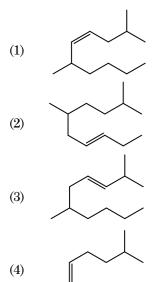
Section - A (Chemistry)

51. Given below are two statements:


Statement I:

Aspirin and Paracetamol belong to the class of narcotic analgesics.

Statement II:

Morphine and Heroin are non-narcotic analysis. In the light of the above statements, choose the **correct** answer from the options given below.

- (1) Both Statement I and Statement II are true.
- (2) Both **Statement I** and **Statement II** are false.
- (3) Statement I is correct but Statement II is false.
- (4) **Statement I** is incorrect but **Statement II** is true.
- **52.** The correct structure of 2,6-Dimethyl-dec-4-ene is:

- 53. BF $_3$ is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are:
 - (1) sp^3 and 4
 - (2) sp^3 and 6
 - (3) sp^2 and 6
 - (4) sp^2 and 8
- 54. Noble gases are named because of their inertness towards reactivity. Identify an **incorrect** statement about them.
 - (1) Noble gases are sparingly soluble in water.
 - (2) Noble gases have very high melting and boiling points.
 - (3) Noble gases have weak dispersion forces.
 - (4) Noble gases have large positive values of electron gain enthalpy.

- 55. The molar conductance of NaCl, HCl and ${\rm CH_3COONa}$ at infinite dilution are 126.45, 426.16 and 91.0 S cm² mol $^{-1}$ respectively. The molar conductance of ${\rm CH_3COOH}$ at infinite dilution is. Choose the right option for your answer.
 - (1) $201.28 \,\mathrm{S}\,\mathrm{cm}^2\,\mathrm{mol}^{-1}$
 - (2) $390.71 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$
 - (3) $698.28 \text{ S cm}^2 \text{ mol}^{-1}$
 - (4) $540.48 \,\mathrm{S} \,\mathrm{cm}^2 \,\mathrm{mol}^{-1}$
- **56.** The right option for the statement "Tyndall effect is exhibited by", is:
 - (1) NaCl solution
 - (2) Glucose solution
 - (3) Starch solution
 - (4) Urea solution
- **57.** The RBC deficiency is deficiency disease of:
 - (1) Vitamin B_{12}
 - (2) Vitamin B₆
 - (3) Vitamin B₁
 - (4) Vitamin B₂
- **58.** Dihedral angle of least stable conformer of ethane is:
 - (1) 120°
 - (2) 180°
 - (3) 60°
 - (4) 0°
- **59.** The **incorrect** statement among the following is:
 - (1) Actinoid contraction is greater for element to element than Lanthanoid contraction.
 - (2) Most of the trivalent Lanthanoid ions are colorless in the solid state.
 - (3) Lanthanoids are good conductors of heat and electricity.
 - (4) Actinoids are highly reactive metals, especially when finely divided.
- **60.** The major product formed in dehydrohalogenation reaction of 2-Bromo pentane is Pent-2-ene. This product formation is based on?
 - (1) Saytzeff's Rule
 - (2) Hund's Rule
 - (3) Hofmann Rule
 - (4) Huckel's Rule

- 61. Which one among the following is the correct option for right relationship between C_P and C_V for one mole of ideal gas?
 - (1) $C_P + C_V = R$
 - (2) $C_P - C_V = R$
 - $C_{\mathbf{p}} = RC_{\mathbf{V}}$ (3)
 - $C_V = RC_P$ (4)
- 62. Which one of the following polymers is prepared by addition polymerisation?
 - Teflon (1)
 - (2)Nylon-66
 - (3)Novolac
 - Dacron (4)
- 63. What is the IUPAC name of the organic compound formed in the following chemical reaction?

Acetone
$$\xrightarrow{\text{(i) C}_2\text{H}_5\text{MgBr, dry Ether}} \text{Product}$$

 $\xrightarrow{\text{(ii) H}_2\text{O, H}^+} \text{Product}$

- 2-methyl propan-2-ol (1)
- (2)pentan-2-ol
- (3)pentan-3-ol
- (4)2-methyl butan-2-ol
- 64. Match List - I with List - II.

