question:	Let $\mathrm{A}=\left[\mathrm{a}_{i j}\right]$ be 3×3 real matrix and $\mathrm{Adj}(\mathrm{A})=\left[\mathrm{A}_{i j}\right]$. If $\mathrm{a}_{1 j}+\mathrm{a}_{2 j}+\mathrm{a}_{3 j}=1$, for $j=1,2,3$ and $\mathrm{A}_{11}=2, \mathrm{~A}_{31}=4$ and $\operatorname{det}(\mathrm{A})=10$, then A_{21} equals

Topic:	Mathematics - Part I-Section B
Item No:	29
Question ID:	$\mathbf{1 0 1 2 2 9}$

Question Type:	Numeric Answer
Question:	The least value of a real number K for which the equation $4 x^{2}-8(\mathrm{~K}-1) x+3 \mathrm{~K}^{2}+10-9 \mathrm{~K}=0$ has atleast one positive root is

Topic:	Mathematics - Part I-Section B
Item No:	30
Question ID:	$\mathbf{1 0 1 2 3 0}$
Question Type:	Numeric Answer
Question:	The number of transitive relations from the set $\{x, y\}$ to $\{x, y\}$ is equal to

Topic:	Aptitude Test - Part II
Item No:	31
Question ID:	$\mathbf{1 0 1 2 3 1}$
Question Type:	MCQ
Question:	A plan for selecting colours for composition is also known as
A:	Colour spectrum
B:	Colour wheel
C:	Colour scheme
D:	Colour mix

Topic:	Aptitude Test - Part II
Item No:	32
Question ID:	101232
Question Type:	MCQ
Question:	'Rowlatt Act' passed in which year ? (A) 1919 (B) 1920 (C) 1918 (D) 1921 Choose the most appropriate answer from the options given below :

A:	(A) only
B:	(A) and (B) only
C:	(B) only
D:	(B) and (C) only

Topic:	Aptitude Test - Part II
Item No:	33
Question ID:	$\mathbf{1 0 1 2 3 3}$
Question Type:	MCQ
Question:	The marble inlay work with precious and semi-precious stone in 'Taj Mahal' or elsewhere is popularly known as :
A:	Mondrian inlay work
B:	Kalamkari
C:	Pietra Dura/ Parchinkari
D:	Zardosi

Topic:	Aptitude Test - Part II
Item No:	34
Question ID:	$\mathbf{1 0 1 2 3 4}$
Question Type:	MCQ
Question:	'Shaking Minaret' situated in the city of
A:	Hyderabad
B:	Lucknow
C:	Ahmedabad
D:	Aurangabad

Topic:	Aptitude Test - Part II
Item No:	35
Question ID:	$\mathbf{1 0 1 2 3 5}$

Question Type:	MCQ
Question:	Which of the following personalities is not an Architect?
A:	Renzo Piano
B:	Richard Gere
C:	Charles Correa
D:	Richard Rogers

Topic:	Aptitude Test - Part II
Item No:	36
Question ID:	$\mathbf{1 0 1 2 3 6}$
Question Type:	MCQ
Question:	In which state 'Bihu' is most widely celebrated ?
A:	Rajasthan
B:	Uttar Pradesh
C:	Nagaland
D:	Assam

Topic:	Aptitude Test - Part II
Item No:	37
Question ID:	$\mathbf{1 0 1 2 3 7}$
Question Type:	MCQ
Question:	'NRCP' stands for
A:	National River Concept Plan
B:	National River Conserve Plan
C:	National River \& Conservation Plan
D:	National River Conservation Plan

Topic:	Aptitude Test - Part II
Item No:	38
Question ID:	101238

Question Type:	MCQ
Question:	Vernacular Architecture mainly involves :
A:	Use of modern/contemporary materials
B:	Use of automation technology
C:	Use of composite \& hightech materials
D:	Use of locally available material \& traditional construction technology

Topic:	Aptitude Test - Part II
Item No:	39
Question ID:	101239
Question Type:	MCQ
Question:	A discomfort caused by light contrast is known as
A:	Heat
B:	Glare
C:	Skin allergy
D:	Reflection of light

Topic:	Aptitude Test - Part II
Item No:	40
Question ID:	$\mathbf{1 0 1 2 4 0}$
Question Type:	MCQ
Question:	'Red Fort' of Agra was commissioned by whom ?
A:	Akbar
B:	Bahadur Shah Zafar
C:	Shahjahan
D:	Babar

