JEE MAIN 2024
JANUARY ATTEMPT
PAPER-1 (B.Tech / B.E.)

QUESTIONS & SOLUTIONS
Reproduced from Memory Retention

📅 27 JANUARY, 2024
⏰ 03:00 PM to 06:00 PM

SHIFT - 2

Duration : 3 Hours
Maximum Marks : 300

SUBJECT - CHEMISTRY

LEAGUE OF TOPPERS (Since 2020)
TOP 100 AIRs IN JEE ADVANCED

AIR 5
MAYANK
MOTWANI
Roll No.: 20771637
JEE Adv. 2021

AIR 15
DHANANJAY
KEJRIWAL
Roll No.: 19825420
JEE Adv. 2020

AIR 29
SANKALP
PARASHAR
Roll No.: 19971689
JEE Adv. 2020

AIR 30
AARYAN
GUPTA
Roll No.: 20979000
JEE Adv. 2020

AIR 67
ANKAN
SARKAR
Roll No.: 20773420
JEE Adv. 2021

Admission Announcement for JEE Advanced (For Session 2024–25)

TARGET 2026
VIKAAS
For Class X to XI
Moving Students
Starting From:
3 & 17 APRIL’24

TARGET 2025
VYAPAK
For Class XI to XII
Moving Students
Starting From:
6 MAR & 3 APRIL’24

TARGET 2025
VISHESH
For Class XII
Passed Students
Starting From:
20 & 27 MARCH’24

Avail Scholarship up to 90% through R-NET on EVERY SUNDAY
CHEMISTRY

1. For 1st order reaction, time required for 99.9% completion is :
 (1) 2t_{1/2}
 (2) 4t_{1/2}
 (3) 5t_{1/2}
 (4) 10t_{1/2}

 Ans. (4)
 Sol. \[t_{99.9\%} = \frac{1}{k} \ln \left(\frac{100}{100 - 99.9} \right) = \frac{\ln(10^3)}{\ln 2} = \frac{3}{0.3} = 10 \]
 \[t_{99.9\%} = 10t_{1/2} \]

2. Number of non polar molecules among following are :
 HF, H_2O, CO_2, NH_3, SO_2, H_2, CH_4, BF_3

 Ans. (4)
 Sol. CO_2, H_2, CH_4, BF_3

3. 3M NaOH solution is to be prepared using 84 g NaOH, then the volume of solution in litre is
 \[____ \times 10^{-1} \]

 Ans. (7)
 Sol. \[3 = \frac{84}{40} \div V_{\text{sol}(L)} \]
 \[\therefore V_{\text{solution}} = 0.7 \text{ L} \]

4. Select incorrect match :
 (1) Haber process : Fe
 (2) Polythene : Ziegler-Natta catalyst [Al_2(CH_3)_6 + TiCl_4]
 (3) Wacker’s process : PtCl_2
 (4) Photography : AgBr

 Ans. (3)
 Sol. Wacker's process : PdCl_2
5. 1 mole PbS is oxidised by x mole O₃ liberating y mole O₂.
Determine (x + y).

Ans. (8)
Sol. PbS + 4O₃ → PbSO₄ + 4O₂
x = 4 ; y = 4

6. Spin only magnetic moment of [Pt(NH₃)₂Cl(CH₃NH₂)]Cl is :

Ans. (0)
Sol. Pt⁺²: 5d⁸ ⇒ dsp² & unpaired e⁻ = 0 ⇒ Magnetic moment = 0

7. S-1: Formation of Ce⁴⁺ is favoured by inert gas configuration.
S-2: Ce⁴⁺ acts as strong oxidising agent & converts to Ce³⁺.

Ans. Both S-1 & S-2 are correct.

8. Which of the following can't act as oxidising agent ?
(1) MnO₄⁻ (2) N₃⁻ (3) BrO₃⁻ (4) SO₄²⁻

Ans. (2)
Sol. In N₃⁻, nitrogen is present in minimum O.N. & hence it cannot act as oxidising agent.

9. The quantity which changes with temperature is:
(1) Molarity (2) Molality (3) Mole fraction (4) Mass %

Ans. (1)
Sol. Quantities involving volume are temperature dependent.