List - I	List-II
List - i	L1St - 11

- PCl₅ (a)
- Square pyramidal (i)
- SF_6 (b)
- (ii) Trigonal planar

 BrF_5

(c)

- (iii) Octahedral
- (d) BF_3
- (iv) Trigonal bipyramidal

Choose the correct answer from the options given below.

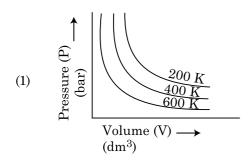
- (1) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (2)(a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3)(a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
- (4)(a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
- 65. Which one of the following methods can be used to obtain highly pure metal which is liquid at room temperature?
 - (1) Electrolysis
 - (2)Chromatography
 - (3)Distillation
 - (4) Zone refining

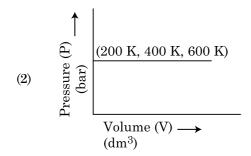
66. The major product of the following chemical reaction is:

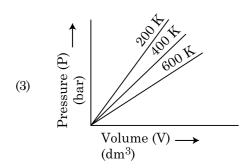
$$CH_3$$
 $CH - CH = CH_2 + HBr \xrightarrow{(C_6H_5CO)_2O_2}$?

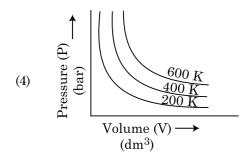
(1)
$$CH_3$$
 $CH - CH_2 - CH_2 - Br$ CH_3

$$\begin{array}{ccc} & \text{CH}_3 \\ \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{O} - \text{COC}_6 \text{H}_5 \end{array}$$


(3)
$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3} \\ \operatorname{CH_3} \\ \end{array} \begin{array}{c} \operatorname{CH-CH-CH_3} \\ \operatorname{Br} \end{array}$$


$$\begin{array}{ccc} \text{CH}_3 & \text{CBr} - \text{CH}_2 - \text{CH}_3 \\ & \text{CH}_3 & \end{array}$$


- 67. Tritium, a radioactive isotope of hydrogen, emits which of the following particles?
 - (1) Beta (β^{-})
 - Alpha (α) (2)
 - (3)Gamma (y)
 - (4) Neutron (n)
- 68. The correct sequence of bond enthalpy of 'C-X' bond is:
 - (1) $CH_3 - F < CH_3 - Cl < CH_3 - Br < CH_3 - I$
 - $CH_3 F > CH_3 Cl > CH_3 Br > CH_3 I$ (2)
 - $CH_3 F < CH_3 Cl > CH_3 Br > CH_3 I$ (3)
 - $CH_3 Cl > CH_3 F > CH_3 Br > CH_3 I$
- 69. Right option for the number of tetrahedral and octahedral voids in hexagonal primitive unit cell are:
 - (1) 8, 4
 - 6, 12 (2)
 - (3)2, 1
 - (4) 12,6
- 70. Which of the following reactions is the metal displacement reaction? Choose the right option.
 - $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$
 - (2) $\operatorname{Cr}_2\operatorname{O}_3 + 2\operatorname{Al} \xrightarrow{\Delta} \operatorname{Al}_2\operatorname{O}_3 + 2\operatorname{Cr}$
 - (3) Fe + 2HCl \rightarrow FeCl₂ + H₂ \uparrow
 - (4) $2\text{Pb}(\text{NO}_3)_2 \rightarrow 2\text{PbO} + 4\text{NO}_2 + \text{O}_2 \uparrow$


11

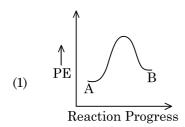
71. Choose the correct option for graphical representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures:

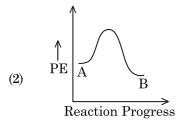
- 72. The p K_b of dimethylamine and p K_a of acetic acid are 3.27 and 4.77 respectively at T (K). The correct option for the pH of dimethylammonium acetate solution is :
 - (1) 8.50
 - (2) 5.50
 - (3) 7.75
 - (4) 6.25