Topic:	Aptitude Test - Part II
Item No:	41

Question ID:	101241
Question Type:	MCQ
Question:	The unit of measuring sound absorption in a room is :
A:	Sabin
B:	Phon
C:	Hertz
D:	Decibel

Topic:	Aptitude Test - Part II
Item No:	42
Question ID:	$\mathbf{1 0 1 2 4 2}$
Question Type:	MCQ
Question:	A land size of 60 meter $\times 30$ meter for a house design is drawn on paper at scale of $1: 100$, then what size is drawn on paper to represent land ?
A:	6 meter $\times 3$ meter
B:	$60 \mathrm{~cm} \times 30 \mathrm{~cm}$
C:	$6 \mathrm{~cm} \times 3 \mathrm{~cm}$
D:	$3 \mathrm{~m} \times 1.5 \mathrm{~m}$

Topic:	Aptitude Test - Part II
Item No:	43
Question ID:	101243
Question Type:	MCQ
Question:	Albido refers to :
A:	Thermal properties of external surface material

B:	Sound absorption properties of material
C:	Roughness of surface
D:	Porous properties of surface/material

Topic:	Aptitude Test - Part II
Item No:	44
Question ID:	101244
Question Type:	MCQ
Question:	Match List - I with List - II. List - I List - II Relatively long line segments separated by zigzag strokes (A) Solid lines (II)Delineate form of objects, edge of plane \& intersection of planes (B) Dashed lines (III) Indicate hidden segments (C) Grid lines (IV) Rectangular or radial system of lines for regulating plan (D) Break lines Choose the correct answer from the options given below :
A:	$(\mathrm{A})-(\mathrm{IV}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{II}),(\mathrm{D})-(\mathrm{III})$
B:	$(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{IV}),(\mathrm{D})-(\mathrm{III})$
C:	$(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{V}),(\mathrm{D})-(\mathrm{I})$
D:	$(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{III}),(\mathrm{D})-(\mathrm{IV})$

Topic:	Aptitude Test - Part II
Item No:	45
Question ID:	101245
Question Type:	MCQ
Question:	Given below are two statements : Statement I : \quadModular Proportioning system was developed by German Architect Mics Statement II : It combines the aesthetic dimensions of Golden ratio \& Fibonacci series. In the light of the above statements, choose the most appropriate answer from the options given below :

A:	Both Statement I and Statement II are correct
B:	Both Statement I and Statement II are incorrect
C:	Statement I is correct but Statement II is incorrect
D:	Statement I is incorrect but Statement II is correct

Topic:	Aptitude Test - Part II
Item No:	46
Question ID:	$\mathbf{1 0 1 2 4 6}$
Question Type:	MCQ
Question:	'My Architect' 'A son's journey' documentary is on which of the following Architect ?
A:	Louis Kahn
B:	Moshe Shafdi
C:	Zaha Hadid
D:	I.M. Pei

Topic:	Aptitude Test - Part II
Item No:	47
Question ID:	$\mathbf{1 0 1 2 4 7}$
Question Type:	MCQ
Question:	Which one of the following is not related to prestigious international awards in Architecture ?
A:	Royal Gold Medal (RIBA)
B:	Pritzker Prize
C:	Aga Khan Award
D:	META Award

Topic:	Aptitude Test - Part II
Item No:	48
Question ID:	101248
Question Type:	MCQ

	Identify the missing number in the given image :			
Question:		$	$	A:
:---				
B:				
C:				
D:				

Topic:	Aptitude Test - Part II
Item No:	49
Question ID:	101249
Question Type: MCQ Question: 	

	Match List - I with List - II. List - I List - II (A) (I) The Shard, London by Renzo Piano (B) (II) Infosys Building, Pune by Hafeez Contractor (C) (III) Jubilee Church, Rome by Richard Mier (D) (IV) LIC Building, New Delhi by Charles Correa Choose the correct answer from the options given below :
A:	$(\mathrm{A})-(\mathrm{I}),(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{IV}),(\mathrm{D})-(\mathrm{II})$
B:	$(\mathrm{A})-(\mathrm{IV}),(\mathrm{B})-(\mathrm{II}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{III})$
C:	(A) - (III), (B) - (I), (C) - (II), (D) - (IV)
D:	(A) - (III), (B) - (II), (C) - (I), (D) - (IV)

