NIOS Class 12 Mathematics Question Paper 2021 (Set C) | his Question Paper consists of 33 questions and 16 printed pages + Graph Sheet. | |---| | स प्रश्न-पत्र में 33 प्रश्न तथा 16 मुद्रित पृष्ठ + ग्राफ शीट हैं। | | 51. No. | | coll No.
ानुक्रमांक and | | MATHEMATICS Set /सेट C | | (गाणत) | | (311) | | Day and Date of Examination: | | परीक्षा का दिन व दिनांक) | | ignature of Invigilators: 1 | | निरीक्षकों के हस्ताक्षर)
2 | #### **General Instructions:** - 1. Candidate must write his/her Roll Number on the first page of the Question Paper. - 2. Please check the Question Paper to verify that the total pages and total number of questions contained in the Question Paper are the same as those printed on the top of the first page. Also check to see that the questions are in sequential order. - 3. Making any identification mark in the Answer-Book or writing Roll Number anywhere other than the specified places will lead to disqualification of the candidate. - 4. Write your Question Paper Code No. 60 / OSS /1, Set C on the Answer-Book. - 5. (a) The Question Paper is in English/Hindi medium only. However, if you wish, you can answer in any one of the languages listed below: English, Hindi, Urdu, Punjabi, Bengali, Tamil, Malayalam, Kannada, Telugu, Marathi, Oriya, Gujarati, Konkani, Manipuri, Assamese, Nepali, Kashmiri, Sanskrit and Sindhi. You are required to indicate the language you have chosen to answer in the box provided in the Answer-Book. - (b) If you choose to write the answer in the language other than Hindi and English, the responsibility for any errors/mistakes in understanding the questions will be yours only. #### सामान्य अनुदेश : - 1. परीक्षार्थी प्रश्न-पत्र के पहले पृष्ठ पर अपना अनुक्रमांक आवश्य लिखें। - 2. कृपया प्रश्न-पत्र को जाँच लें की प्रश्न-पत्र के कुल पृष्ठों तथा प्रश्नों की उतनी ही संख्या है जितनी प्रथम पृष्ठ के सबसे ऊपर छपी है। इस बात की जाँच भी कर लें की प्रश्न क्रमिक रूप में हैं। - 3. उत्तर-पुस्तिका में पहचान-चिह्न बनाने अथवा निर्दिष्ट स्थानों के अतिरिक्त कहीं भी अनुक्रमांक लिखने पर परीक्षार्थी को अयोग्य ठहराया जायेगा। - 4. अपनी उत्तर-पुस्तिका पर प्रश्न-पत्र की कोड संख्या. 60 / OSS /1, सेट C लिखें। - 5. (क) प्रश्न-पत्र केवल हिंदी/अंग्रेजी माध्यम में है। फिर भी, यिद आप चाहें तो नीचे दी गई किसी एक भाषा में उत्तर दे सकते हैं : अंग्रेजी, हिंदी, उर्दू, पंजाबी, बंगला, तिमल, मलयालम, कन्नड़, तेलुगू, मराठी, उड़िया, गुजराती, कोंकणी, मणिपुरी, असिमया, नेपाली, कश्मीरी, संस्कृत और सिंधी। - कृपया उत्तर-पुस्तिका में दिए गए बॉक्स में लिखें कि आप किस भाषा में उत्तर लिख रहे हैं। - (ख) यदि आप हिंदी एवं अंग्रेजी के अतिरिक्त किसी अन्य भाषा में उत्तर लिखते हैं, तो प्रश्नों को समझने में होने वाली त्रुटियों/गलितयों की जिम्मेदारी केवल आपकी होगी। 