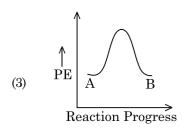
- **73.** Among the following alkaline earth metal halides, one which is covalent and soluble in organic solvents is:
 - (1) Calcium chloride
 - (2) Strontium chloride
 - (3) Magnesium chloride
 - (4) Beryllium chloride
- **74.** The maximum temperature that can be achieved in blast furnace is:
 - (1) upto 1200 K
 - (2) upto 2200 K
 - (3) upto 1900 K
 - (4) upto 5000 K
- **75.** Ethylene diaminetetraacetate (EDTA) ion is:
 - (1) Hexadentate ligand with four "O" and two "N" donor atoms
 - (2) Unidentate ligand
 - (3) Bidentate ligand with two "N" donor atoms
 - (4) Tridentate ligand with three "N" donor atoms
- 76. The following solutions were prepared by dissolving 10 g of glucose ($C_6H_{12}O_6$) in 250 ml of water (P_1), 10 g of urea (CH_4N_2O) in 250 ml of water (P_2) and 10 g of sucrose ($C_{12}H_{22}O_{11}$) in 250 ml of water (P_3). The right option for the decreasing order of osmotic pressure of these solutions is:
 - (1) $P_2 > P_1 > P_3$
 - (2) $P_1 > P_2 > P_3$
 - (3) $P_2 > P_3 > P_1$
 - (4) $P_3 > P_1 > P_2$

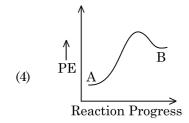
77. Statement I:

Acid strength increases in the order given as HF << HCl << HBr << HI.


Statement II:


As the size of the elements F, Cl, Br, I increases down the group, the bond strength of HF, HCl, HBr and HI decreases and so the acid strength increases.


In the light of the above statements, choose the **correct** answer from the options given below.


- (1) Both **Statement I** and **Statement II** are true.
- (2) Both **Statement I** and **Statement II** are false.
- (3) Statement I is correct but Statement II is false.
- (4) Statement I is incorrect but Statement II is true.

- **78.** The structures of beryllium chloride in solid state and vapour phase, are:
 - (1) Chain and dimer, respectively
 - (2) Linear in both
 - (3) Dimer and Linear, respectively
 - (4) Chain in both
- **79.** For a reaction $A\rightarrow B$, enthalpy of reaction is -4.2 kJ mol^{-1} and enthalpy of activation is 9.6 kJ mol^{-1} . The correct potential energy profile for the reaction is shown in option.

- 80. $\operatorname{Zr}(Z=40)$ and $\operatorname{Hf}(Z=72)$ have similar atomic and ionic radii because of :
 - (1) belonging to same group
 - (2) diagonal relationship
 - (3) lanthanoid contraction
 - (4) having similar chemical properties

- 81. A particular station of All India Radio, New Delhi, broadcasts on a frequency of 1,368 kHz (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is : [speed of light, $c = 3.0 \times 10^8 \, \text{ms}^{-1}$]
 - (1) 219.3 m
 - (2) 219.2 m
 - (3) 2192 m
 - (4) 21.92 cm
- 82. An organic compound contains 78% (by wt.) carbon and remaining percentage of hydrogen. The right option for the empirical formula of this compound is: [Atomic wt. of C is 12, H is 1]
 - (1) CH
 - (2) CH₂
 - (3) CH₃
 - (4) CH₄
- **83.** The compound which shows metamerism is:
 - (1) C_5H_{12}
 - (2) C_3H_8O
 - (3) C_3H_6O
 - (4) $C_4H_{10}O$
- **84.** Identify the compound that will react with Hinsberg's reagent to give a solid which dissolves in alkali.

