PART : MATHEMATICS

1. The coefficient of x^{2012} in $(1 - x)^{2006} (1 + x + x^2)^{2007}$ is

 (1) 0
 (2) 1
 (3) 2
 (4) 3

Ans. (1)

Sol. $(1 - x)^{2006} (1 + x + x^2)^{2007} = (1 - x)^{2006} (1 - x^3)^{2007}$

$= (1-x) \sum_{r=0}^{2007} \binom{2007}{r} (-x^3)^r$
2. If the equation \(2\tan^2 \theta - 5 \sec \theta = 1\) has 7 solutions in \(\theta \in [0, \frac{n\pi}{2}]\) for least value of \(n \in \mathbb{N}\) then value of \(\sum_{k=1}^{n} \frac{k}{2^k}\) is equal to

\[
\begin{align*}
(1) \quad \frac{9}{2^3} & \quad (2) \quad \frac{91}{2^{13}} & \quad (3) \quad \frac{11}{2^3} & \quad (4) \quad \frac{7}{2^7} \\
\end{align*}
\]

Ans. (2)

Sol. \(2(\sec^2 \theta - 1) - 5\sec \theta - 1 = 0\)
\(2\sec^2 \theta - 5\sec \theta - 3 = 0\)
\((2\sec \theta + 1)(\sec \theta - 3) = 0\)

\(\sec \theta = -\frac{1}{2}\) or \(\sec \theta = 3\)

Rejected the solution are in 1st and 4th quadrant only

the least value of \(n\) is 13 for which equation has 7 solutions in \(0, \frac{13\pi}{2}\)

now \(\sum_{k=1}^{n} \frac{k}{2^k} = \sum_{k=1}^{13} \frac{k}{2^k} = \frac{91}{2^{13}}\)

3. \(\lim_{x \to 0} \frac{3 + \alpha \sin x + \beta \cos x + \log_e(1+x)}{3\tan^2 x} = \frac{1}{3}\), then the value of \((2\alpha - \beta)\) is equal to

Ans. (1)

Sol. \(\lim_{x \to 0} \frac{3 + \alpha \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!}\right) + \beta \left(1 - \frac{x^2}{2!}\right) + \log_e(1+x)}{3\tan^2 x} = \frac{1}{3}\)

\[\Rightarrow \lim_{x \to 0} \frac{(3 + \beta) + (\alpha + 1)x - \left(\frac{\beta + 1}{2}\right)x^2}{3\tan^2 x} = \frac{1}{3}\]

4. The position vector of the vertices A, B, C of a triangle are \(2\hat{i} + 3\hat{j} + 3\hat{k}, 2\hat{i} - 2\hat{j} + 3\hat{k}, \hat{i} - \hat{j} - \hat{k}\) respectively. Let \(r\) denotes the length of the angle bisector AD of \(\angle BAC\). Where 'D' is on the line segment BC, then \(2r^2\) equals?

Ans. (45)

Sol.

\(A(2, 3, 3)\)

\(B(2, -2, 3)\)

\(C(-1, -1, 3)\)

\[r^2 = \left(2 - \frac{1}{2}\right)^2 + \left(3 + \frac{3}{2}\right)^2 + 0\]

\(= \frac{1}{4} + \frac{9}{4} = \frac{5}{2}\)

\(2r^2 = 5\)
5. \[\int_{1}^{1+\alpha^2 - 2\alpha \cos x} \frac{1}{a^2 - 2\alpha \cos x} \, dx \] is equal (where \(|a| > 1\))

\begin{align*}
(1) \quad & \frac{\pi}{1-a^2} \\
(2) \quad & \frac{\pi}{\alpha^2 - 1} \\
(3) \quad & \frac{\pi}{2(a^2 - 1)} \\
(4) \quad & \frac{\pi}{2(1-a^2)}
\end{align*}

Ans. (2)

Sol. \[\text{Let } I = \int_{1}^{1+\alpha^2 - 2\alpha \cos x} \frac{1}{a^2 - 2\alpha \cos x} \, dx \]

\[I = \frac{1}{2\alpha} \int_{1}^{1+\alpha^2 - 2\alpha \cos x} \frac{1}{a^2 - 2\alpha \cos x} \, dx \]

\[= \frac{1}{2\alpha} \int_{1}^{1+\alpha^2 - 2\alpha \cos x} \frac{1}{\frac{a^2 - 1}{2\alpha}} \, dx \]