60/OSS/1-311-C] G-607 # MATHEMATICS (गणित) (311) Time: 3 Hours [Maximum Marks: 100 Note: (1) This question paper consists of four Sections A, B, C and D containing 33 questions. - Question Number 1 to 10 in Section A are multiple choice questions (MCQ). Each question carries one mark. In each question there are four choices (A), (B), (C) and (D) of which only one is correct. You have to select the correct choice and indicate it in your answer book by writing (A), (B), (C) or (D) as the case may be. No separate time is allotted for attempting MCQ. - (3) Question Number 11 to 16 in Section B are very short answer questions and carry 2 marks each. - (4) Question Number 17 to 28 in Section C are short answer questions and carry 4 marks each. - (5) Question Number 29 to 33 in Section D are long answer questions and carry 6 marks each. - (6) All questions are **compulsory**. There is no overall choice, however, alternative choices are given in some questions. In such questions, you have to attempt only one choice. - निर्देश: (1) इस प्रश्न पत्र में कुल 33 प्रश्न हैं, जो चार खण्डों अ, ब, स तथा द में विभाजित हैं। - (2) खण्ड-अ में प्रश्न संख्या 1 से 10 तक तथा बहुविकल्पीय प्रश्न हैं, जिनमें प्रत्येक के लिए 1 अंक निर्धारित है। प्रत्येक प्रश्न के उत्तर के रूप में (A), (B), (C) तथा (D) चार विकल्प दिए गए हैं जिन में से कोई एक सही है। आपको सही विकल्प चुनना है तथा अपनी पुस्तिका में (A), (B), (C) तथा (D) में जो सही हो उत्तर के रूप में लिखना है। बहुविकल्पीय प्रश्न हल करने के लिए अलग से समय नहीं दिया गया है। - (3) खण्ड ब में प्रश्न संख्या 11 से 16 तक अति लघुउत्तरीय प्रश्न है तथा प्रत्येक के 2 अंक निर्धारित हैं। - (4) खण्ड स में प्रश्न संख्या 17 **से** 28 तक लघुउत्तरीय प्रश्न है तथा प्रत्येक के 4 **अंक** निर्धारित हैं। - (5) खण्ड द में प्रश्न संख्या 29 **से** 33 तक दीर्घ उत्तरीय प्रश्न है तथा प्रत्येक के 6 **अंक** निर्धारित हैं। - (6) सभी प्रश्न **अनिवार्य** हैं। पूर्ण प्रश्नपत्र में विकल्प नहीं हैं, फिर भी कुछ प्रश्नों में, आंतरिक विकल्प हैं। ऐसे सभी प्रश्नों में से आपको एक ही विकल्प हल करना है। # **SECTION-A** ## खण्ड-अ 1. $cos(tan^{-1} x)$ is equal to [1] $$(A) \quad \frac{1}{x^2 + 1}$$ (B) $$\frac{1}{\sqrt{1+x^2}}$$ (C) $$\frac{1}{x^2 - 1}$$ (D) $$\sqrt{x^2-1}$$ $\cos(\tan^{-1} x)$ बराबर है : (A) $$\frac{1}{x^2 + 1}$$ $$(B) \quad \frac{1}{\sqrt{1+x^2}}$$ (C) $$\frac{1}{x^2-1}$$ (D) $$\sqrt{x^2 - 1}$$ 2. $\int_{2}^{3} \frac{\sqrt{2-x}}{\sqrt{2-x} + \sqrt{x-3}} dx$ is equal to [1] $$(A) \quad \frac{1}{2}$$ $$(C)$$ -1 (D) $$\pi/4$$ $$\int_{2}^{3} \frac{\sqrt{2-x}}{\sqrt{2-x} + \sqrt{x-3}} dx$$ बराबर है: $$(A) \quad \frac{1}{2}$$ $$(C) -1$$ (D) $$\frac{\pi}{4}$$ 60/OSS/1-311-C] G-607 3. If $$y = x^{\tan x}$$, then $\frac{dy}{dx}$ is equal to [1] (A) $$y \frac{\tan x - x(\log x)\sec^2 x}{x}$$ (B) $$y \frac{\tan x + x(\log x)\sec^2 x}{x}$$ (C) $$\frac{\left(\tan x - \sec^2 x\right)}{x}$$ (D) $$\frac{\left(x\tan x + \sec^2 x\right)}{x}$$ यदि $$y = x^{\tan x}$$ है, तो $\frac{dy}{dx}$ बराबर है: (A) $$y \frac{\tan x - x(\log x)\sec^2 x}{x}$$ (B) $$y \frac{\tan x + x(\log x)\sec^2 x}{x}$$ (C) $$\frac{\left(\tan x - \sec^2 x\right)}{x}$$ (D) $$\frac{\left(x\tan x + \sec^2 x\right)}{x}$$ 4. Which of the following statement is true? [1] - (A) Chord of a circle is double of its radius - (B) Concentric circles have different radius - (C) If a number has more than two factors then it is not composite - (D) 25 is a multiple of 8. 