10. Reduction potential of hydrogen electrode at pH = 3 is........

\[\left(\frac{2.303RT}{F} \right) = 0.059 \]

Ans. (~0.177 volt)

Sol. H⁺(aq) + e⁻ → \(\frac{1}{2} \)H₂(g)
R.P. = \(- \frac{0.059}{1} \log \left(\frac{1}{H⁺} \right) = -0.059 \log(10³) = -0.059 \times 3 = -0.177 \text{ volt} \)
11. Identify the species in which central atom is in d^2sp^3 hybridisation:

<table>
<thead>
<tr>
<th>Species</th>
<th>Hybridisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) SF$_6$</td>
<td>sp^3d^2</td>
</tr>
<tr>
<td>(2) BrF$_5$</td>
<td>sp^3d^2</td>
</tr>
<tr>
<td>(3) [PtCl$_4$]$^{2-}$</td>
<td>dsp^2</td>
</tr>
<tr>
<td>(4) [Co(NH$_3$)$_6$]$^{3+}$</td>
<td>d^2sp^3</td>
</tr>
</tbody>
</table>

Ans. (4)

Sol.

- SF$_6$: sp^3d^2
- BrF$_5$: sp^3d^2
- [PtCl$_4$]$^{2-}$: dsp^2
- [Co(NH$_3$)$_6$]$^{3+}$: d^2sp^3

12. $\Delta H^\circ = +77.2$ kJ, $\Delta S^\circ = 122$ J/mol-K, $T = 300$ K, $\log K = ?$

Ans. (-7.07)

Sol.

$\Delta G^\circ = -2.303RT\log K$

$$\frac{77.2 - \frac{300 \times 122}{1000}}{1000} = -2.303 \times 8.314 \times 300 \log K$$

$\therefore \log K = -7.07$

13. In group 16

Statement-I : Oxygen shows only -2 oxidation state.

Statement-II : On moving top to bottom, stability of $+4$ oxidation state decreases, whereas that of $+6$ oxidation state increases.

(1) Both Statement I and Statement II are correct.
(2) Both Statement I and Statement II are incorrect.
(3) Statement I is correct but Statement II is incorrect.
(4) Statement I is incorrect but Statement II is correct.

Ans. (2)

Sol.

Statement-I : Since electronegativity of oxygen is very high, it shows only negative oxidation state as -2 except in the case of OF$_2$ where its oxidation state is $+2$.

Statement-II : The stability of $+6$ oxidation state decreases down the group and stability of $+4$ oxidation state increases (inert pair effect).
14. How many of following has/have noble gas configuration?

$\text{Sr}^{2+}, \text{Cs}^+, \text{Yb}^{2+}, \text{La}^{2+}$

Ans. (2)

Sol. ($\text{Sr}^{2+}, \text{Cs}^+$)

15. Which of the following has d^{10} configuration?

(1) Cr, Cd, Cu, Ag
(2) Cd, Cr, Ag, Zn
(3) Ag, Cr, Cu, Zn
(4) Cu, Cd, Zn, Ag

Ans. (4)

Sol.
$\text{Cr} : [\text{Ar}] 3d^5 4s^1$
$\text{Cu} : [\text{Ar}] 3d^{10} 4s^1$
$\text{Ag} : [\text{Kr}] 4d^{10} 5s^1$
$\text{Zn} : [\text{Ar}] 3d^{10} 4s^2$
$\text{Cd} : [\text{Kr}] 4d^{10} 5s^2$

16. Which of the following is used to identify the phenolic group test?

(1) Carbylamine test
(2) Lucas test
(3) Tollen’s test
(4) Phthalein dye test

Ans. (4)

17. O

Product is:

(1) + I
(2) $\text{OH} + \text{I}$
(3) $\text{OH} + \text{H-O}$
(4) $\text{I} + \text{H-O}$

Ans. (2)
18. Match the column

(P) \(\text{OH} \) \(\xrightarrow{(i) \text{CHCl}_3/\text{NaOH}} \) \(\xrightarrow{(ii) \text{H}^+} \) \(\text{O} \)

(Q) \(\text{OH} \) \(\xrightarrow{\text{Na}_2\text{Cr}_2\text{O}_7} \) \(\text{OH} \)