Let \(a = \frac{1 + \alpha^2}{2\alpha} \) then \(|a| > 1\)

\[I = \frac{1}{2\alpha} \int_{a - \cos x}^{a + \cos x} \frac{1}{\cos x} \, dx \]

\[= \frac{1}{2\alpha} \ln \left| \frac{a + \cos x}{a - \cos x} \right| \]

\[= \frac{1}{2\alpha} \ln \left| \frac{a + 1}{a - 1} \right| \]

\[= \frac{1}{2\alpha} \ln \left| \frac{\tan \frac{\pi}{2}}{\tan \frac{\pi}{2}} \right| \]

\[= \frac{1}{2\alpha} \ln \left| \frac{\tan \frac{\pi}{2}}{\tan \frac{\pi}{2}} \right| \]

\[= \frac{1}{2\alpha} \ln \left| \frac{\tan \frac{\pi}{2}}{\tan \frac{\pi}{2}} \right| \]

\[= \frac{1}{2\alpha} \ln \left| \frac{\tan \frac{\pi}{2}}{\tan \frac{\pi}{2}} \right| \]

\[= \frac{1}{2\alpha} \ln \left| \frac{\tan \frac{\pi}{2}}{\tan \frac{\pi}{2}} \right| \]

6. Number of solution of equation \(\tan^{-1} x + \tan^{-1} 2x = \frac{\pi}{4} \) is

Ans. (2)

Sol. \(\tan^{-1} x + \tan^{-1} 2x = \frac{\pi}{4} \)

\[\tan^{-1} 2x = \tan^{-1} 1 - \tan^{-1} x \]

\[2x = \frac{1}{1-x} \]

\[2x^2 + 3x - 1 = 0 \]

\[x = \frac{-3 \pm \sqrt{9 + 8}}{4} \]

\[x = \frac{-3 \pm \sqrt{9 + 8}}{4} \]
4
x = \frac{-3 \pm \sqrt{17}}{4}

Number of solution is 1.

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more : www.resso.co.in | Website : www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
Toll Free : 1800 258 5555 | 7840010831 | Resonance@resonance.co.in | Resonance@resonance.co.in | www.resonance.ac.in | www.resonance.ac.in

This solution was downloaded from Resonance JEE (main) 2023 Solution portal PAGE # 3

7. 20th term from the end of the progression 20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \ldots, 129\frac{1}{4} is ________

(1) -120
(2) -115
(3) -125
(4) -110

Ans. (2)

Sol. 20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \ldots, 129\frac{1}{4}

are in A.P. with common difference

d = 19\frac{1}{4} - 20 = -\frac{3}{4}

20\text{th term from end } = -129\frac{1}{4} + (20 - 1)\left(\frac{3}{4}\right)

= -129\frac{1}{4} + 19\frac{3}{4}

= -51\frac{1}{4}

= -115

8. A is the area of region 0 \leq y \leq \min (2x, 6x - x^2) then find 12A

(304)

Sol.

y = 2x

y = 6x - x^2

Solving 2x = 6x - x^2

x^2 - 4x = 0

y = x = 0, x = 4, y = 8

A = \frac{1}{2} \cdot 8 \cdot \frac{6}{4} \cdot \left(6x - x^2\right) dx

= 16 + \left(3x^2 - \frac{x^3}{3}\right)_{\frac{1}{2}}

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-022-39167222
To Know more : www.resso.co.in | Website : www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80302RJ2007PLC024029
Toll Free : 1800 258 5555 | 7840010831 | Resonance@resonance.co.in | Resonance@resonance.co.in | www.resonance.ac.in | www.resonance.ac.in

This solution was downloaded from Resonance JEE (main) 2023 Solution portal PAGE # 4
9. \(a\) and \(b\) are the roots of \(x^2 - x - 1 = 0\) and \(S_n = 2023\ a^n + 2024\ b^n\) then

\begin{align*}
(1) \quad & S_{12} = S_{11} + S_{10} \\
(2) \quad & 2S_{12} = S_{11} + S_{12} \\
(3) \quad & S_{11} = 2S_{10} + S_{12} \\
(4) \quad & S_{10} = S_{11} + S_{12}
\end{align*}

Ans. (1)

Sol.
\begin{align*}
x^2 - x - 1 &= 0 \\
S_0 &= S_{-1} = S_{-2} = 0 \\
S_n &= S_{n-1} + S_{n-2} \\
S_{12} &= S_{11} + S_{10}
\end{align*}

\(n = 12\)