(1)
$$CH_3$$
 $\dot{N}O_2$

(3)
$$CH_3$$
 CH_2 NH_2

(4)
$$CH_3$$
 CH_2
 CH_3
 CH_3

- **85.** The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit cells is:
 - (1) 7
 - (2) 5
 - (3) 2
 - (4) 3

Section - B (Chemistry)

86. Match List - I with List - II.

List - I

List-II

- $[Fe(CN)_6]^{3}$ (a)
- $5.92\,\mathrm{BM}$ (i)
- (b) $[Fe(H_{2}O)_{6}]^{3+}$
- (ii) $0\,\mathrm{BM}$

- $[Fe(CN)_6]^{4-}$ (c) $[Fe(H_2O)_6]^{2+}$ (d)
- (iii) 4.90 BM $1.73\,\mathrm{BM}$ (iv)

Choose the **correct** answer from the options given below.

- (1) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
- (2)(a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)
- (3)(a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
- (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii) (4)
- 87. Choose the correct option for the total pressure (in atm.) in a mixture of 4 g O2 and 2 g H2 confined in a total volume of one litre at 0°C is:

[Given R = 0.082 L atm mol⁻¹ K^{-1} , T = 273 K]

- (1)2.518
- (2)2.602
- (3)25.18
- (4) 26.02
- $CH_3CH_2COO^-Na^+ \xrightarrow{NaOH, +?} CH_3CH_3 +$ 88. Na₂CO₂.

Consider the above reaction and identify the missing reagent/chemical.

- (1) B_2H_6
- (2)Red Phosphorus
- (3)CaO
- (4)DIBAL-H
- 89. For irreversible expansion of an ideal gas under isothermal condition, the correct option is:
 - $\Delta U = 0$, $\Delta S_{total} = 0$ (1)
 - $\Delta U \neq 0, \Delta S_{total} \neq 0$ (2)
 - $\Delta U = 0$, $\Delta S_{total} \neq 0$ (3)
 - $\Delta U \neq 0$, $\Delta S_{total} = 0$ (4)
- 90. In which one of the following arrangements the given sequence is not strictly according to the properties indicated against it?
 - HF < HCl (1)

Increasing acidic

< HBr < HI

strength

(2) $H_2O < H_2S$ Increasing pK_a values

< H₂Se < H₂Te

Increasing

(3) $NH_3 < PH_3$ < AsH₃< SbH₃

acidic character

 $\begin{array}{l} {\rm CO}_2\!<\!{\rm SiO}_2 \\ <\!{\rm SnO}_2\!<\!{\rm PbO}_2 \end{array}$ (4)

Increasing

oxidizing power

The molar conductivity of 0.007 M acetic acid is 91. 20 S cm 2 mol $^{-1}$. What is the dissociation constant of acetic acid? Choose the correct option.

$$\begin{bmatrix} \Lambda_{\text{H}^{+}}^{\circ} = 350 \text{ S cm}^{2} \text{ mol}^{-1} \\ \Lambda_{\text{CH}_{3}\text{COO}}^{\circ} = 50 \text{ S cm}^{2} \text{ mol}^{-1} \end{bmatrix}$$

- (1) $1.75 \times 10^{-4} \text{ mol L}^{-1}$
- $2.50\!\times\!10^{-4}\ mol\ L^{-1}$ (2)
- $1.75 \times 10^{-5} \text{ mol L}^{-1}$ (3)
- $2.50 \times 10^{-5} \text{ mol L}^{-1}$ (4)
- The slope of Arrhenius Plot $\left(\ln k \text{ v/s } \frac{1}{T}\right)$ of first 92. order reaction is -5×10^3 K. The value of E_a of the reaction is. Choose the correct option for your

[Given $R = 8.314 \, JK^{-1} \text{mol}^{-1}$]

- 41.5 kJ mol^{-1} (1)
- 83.0 kJ mol^{-1} (2)
- $166 \, kJ \, mol^{-1}$ (3)
- $-83 \, kJ \, mol^{-1}$ (4)
- 93. The product formed in the following chemical reaction is:

$$\begin{array}{c} O & O \\ CH_2 - C - OCH_3 \\ \hline CH_3 & \hline \\ C2H_5OH \end{array}$$
?