60/OSS/1-311-C] G-607 4 [Contd # निम्न में से कौनसा कथन सही है? - (A) एक वृत्त की जीवा उसके अर्ध-व्यास से दुगनी होती है। - (B) एक ही केन्द्र वाले वृत्तों का अर्ध-व्यास भिन्न होते हैं। - (C) यदि किसी एक संख्या के गुणनखंड दो से अधिक हैं, तो वह संख्या भाज्य नहीं है। - (D) 25, 8 का गुणज है। - 5. Distance between planes x + 2y 3z = 10 and 2x + 4y 6z = 4 is [1] - $(A) \quad \frac{\sqrt{14}}{2}$ (B) 8 (C) $\frac{\sqrt{14}}{8}$ (D) $\frac{8}{\sqrt{14}}$ तलों x + 2y - 3z = 10 तथा 2x + 4y - 6z = 4 के बीच की दूरी है : $(A) \quad \frac{\sqrt{14}}{2}$ (B) 8 (C) $\frac{\sqrt{14}}{8}$ - (D) $\frac{8}{\sqrt{14}}$ - **6.** Let $f: \mathbb{N} \to \mathbb{N}$ be defined by f(x) = 2x + 3, $x \in \mathbb{N}$. Then f is [1] - (A) one to one but not onto - (B) onto but not one to one - (C) neither one to one nor onto - (D) one to one and onto माना $f: \mathbb{N} \to \mathbb{N}$ पर f(x) = 2x + 3, $x \in \mathbb{N}$ द्वारा परिभाषित एक फलन है। तो f एक - (A) एकैकी परन्तु आछादक नहीं, फलन है - (B) आछादक परन्तु एकैकी नहीं, फलन है - (C) न तो एकैकी और न ही आछादक, फलन है - (D) एकैकी और आछादक, फलन है 7. If $$A^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$, then A is equal to [1] $$(A) \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$ $$(B) \begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}$$ $$(C) \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$ $$(D) \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$$ यदि $A^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ है, तो A बराबर है : $$(A) \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$ (B) $$\begin{pmatrix} -2 & 1 \\ 1 & -1 \end{pmatrix}$$ $$(C) \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$ $$(D) \begin{pmatrix} -2 & 1 \\ 1 & 1 \end{pmatrix}$$ 60/OSS/1-311-C] G-607 6 [Conta..... collegedunia India's largest Student Review Platform 8. $$\int \left[\frac{1}{\log x} - \frac{1}{(\log x)^2} \right] dx \text{ is equal to}$$ [1] (A) $$\frac{x}{\log x} + c$$ (B) $$\frac{2x}{\log x} + c$$ (C) $$\frac{x}{2\log x} + c$$ (D) $$\frac{1}{\log x} + c$$ $$\int \left[\frac{1}{\log x} - \frac{1}{(\log x)^2} \right] dx$$ बराबर है: (A) $$\frac{x}{\log x} + c$$ (B) $$\frac{2x}{\log x} + c$$ (C) $$\frac{x}{2\log x} + c$$ (D) $$\frac{1}{\log x} + c$$ 9. General solution of the differential equation $$\frac{dy}{dx} = 4 \tan y$$ is equal to [1] (A) $$\sin y = ce^x$$ (B) $$y = \sin^{-1}(ce^{4x})$$ (C) $$y = \cos^{-1}(ce^{4x})$$ (D) $$y = \sin^{-1}(ce^{-4x})$$ अवकल समीकरण $\frac{dy}{dx} = 4 \tan y$ का व्यापक हल है : (A) $$\sin y = ce^x$$ (B) $$y = \sin^{-1}(ce^{4x})$$ (C) $$y = \cos^{-1}(ce^{4x})$$ (D) $$y = \sin^{-1}(ce^{-4x})$$ 60/OSS/1-311-C] G-607 [Contd..... 