10. If circle \((x-\alpha)^2 + (y-\beta)^2 = 50\) and line \(x + y = 0\) intersect at only one point \(P\) distance of \(P\) from origin is \(4\sqrt{2}\) then \(\alpha^2 + \beta^2\) is

\begin{align*}
(1) \quad & 81 \\
(2) \quad & 82 \\
(3) \quad & 85 \\
(4) \quad & 169
\end{align*}

Ans. (2)

Sol.
\[x + y = 0\] is tangent to the circle

\[(x-\alpha)^2 + (y-\beta)^2 = 50\]

\[OP = 4\sqrt{2}\]

\[PC = \sqrt{50} = 5\sqrt{2}\]

\[OC^2 = \alpha^2 + \beta^2 = (OP)^2 + (PC)^2\]

\[\alpha^2 + \beta^2 = 16 \times 2 + 50 = 82\]

11. Two finite set \(A\) and \(B\) have \(m\) and \(n\) elements respectively. If subset of \(A\) is 56 more than that of \(B\) then the distance between \((m, n)\) and \((2n-2, -3)\) is

\begin{align*}
(1) \quad & 8 \\
(2) \quad & 10 \\
(3) \quad & 11 \\
(4) \quad & 15
\end{align*}

Ans. (2)

Sol.
\[2n - 2 = 56\]

we know that \(64 - 8 = 56\)

\[m = 6, \quad n = 3\]

\[A = \{6, 3\}, \quad B = \{2, -3\}\]

\[AB = \sqrt{64 + 36} = 10\]

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IP/A, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 277700 | FAX No.: +91-022-39167222

To Know more : www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U80901RJ2000P0029 | Toll Free : 1800 256 5555 | 7844010333

www.youtube.com www.facebook.com www.twitter.com www.instagram.com

This solution was downloaded from [Resonance JEE (main) 2023 Solution portal](http://www.resonance.ac.in) PAGE # 5
13. If mean and standard deviation of 15 observation are 12 and 3 respectively. But an error is found that 10 is written in place of 12. If the correct mean is \(\mu \) and the correct variance \(\sigma^2 \) then find the value of \(15(\mu + \mu^2 + \sigma^2) \)

Ans. (2521)

Sol. Since \(\frac{\sum x_i}{15} = 12 \Rightarrow \sum x_i = 180 \)

but when data’s are corrected the new mean is

\[
\mu = \frac{\sum x_i - 10 + 12}{15} = \frac{180 - 10 + 12}{15} = \frac{182}{15}
\]

also given SD = \(\sqrt{\frac{\sum x_i^2}{15} - (12)^2} \)

\[
\Rightarrow 9 + 144 = \frac{\sum x_i^2}{15} - (12)^2
\]

\[
\Rightarrow \frac{\sum x_i^2}{15} = 153 + 18 = 2295
\]

new variance \(\sigma^2 = \frac{\sum x_i^2 - 100 + 144}{15} - (\mu)^2 \)

\[
\sigma^2 + \mu^2 = \frac{2295 + 44}{15} = 2521
\]
\[\tan^{-1} \left(\frac{y-1}{x-1} \right) - \frac{1}{2} \ln \left(\frac{y-1}{x-1} \right)^2 = c \]
\[x = 0, \ y = 2 \]
\[\frac{\pi}{4} = \frac{1}{2} \ln + \frac{c}{2n2} \]
\[c = \frac{\pi}{4} - \frac{1}{2} \ln + \frac{c}{2n2} \]

hence at \(x = 2 \), \(\tan^{-1} \left(\frac{y-1}{x-1} \right) - \frac{1}{2} \ln \left(\frac{y-1}{x-1} \right)^2 = c = \frac{\pi}{4} - \frac{1}{2} \ln + \frac{c}{2n2} \)
\(y = 0 \)

15. \(A \) is a \(2 \times 2 \) matrix, \(I \) is \(2 \times 2 \) identity matrix, \(|A - xI| = 0 \) has the roots \(-1, 3 \). Then find the sum of diagonal elements of \(A^2 \).

Ans. \(10 \)

Sol. Let \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \)
\(|A - xI| = 0 \Rightarrow \begin{bmatrix} a - x & b \\ c & d - x \end{bmatrix} = 0 \)

Resonance Eduventures Ltd.