Topic:	Aptitude Test - Part II
Item No:	50
Question ID:	$\mathbf{1 0 1 2 5 0}$
Question Type:	MCQ
Question:	'Green is Red' book is written by which of the following Architect ?
A:	Revathi Kamath

B:	Anupama Kundu
C:	Anil Laul
D:	P.K. Das

Topic:	Aptitude Test - Part II
Item No:	51
Question ID:	101251
Question	
Type:	MCQ
	Given figure shows plan of an object. Identify the correct option from answer figure which will perfectly fit on right hand side of the question figure ?
Question:	

Topic:	Aptitude Test - Part II
Item No:	52
Question ID:	101252
Question Type:	MCQ
Question:	Find the odd figure in the problem figure given below.

Topic:	Aptitude Test - Part II	
Item No:	53	
Question ID:	101253	
Question		
Type:	MCQ	
Question:		

B:	
C:	
D:	

Topic:	Aptitude Test - Part II
Item No:	54
Question ID:	101254
Question Type:	MCQ
	Question figure shows 3 D view of an object. Identify number of surfaces in given object.

A:	11
B:	10
C:	9
D:	13

Topic:	Aptitude Test - Part II
Item No:	55
Question ID:	$\mathbf{1 0 1 2 5 5}$
Question Type:	MCQ
	How many total number of triangles are hidden in the problem figure given below ?

Topic:	Aptitude Test - Part II
Item No:	56
Question ID:	$\mathbf{1 0 1 2 5 6}$
Question Type:	MCQ
Question:	In a code language if 'PLEASE' is written as '573183' then 'LAPSE' will be written as -__.
A:	71853
B:	81573
C:	71583
D:	715831

Topic:
Item No:
Aptitude Test - Part II
Question ID:
Question
Type:

Question
Type:

Topic:	Aptitude Test - Part II
Item No:	59
Question	101259
ID:	Whestion
Type:	MCQ
respect to X - X?	
Question:	

Topic:	Aptitude Test - Part II
Item No:	60
Question ID:	$\mathbf{1 0 1 2 6 0}$
Question Type:	MCQ
	Question figure shows top view/ plan, front elevation and right side elevation of the same object. Identify the most appropriate 3 D view of the problem figures from given answer figure.
Question:	

A:	
B:	
C:	
D:	

Topic:	Aptitude Test - Part II
Item No:	61
Question ID:	101261
Question	
Type:	MCQ
	Question figure shows top view/plan of an object. Looking in the direction of arrow, identify the correct elevation from given answer figures.
Question:	

B:	
C:	
D:	

Topic:	Aptitude Test - Part II
Item No:	62
Question ID:	$\mathbf{1 0 1 2 6 2}$
Question Type:	MCQ
	The problem figure shows top view/plan of an object. Looking in the direction of arrow identify the correct elevation from given answer figures.
Question:	

Topic:	Aptitude Test - Part II
Item No:	63
Question ID:	$\mathbf{1 0 1 2 6 3}$
Question Type:	MCQ

	Question figure shows top view/plan of an object. Looking in the direction of arrow. Identify the correct elevation from given answer figure.
Question:	
A:	
Topic:	
Item No:	
Question	
ID:	

Question
Type:

Topic:	Aptitude Test - Part II
Item No:	65

Question	
ID:	Question
Type:	MCQ
Question figure shows 3 D view of an object. Identify the most appropriate top view/	
plan of given 3 D figure from answer figure.	
A:	
B:	

Topic:	Aptitude Test - Part II
Item No:	66
Question ID:	$\mathbf{1 0 1 2 6 6}$
Question Type:	MCQ

Question:

Question ID: (101267
Question
Type:

\square

Topic:	Aptitude Test - Part II
Item No:	68
Question	
ID:	101268
Question	
Type:	MCQ
	The question figure shows 3 D view of an object. Identify the most appropriate elevation of the given 3 D object, looking in the direction of an arrow, from the given answer figures.
Question:	

B:

Topic:	Aptitude Test - Part II
Item No:	69
Question ID:	$\mathbf{1 0 1 2 6 9}$
Question Type:	MCQ

Question:	Question figure shows 3 D view of an object. Identify the most appropriate elevation of the given 3 D object, looking in the direction of an arrow from the given answer figures.
A:	
B:	
C:	
D:	
Topic:	Aptitude Test - Part II
Item No:	70
Question ID:	101270
Question Type:	MCQ

Question:
\square

Topic:	Aptitude Test - Part II
Item No:	71
Question	
ID:	101271
Question	
Type:	MCQ
	Question figure shows 3 D view of an object. Identify the most appropriate elevation of the given 3 D object. Looking in the direction of an arrow, from the given answer figures. Question:

Topic:	Aptitude Test - Part II
Item No:	72
Question ID:	101272
Question Type:	MCQ
	Question figure shows 3 D view of an object. Identify most appropriate top view / plan of the object from given answer figures.