(R) \(\text{OH} \) \(\xrightarrow{(i) \text{NaOH (1eq.)}} \) \(\xrightarrow{(ii) \text{CH}_3–\text{Cl}} \) \(\text{OH} \)

(S) \(\text{OH} \) \(\xrightarrow{(i) \text{CO}_2/\text{NaOH}} \) \(\xrightarrow{(ii) \text{H}^+} \) \(\text{OCH}_3 \)

Ans. (P) – (2) ; (Q) – (1) ; (R) – (4) ; (S) – (3)

19. When egg is boiled then which of the following structure of protein remains intact?

(1) Quaternary structure
(2) Primary structure
(3) Secondary structure
(4) Tertiary structure

Ans. (2)

20. Which of the following compound will not give \(\text{S}_\text{N}1 \) reaction?

(1) \(\text{CH}_2–\text{CH}–\text{CH}_2\text{Cl} \)
(2) \(\text{Ph}–\text{CH}_2–\text{Cl} \)
(3) \(\text{H}_3\text{C}–\text{CH}–\text{Cl} \)
(4) \(\text{CH}_3–\text{CH}–\text{CH}–\text{Cl} \)

Ans. (4)

21. The second homologue of monocarboxylic acid is

(1) \(\text{HCOOH} \) (2) \(\text{CH}_3\text{COOH} \) (3) \(\text{CH}_3\text{CH}_2\text{COOH} \) (4) \(\text{CH}_3\text{CH}_2\text{CH}_2–\text{COOH} \)

Ans. (2)
22. \[
\text{CH}=\text{CH}_2 \xrightarrow{(1) \text{B}_2\text{H}_6/\text{H}_2\text{O}_2, \text{OH}^-} \text{Product is}
\]

(2) HBr
(3) Mg/dry ether
(4) H–C–H
(5) H_2O^+

\[
\text{CH}_2\text{-OH}
\]

(1) Ph–CH–CH_3
(2) Ph–CH_2–CH_2–CH_2–OH
(3) Ph–CH_2–CH_2–O–CH_3
(4) Ph–CH–CH_2–CH_3

Ans. (1)

23. When 9.3 gm of aniline in reacted with acetic anhydride then mass of acetanilide formed is [X] gm. Report your answer as 10X.

Sol.

\[
\text{NH}_2 \xrightarrow{(\text{CH}_3\text{CO})_2\text{O}} \text{NH}^–\text{C}–\text{CH}_3
\]

9.3 gm

Mole of Aniline = \(\frac{9.3}{93} = 0.1\)

Mole of acetanilide = 0.1

Mass of acetanilide = 0.1 \times 135 = 13.5 gm

10x = 13.5 \times 10 = 135 gm

24. The correct stability order of following resonating structures is

(I) CH_2=CH–CH=O (II) \(\otimes\) CH_2–CH=C–H (III) \(\otimes\) CH_2–CH=CH–H

(1) II > III > I (2) I > II > III (3) I > III > II (4) III > II > I

Ans. (2)
25. Steam volatile and water immiscible substances are separated by
 (1) Steam distillation (2) Fractional distillation under reduced pressure
 (3) Fractional distillation (4) Distillation.
 Ans. (1)

26. How many of the following compounds contain chiral centre?

 (I) \[\text{O} \]
 (II) \[\text{O} \]
 (III) \[\text{CH}_3-\text{CH}_2-\text{CH}-\text{COOH} \]
 (IV) \[\text{NO}_2 \]
 (V) \[\text{I} \]
 (VI) \[\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_3 \]

 Ans. 4 (I, III, IV, V)

27. The bond line representation of following compound is

 \[\text{CH(OH)(CN)}_2 \]

 (1) \[\text{CN} \]
 (2) \[\text{OH} \]
 (3) \[\text{NC} \]
 (4) \[\text{HO} \]

 Ans. (3)
SATYAM CHAKRAVORTY
(Classroom) selected for
- ASIAN PACIFIC MATHEMATICS OLYMPIAD (APMO) 2023
- IMOTC 2023 Camp (Conducted by HBCSE)
- BRONZE MEDAL IN INOI
 (Indian National Olympiad in Informatics 2023)

Success Delivered to the Deserving