Reg. Office & Corporate Office: LG Tower, A-46 & 52, IP1A, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777700 | FAX No.: +91-292-23167222
To Know more : www.RESO.in | Website : www.resonance.ac.in | Email: contact@resonance.ac.in | CIN : U80902RJ2000PTC024029
Toll Free : 1800 258 5555

This solution was downloaded from Resonance JEE (main) 2023 Solution portal PAGE # 7

\[|a - x| (d - x) - b(c - x) = 0 \]
\[x^2 - (a + d) x + ad - bc = 0 \]
has roots \(-1, 3 \)
\[a + d = 2 \]
\[ad - bc = -3 \]
\[A^2 = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]
\[= \begin{bmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{bmatrix} \]
Sum of diagonal element of \(A^2 \)
\[= a^2 + d^2 + 2bc \]
\[= (a + d)^2 + 2(bc - ad) \]
\[= 4 + 6 = 10 \]

16. For \(x \in (0, 3) \), \(g(x) = 3f \left(\frac{x}{3} \right) + f(3 - x) \) and \(f'(x) > 0 \) for \(x \in (0, 3) \).

If \(g(x) \) is increasing in \((a, 3) \) and decreasing in \((0, a) \) then find \(a' \)
\[\begin{align*}
(1) & \\
(2) & \\
(3) & \\
(4) & \\
\end{align*} \]

Ans. \(2 \)

Sol. Since \(f'(x) > 0 \) then \(f(x) \) is increasing in \((0, 3) \).
Now \(g'(x) = f \left(\frac{x}{3} \right) + f(3 - x) \)
For \(g(x) \) to be increasing
\[g'(x) = f \left(\frac{x}{3} \right) - f(3 - x) > 0 \]
\[\Rightarrow f \left(\frac{x}{3} \right) > f(3 - x) \]
\[\Rightarrow \frac{x}{3} > 3 - x \Rightarrow x > 9 - 3x \Rightarrow x > \frac{9}{4} \]
For \(g(x) \) to be decreasing
\[g'(x) < 0 \Rightarrow x < \frac{9}{4} \]
\[a = \frac{9}{4} \]

17. Let \(f(x) = \int_0^x f(t) \left(\frac{1 - t}{1 + t} \right)^{1/2} dt \). If \(g \) is odd continuous function and \(\int_0^a f(x) \left(\frac{x^2 \cos x}{1 + e^x} \right) dx = \frac{\pi^2}{12} - \alpha \), then
value of α is ________.

An. (1) 1 (2) 2 (3) 3 (4) 4

Sol. $f(x) = \frac{5}{x} g(t) \ln \left(\frac{1}{1+t} \right) dt$ is an odd function.

18. Let R be the interior region between the lines $3x - y + 1 = 0$ and $x + 2y - 5 = 0$ containing the origin. The set of all values of α for which the points $(\alpha^2, \alpha + 1)$ lies in R is

(1) $(-1, -\infty) \cup (3, \infty)$
(2) $(-3, 0) \cup \left(\frac{1}{3}, 1\right)$
(3) $(-\infty, -1) \cup \left(0, \frac{1}{3}\right) $
(4) $(-\infty, -2) \cup \left(0, \frac{1}{3}\right) $

An. (2)

Sol. $(\alpha^2, \alpha + 1)$ and $(0,0)$ lies on the same side of $3x - y + 1 = 0$ and $x + 2y - 5 = 0$

$\Rightarrow 3a^2 - a + 1 > 0$ and $a^2 + 2a + 2 - 5 < 0$

$a (3a - 1) > 0$ and $(a + 3)(a - 1) < 0$

$\Rightarrow (a > \frac{1}{3})$}

An. $(-3, 0) \cup \left(\frac{1}{3}, 1\right) $

19. If $1 + \frac{a}{3} \leq 0$ then α lies in the interval

(1) $(0, 3)$
(2) $(-3, 0)$
(3) $(-2, 1)$
(4) $(-2, 0)$

An. (2)

Sol. $C_2 \rightarrow C_2 - (c_1 + c_2)$

$\begin{bmatrix} 1 & 3 & 2 \\ 1 & 1 & 0 \\ 2a + 3 & 3a + 1 & -2a^2 + 6a + 1 \end{bmatrix}$

$\Rightarrow (2\alpha - 6\alpha + 1) = 0$

$\Rightarrow \alpha = \frac{3 + \sqrt{7}}{2}, \frac{3 - \sqrt{7}}{2}$
20. If \(f(x) = 6x - x^2 \) for \(x \in [0,2] \) and \(g(x) = \begin{cases} \min(g(t)); & 0 \leq t \leq x, 0 \leq x < 1 \\ 3 + x; & x \in [1,2] \end{cases} \), then number of points where \(g(x) \) is not differentiable is:

\[\begin{align*}
(1) & \quad 1 \\
(2) & \quad 0 \\
(3) & \quad 2 \\
(4) & \quad 3 \\
\end{align*} \]

Ans. (1)

Sol. \(f(x) = 6x - x^2 \)

\(g(x) = \begin{cases} 0; & 0 \leq x < 1 \\
3 + x; & 1 \leq x \leq 2 \end{cases} \)

\(g(x) \) is not differentiable at \(x = 1 \)

21. Three lines \(2x - y - 3 = 0, 6x + 3y + 4 = 0, \alpha x + 2y + 4 = 0 \) does not form a triangle then find \(\sum \alpha^2 \)

where \(\lfloor \cdot \rfloor \) denotes the greatest integer function.