Topic:	Aptitude Test - Part II
Item No:	73
Question ID:	$\mathbf{1 0 1 2 7 3}$
Question Type:	MCQ
	Question figure shows 3 D view of an object. Identify the most appropriate elevation of the given 3 D object, looking in the direction of an arrow, from the given answer figures.

A:	
B:	
C:	
D:	
Topic:	Aptitude Test - Part II
Item No:	74
Question ID:	101274
Question Type:	MCQ

Question:	
A:	
B:	
Question:	
D:	
Topic:	Aptitude Test - Part II
Question	
ID:	
Question	
Type:	

A:	
B:	
C:	
D:	

| Topic: | Aptitude Test - Part II |
| :--- | :--- | :--- |
| Item No: | 76 |
| Question
 ID: | 101276 |
| Question
 Type: | MCQ |
| In the problem figure, 'A' \& 'B' have certain relation. Identify which one of the answer | |
| figures will have similar relation between 'C' \& ' | |

C:

Topic:	Aptitude Test - Part II
Item No:	77
Question ID:	101277
Question	
Type:	MCQ
	Which of the following answer figures will interlock diagonally into the question figure ?
Question:	

D:

Topic:	Aptitude Test - Part II
Item No:	78
Question ID:	$\mathbf{1 0 1 2 7 8}$
Question Type:	MCQ
	Question figure shows top view/plan, front elevation \& right side elevation of the same object. Identify most appropriate 3 D view of the object from given answer figures.
Question:	

Question
Question:
年

| Topic: | Aptitude Test - Part II |
| :--- | :--- | :--- |
| Item No: | 80 |
| Question
 ID: | 101280 |
| Question | |
| Type: | MCQ |
| Question: | |
| answer figures. | |
| A: | |

\square

Topic:	Drawing Test - Part III
Item No:	81
Question ID:	101281
Question Type:	Drawing Question
Question:	(A) Draw a proportionate sketch of given Reference Image. Use black and white Pencil rendering technique for shading. OR (B) Decode the given reference image and create balance composition. Use black and white rendering technique.

Topic:	Drawing Test - Part III
Item No:	82
Question ID:	$\mathbf{1 0 1 2 8 2}$
Question Type:	Drawing Question

Topic:	Planning - Part III
Item No:	83
Question ID:	$\mathbf{1 0 1 2 8 3}$
Question Type:	MCQ
Question:	Name of first town planning legislation enacted in India.
A:	Bombay Town Planning Act
B:	Madras Town Planning Act
C:	Orissa Town Planning and Improvement Act
D:	Kanpur Urban Area (development) Act

Topic:	Planning - Part III
Item No:	84
Question ID:	$\mathbf{1 0 1 2 8 4}$
Question Type:	MCQ

	Match the following :		
	(A) Eri	(I) Ladakh	
(B) Ahar Pynes	(II) Nagaland		
Question:	(C) Johads	(III) Bihar	
	(D) Zings	(IV) Rajasthan	
	(E) Zabo	(V) Tamilnadu	
	(F) Bawaris	(VI) Odisha	

Topic:	Planning - Part III
Item No:	85
Question ID:	101285
Question Type:	MCQ
Question:	Arrange the development of following type of modern industries in India with its Chronological order. (A) Textile mill (B) Jute mill (C) Iron and steel factory
A:	$(\mathrm{B}) \rightarrow(\mathrm{A}) \rightarrow(\mathrm{C})$
B:	$(\mathrm{C}) \rightarrow(\mathrm{A}) \rightarrow(\mathrm{B})$
C:	$(\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow(\mathrm{C})$
D:	$(\mathrm{B}) \rightarrow(\mathrm{C}) \rightarrow(\mathrm{A})$
Topic:	Planning - Part III
Item No:	86