10. The value of x for which f(x) = |x - 1| is not differentiable, is: [1] (A) -1 (B) 2 (C) 0 (D) 1 x का वह मान, जिसके लिए f(x) = |x - 1| द्वारा परिभाषित फलन अवकलनीय नहीं है, है : (A) -1 (B) 2 (C) 0 (D) 1 ### **SECTION-B** खण्ड – ब 11. Evaluate $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$. [2] $\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$ का मान ज्ञात कीजिए। 12. If $\vec{a} = 2\hat{i} + \hat{j} - 3\hat{k}$ and $\vec{b} = 3\hat{i} - 5\hat{j} + 2\hat{k}$ represent two adjacent sides of a triangle, then find the angle between them. यदि एक त्रिभुज की दो संलग्न भुजाएँ $\vec{a}=2\hat{i}+\hat{j}-3\hat{k}$ तथा $\vec{b}=3\hat{i}-5\hat{j}+2\hat{k}$ द्वारा निरूपित हो तो, इन भुजाओं के बीच का कोण ज्ञात कीजिए। 60/OSS/1-311-C] G-607 13. Write the converse the following statements: [2] - a) If game is cancelled, then team A is win. - b) If a is a multiple of b then b is a factor of a. निम्न कथनों के विलोम लिखिए: - a) यदि खेल रद्द होता है, तो टीम A जीतती है। - b) यदि a, b का गुणज है, तो b, a का गुणनखंड है। 14. If $$A = \begin{pmatrix} 0 & -7 & 43 \\ 7 & 0 & -47 \\ -43 & 47 & 0 \end{pmatrix}$$, then show that $|A| = 0$. [2] यदि $$A = \begin{pmatrix} 0 & -7 & 43 \\ 7 & 0 & -47 \\ -43 & 47 & 0 \end{pmatrix}$$ है, तो दर्शाइए कि $|A| = 0$ OR/अथवा For $$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$, verify that $|A^2| = (|A|)^2$. $$A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$$ के लिए सत्यापित कीजिए कि $|A^2| = (|A|)^2$ **15.** Let R be a relation defined on the set of natural numbers \mathbb{N} as follows $R = \{(x, y) : x \in \mathbb{N}, y \in \mathbb{N} \text{ and } 3x - y = 12\}$. Find the domain and range of the relation R. [2] प्राकृत संख्याओं के समुच्चय $\mathbb N$ पर, सम्बन्ध $\mathbb R$ निम्न द्वारा परिभाषित है : $R = \{(x, y) : x \in \mathbb{N}, y \in \mathbb{N} \text{ और } 3x - y = 12\}$ सम्बन्ध R का प्रान्त व परिसर ज्ञात कीजिए। 16. Find the derivative of $\sin x^3$ with respect to x^2 . [2] $\sin x^3$ का, x^2 के सापेक्ष, अवकलज ज्ञात कीजिए। #### **SECTION - C** #### खण्ड – स 17. Solve the following equation for $$x(x > 0)$$: $\sin^{-1}\left(\frac{6}{x}\right) + \sin^{-1}\left(\frac{8}{x}\right) = \frac{\pi}{2}$ [4] $$x(x > 0)$$ के लिए निम्न समीकरण को हल कीजिए : $\sin^{-1} \left(\frac{6}{x}\right) + \sin^{-1} \left(\frac{8}{x}\right) = \frac{\pi}{2}$ 18. Find the interval in which the function $f(x) = 2x^3 + 9x^2 + 12x + 20$ are increasing or decreasing. [4] वे अंतराल ज्ञात कीजिए, जिन पर फलन $f(x) = 2x^3 + 9x^2 + 12x + 20$ वर्धमान या हासमान है। #### OR/अथवा Verify Rolle's theorem for the function $f(x) = e^x \sin x$, $0 \le x \le \pi$. फलन $f(x) = e^x \sin x$, $0 \le x \le \pi$ के लिए रोले के प्रमेय का सत्यापन कीजिए। 