Ans. (32)

Sol. Triangle will not form if either at least two lines are parallel or lines are concurrent.

If two line are parallel

\[\begin{align*}
& \frac{2}{\alpha} = \frac{-1}{2} \\
& \frac{6}{3} = \frac{4}{2} \\
& \frac{\alpha}{2} = \frac{4}{4} = 1
\end{align*} \]

If lines are concurrent

\[\begin{align*}
& \alpha = 4 \\
& \sum \alpha^2 = 16 + 16 + 16 = 5 \times 16 = 32
\end{align*} \]

22. Let \(S_1 = \binom{4}{2} \) and \(S_2 = \frac{\binom{5}{2}}{\binom{6}{2}} \) then

\[\begin{align*}
(1) & \quad S_1 \in \mathbb{N} \text{ and } S_2 \notin \mathbb{N} \\
(2) & \quad S_1 \notin \mathbb{N} \text{ and } S_2 \in \mathbb{N} \\
(3) & \quad S_1 \in \mathbb{N} \text{ and } S_2 \in \mathbb{N} \\
(4) & \quad S_1 \notin \mathbb{N} \text{ and } S_2 \notin \mathbb{N}
\end{align*} \]

Ans. (2)

Sol. 24 different objects into 6 persons of 4 each

Number of ways of making groups = \(\frac{24!}{(4!)^6} = I_1 \)

\(S_1 \in \mathbb{N} \)

divide 120 different objects into 24 persons of 5 each

\(\frac{5!}{(5!)^{24}} = I_2 \)

Hence \(S_2 \notin \mathbb{N} \)
COURSE

Course Commencement: 5th February 2024

Target: JEE (Main) 2024

Mode: Offline/Online

Course Concept

Percentile Booster Course (PBC) is for those students who want to boost their percentile in JEE Main 2024 through a systematic complete course revision & practice plan.

In this course, daily chapter wise tests, Full Syllabus Test, JEE Preparatory Test will be conducted and each test will be followed by proper offline/online discussion class.

Course Fee

Offline: ₹4999 | Online: ₹2499

JEE (Main) 2024 April Attempt में अधिकतम %ile प्राप्त करने के लिए आज ही Join करें!

Admissions Open for Class 12+

Academic Session 2024-25

Target: JEE (ADV) 2024

For Class XII Passed Student

VISHESH COURSE

Mode: Offline/Online

Class Starts

08th April, 2024

Target: JEE (MAIN) 2024

For Class XII Passed Student

ABHYAAS COURSE

Mode: Offline/Online

Class Starts

08th April, 2024

Scholarship on the basis of JEE (Main) 2024 %ile/AIR

Resonance

Educating for better tomorrow

JEE (Advanced) 2023 Result

AIR 7

Bikknna.A. Chowdary

Top 50 - 8
Top 100 - 15
All Students are from Our Offline/Online Classroom Programs

JEE (Main) 2023 Result

22 वर्षों से लगातार...श्रेष्ठ शिक्षण, श्रेष्ठ परिणाम...
6 AIRs in TOP-50

AIR 5
300/300 Marks
KAUSHAL VIJAYVERGIYA

AIR 26
100%ile
SOHAN DAS

AIR 29
100%ile
ASHIR STEENY

AIR 31
100%ile
KRISH GUPTA

AIR 34
100%ile
MAYANK SONI

AIR 50
100%ile (Maths)
HARSHIL LADOD

ADMISSIONS OPEN
Academic Session 2024-25

Class: V to XII & XII+

JEE (Advanced)
JEE (Main)
NEET (UG)

SCHOLARSHIP UPTO 100%
Based on ResoNET (Scholarship Test)

REGISTERED & CORPORATE OFFICE (CIN: U80302RJ2007PLC024029)
CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan) - 324005

© Resonance Edventures Limited | Toll-Free 1800-255-5555 | 0744-2777777, 2777700 | contact@resonance.ac.in | CIN - U80302RJ2007PLC024029