Question ID:	$\mathbf{1 0 1 2 8 6}$
Question Type:	MCQ
Question:	The distance of points ' A^{\prime} ' and ' ${ }^{\prime}$ ' on actual ground is 250 m. . What will be the measurement between the points ' A ' and ' B^{\prime} on map drawn on scale 1:1000 ?
A:	25 cm
B:	2.5 cm
C:	25 m
D:	25 mm

Topic:	Planning - Part III
Item No:	87
Question ID:	$\mathbf{1 0 1 2 8 7}$
Question Type:	MCQ
Question:	How many sustainable dimensions were adopted by United Nations ?
A:	4
B:	5
C:	3
D:	6

Topic:	Planning - Part III
Item No:	88
Question ID:	$\mathbf{1 0 1 2 8 8}$
Question Type:	MCQ
Question:	What is the full form of 'URDPFI', guidelines ? By Ministry of Housing and Urban Affairs, India :
A:	Urban and Rural Development Plans Formulation and Implementation.
B:	Urban and Rural Design Plans Formulation and Implementation.
C:	Urban and Regional Design Plans Formulation and Implementation.

D:	Urban and Regional Development Plans Formulation and Implementation.

Topic:	Planning - Part III
Item No:	89
Question ID:	$\mathbf{1 0 1 2 8 9}$
Question Type:	MCQ
Question:	Name of famous Peruvian Historic sanctuary enlisted in 'UNESCO' WORLD HERITAGE site.
A:	Machu Picchu
B:	Lima
C:	Tacna
D:	Cusco

Topic:	Planning - Part III
Item No:	90
Question ID:	$\mathbf{1 0 1 2 9 0}$
Question Type:	MCQ
Question:	Which of the following does not enter in GDP ?
A:	National Defense
B:	Life expectancy
C:	Public service
D:	Public education

Topic:	Planning - Part III
Item No:	91
Question ID:	$\mathbf{1 0 1 2 9 1}$
Question Type:	MCQ
Question:	Identify the most appropriate set that relates to physical Infrastructure.
A:	Housing, education, health.
B:	Water supply, solid waste management, electricity.

C:	Petrol pumps, milk booths, LPG.
D:	Communication, parks, fire station.

Topic:	Planning - Part III
Item No:	92
Question ID:	101292
Question Type:	MCQ
Question:	Which one of the following is not correct pair ?
A:	(A) - (I)
B:	(B) - (II)
C:	(C) - (III)
D:	(D) - (IV)

Topic:	Planning - Part III
Item No:	93
Question ID:	$\mathbf{1 0 1 2 9 3}$
Question Type:	MCQ
Question:	Primary sector of economic activity is associated with :
A:	Real estate
B:	Agriculture
C:	Construction
D:	Education

Topic:
Planning - Part III

Item No:	94
Question ID:	101294
Question Type:	MCQ
Question:	The term 'Necropolis' refers to :
A:	Small size of city
B:	The New Metropolis
C:	The dead City
D:	The City in space

Topic:	Planning - Part III
Item No:	95
Question ID:	$\mathbf{1 0 1 2 9 5}$
Question Type:	MCQ
Question:	A Cul - de - sac is a street where :
A:	Only two wheelers are permitted
B:	Thorough traffic is discouraged
C:	Pedestraians are not permitted
D:	Vehicles are permitted to move in one direction only

Topic:	Planning - Part III
Item No:	96
Question ID:	$\mathbf{1 0 1 2 9 6}$
Question Type:	MCQ
Question:	Which year Human Development Report was published for the first time in India ?
A:	1981
B:	1990
C:	1870
D:	1980

Topic:	Planning - Part III
Item No:	97
Question ID:	$\mathbf{1 0 1 2 9 7}$
Question Type:	MCQ
Question:	A City with 2 million population has the notified Urban area of $250 \mathrm{sq} . \mathrm{km}$. One-fourth of the total population of the city resides in slums within four percent of notified Urban area. Find the correct answer.
A:	The density of population in slum is 5,000 persons per Sq.km.
B:	The density of population in slums is 50,000 persons per Sq.km.
C:	The density of population in slums is 10,000 persons per Sq.km.
D:	The density of population in slum is 1,000 persons per Sq.km.