(1)
$$CH_2 - \overset{\text{H}}{\overset{\text{C}}{\overset{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}$$

(2)
$$CH_2-CH_2-OH$$

94. Match List - I with List - II.

List - I

List - II

(a)
$$\frac{\text{CO, HCl}}{\text{Anhyd.AlCl}_{3}}$$
 (i)
$$\frac{\text{CuCl}}{\text{CuCl}}$$

Hell-Volhard-Zelinsky reaction

(b)
$$R - C - CH_3 + NaOX \longrightarrow$$

(ii) Gattermann-Koch reaction

$$\begin{array}{cc} \text{(c)} & \text{R}-\text{CH}_2-\text{OH} \\ & +\text{R'COOH} \end{array}$$

(d)

(iii) Haloform reaction

Conc.
$$H_2SO_4$$

R-CH₂COOH
(i) X₂/Red P

(iv) Esterification

Choose the **correct** answer from the options given below.

- (1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (2) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- (3) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
- (4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

95. Which of the following molecules is non-polar in nature?

- (1) POCl₂
- (2) CH₂O
- (3) SbCl₅
- (4) NO_2

96. From the following pairs of ions which one is not an iso-electronic pair?

- (1) O^{2-} , F^{-}
- (2) Na^+, Mg^{2+}
- (3) Mn^{2+} , Fe^{3+}
- (4) Fe^{2+} , Mn^{2+}

97. The correct option for the value of vapour pressure of a solution at 45°C with benzene to octane in molar ratio 3:2 is:

[At 45°C vapour pressure of benzene is 280 mm Hg and that of octane is 420 mm Hg. Assume Ideal gas]

- (1) 160 mm of Hg
- (2) 168 mm of Hg
- (3) 336 mm of Hg
- (4) 350 mm of Hg

98. Match List - I with List - II.

List - I

List-II

- (a) $2SO_2(g) + O_2(g) \rightarrow$ (i) Acid rain $2SO_3(g)$
- (b) $HOCl(g) \xrightarrow{h\nu}$ (ii) Smog OH+Cl
- $\begin{array}{ccc} \text{(c)} & & \text{CaCO}_3 + \text{H}_2 \text{SO}_4 {\rightarrow} & \text{(iii)} & \text{Ozone} \\ & & \text{CaSO}_4 + \text{H}_2 \text{O} + \text{CO}_2 & & \text{depletion} \end{array}$
- $\begin{array}{ccc} \text{(d)} & & NO_2(g) \xrightarrow{& h\nu &} & \text{(iv)} & \text{Tropospheric} \\ & & NO(g) + O(g) & & \text{pollution} \end{array}$

Choose the **correct** answer from the options given below.

- (1) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (4) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)

99. The reagent 'R' in the given sequence of chemical reaction is:

$$\begin{array}{c} \text{Br} & \underset{\text{Br}}{\overset{\text{NH}_2}{\bigvee}} \text{Br} & \underset{\text{Br}}{\overset{\text{NaNO}_2, \text{HCl}}{0 \cdot 5^{\circ}\text{C}}} & \text{Br} & \underset{\text{Br}}{\overset{\text{N}_2^+\text{Cl}^-}{\bigvee}} \text{Br} & \underset{\text{Br}}{\overset{\text{Br}}{\bigvee}} \text{Br} & \underset{\text{Br}}{\overset{\text{$$

- (1) $H_{2}O$
- (2) CH₂CH₂OH
- (3) HI
- (4) CuCN/KCN
- **100.** The intermediate compound 'X' in the following chemical reaction is:

$$\begin{array}{c} CH_3 \\ + CrO_2Cl_2 \xrightarrow{CS_2} X \xrightarrow{H_3O^+} \end{array} \begin{array}{c} O \\ \parallel \\ C \end{array}$$

$$(1) \qquad \qquad \text{CH(OCrOHCl}_2)_2$$

$$(3) \qquad \begin{array}{c} \text{CH} \\ \text{Cl} \end{array}$$