Topic:	Planning - Part III
Item No:	98
Question ID:	101298
Question Type:	MCQ
Question:	Town is classified as 'Mono functional' when :
A:	$\geqslant 60 \%$ workers are in single sector
B:	$\geqslant 40 \%$ workers are in single sector
C:	$\geqslant 50 \%$ workers are in single sector
D:	

Topic:	Planning - Part III
Item No:	99
Question ID:	$\mathbf{1 0 1 2 9 9}$
Question Type:	MCQ

Question:	Identify the i List - I (A) Red (B) Blue (C) Yellow (D) Black	Bio (I) (II) (III) (IV)	medical Waste Management in Hospitals. List - II Outdated and discarded medicines Glass bottles and articles Infections waste, bandages Needles without syringes, blads shapes
A:	A - I		
B:	B - II		
c:	C - III		
D:	D - IV		

Topic:	Planning - Part III
Item No:	100
Question ID:	101300
Question Type:	MCQ
Question:	Which aspect is in the social dimension but not in environmental dimension from given Venn diagram.
A:	Sustainable economic development
B:	Sustainable development
C:	Equitable social environment

D: \quad Sustainable Natural and built environment

Topic:	Planning - Part III
Item No:	101
Question ID:	101301
Question Type:	MCQ
Question:	The diagram shows the number of male and female students using different modes of transport to commute to their school which of the following statements is/are correct ? (A) 50% of all those who use cycles to their school are females (B) More males compared to females use auto-rikshaws for commuting to school. (C) More females compared to males use cycles for commuting to school. (D) The highest share of students prefer walk for commuting to school.
A:	Both (D) and (A)
B:	Only (D)
C :	Both (B) and (C)
D:	Only (A)

Topic:	Planning - Part III
Item No:	102
Question ID:	$\mathbf{1 0 1 3 0 2}$
Question Type:	MCQ

In the given map, the island is located at a level.
In the given diagram, for a person to travel from cafe to the Rose garden, one will have to

Topic:	Planning - Part III
Item No:	104
Question ID:	$\mathbf{1 0 1 3 0 4}$
Question Type:	MCQ

In the given diagram for a person to travel from island to car parking one has to move in

Topic:	Planning - Part III
Item No:	105
Question ID:	101305
Question Type:	MCQ

Question:

Question:	Today one-forth of the mankind resides in inadequate housing characterised by lack of ventilation, temporary building materials, lack of infrastructure and poor environmental quality. Numerous authors have defined such housing as slums and have loaded it with evil cannotations such as 'Squatter'. illiteracy and higher incidence of crime. A typical response towards them is to demolish or remove from the urban fabric. In India slums are viewed as informal housing transition arising due to inability of formal channels to provide shelter supply to meet housing demand due to ever increasing migrant work force. Which is arriving in urban areas in demand of better job opportunities. Slum redevelopment programs, National Housing and Habitat policy and affordable housing policy are some of the results of shift in housing paradigm to fulfil demand of shelters. The nearest meaning of 'Squatter' in this paragraph would be.
A:	Poverty
B:	Unlawfully occupied
C:	Destitute
D:	Delinquency

Topic:	Planning - Part III
Item No:	107
Question ID:	101307
Question Type:	MCQ

\(\left.$$
\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Today one forth of the mankind resides in inadequate housing characterised by lack of } \\
\text { ventilation, temporary building materials, lack of infrastructure and poor environmental } \\
\text { quality. Numerous authors have defined such housing as slums and have loaded it with evil } \\
\text { cannotations such as 'Squatter', illiteracy and higher incidence of crime. A typical response } \\
\text { towards them is to demolish or remove from the urban fabric. } \\
\text { In India, slums are viewed as informal housing transition arising due to inability of formal } \\
\text { channels to provide shelter supply to meet housing demand due to ever increasing migrant } \\
\text { workforce which is arriving in urban areas in demand of better job opportunities. } \\
\text { Slum redevelopment programs, National Housing and Habitat policy and affordable housing } \\
\text { policy are some of the results of shift in housing paradigm to fulfil demand of shelters. } \\
\text { What conclusions can be drawn from this paragraph? }\end{array}
$$

(A) The perspective towards slums determine interventions.

(B) Incidence of slums is a global phenomena.

(C) Slums are result of formal system failure.

(D) Slums should be removed from the city.

(E) Slums are integral part of the city.\end{array}\right\}\)| (B), (D) only |
| :--- |
| A: |
| B: |