60/OSS/1-311-C] G-607 [Contd..... 19. Evaluate : $$\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} dx$$. [4] $$\int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\tan x}} dx$$ का मान ज्ञात कीजिए। 20. Find the equation of the line passing through the point (-1, -3, -2) and perpendicular to the lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$. [4] बिन्दु (-1,-3,-2) से गुजरने वाली और रेखाओं $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ तथा $\frac{x+2}{-3} = \frac{y-1}{2} = \frac{z+1}{5}$ के लम्बवत् रेखा का समीकरण ज्ञात कीजिए। **21.** Let \mathbb{R}^+ be the set of all positive real numbers and $f: \mathbb{R}^+ \to [2, \infty)$ be a function such that $f(x) = x^2 + 2$. Show that inverse of f exists and also find f^{-1} . [4] माना धनात्मक वास्तविक संख्याओं का समुच्चय \mathbb{R}^+ है और $f:\mathbb{R}^+ \to [2,\infty)$ पर $f(x)=x^2+2$ द्वारा परिभाषित फलन है। दर्शाइए कि फलन f के प्रतिलोम का अस्तित्व है और f^{-1} भी ज्ञात कीजिए। 22. Find the distance of the point (1, 2, 3) from the plane x - y + z = 5 measured parallel to the line $\frac{x+1}{2} = \frac{y+2}{3} = \frac{z+3}{4}$. [4] रेखा $\frac{x+1}{2} = \frac{y+2}{3} = \frac{z+3}{4}$ के समान्तर, बिन्दु (1, 2, 3) से तल x-y+z=5 की दूरी ज्ञात कीजिए। ## 23. Solve the following differential equation: **[4]** $$\frac{dy}{dx} + y \cot x = 2 \cos x$$ अवकल समीकरण $\frac{dy}{dx} + y \cot x = 2 \cos x$ को हल कीजिए। OR/अथवा Find the equation of the curve represented by $$\frac{dy}{dx} = xy + x + y + 1$$ and passing through the point (2, 0). $\frac{dy}{dx} = xy + x + y + 1$ द्वारा प्रदर्शित वक्र, जो बिन्दु (2, 0) से होकर जाता है, का समीकरण ज्ञात कीजिए। 24. Find: $$\int \frac{x^2}{(x^2+4)(x^2+9)} dx$$ [4] $$\int \frac{x^2}{(x^2+4)(x^2+9)} dx$$ ज्ञात कीजिए। OR/अथवा Find: $$\int \frac{1}{x + \sqrt{x}} dx$$. $$\int \frac{1}{x + \sqrt{x}} dx$$ ज्ञात कीजिए। 25. Given the sum of the perimeters of a circle and square, show that the sum of their areas is least when the diameter of the circle is equal to side of the square. [4] दिए गए वृत्त की परिधि तथा वर्ग के परिमाप का योग के लिए, दर्शाइए कि इनके क्षेत्रफलों का योग न्यूनतम होगा जबकि वृत्त का व्यास, वर्ग की भुजा के बराबर हो। **26.** Determine the values of a, b for which the function $$\left|\frac{|x+2|}{a}-a, x<-2\right|$$ $$f(x) = \begin{cases} \frac{|x+2|}{x+2} - a, & x < -2, \\ a+b, & x = -2, \\ 2x+b, & x > -2 \end{cases}$$ is continuous at x = -2. a और b के वे मान ज्ञात कीजिए, जिनके लिए फलन $$f(x) = \begin{cases} \frac{|x+2|}{x+2} - a, & x < -2, \\ a+b, & x = -2, \\ 2x+b, & x > -2 \end{cases}$$ x = -2 पर सतत है। **[4]** 27. $$I_3$$ is an identity matrix of order 3 and $A = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix}$. Show that $A^2 = I_3$ and hence find A^{-1} and $(A^2)^{-1}$. [4] कोटि 3 का एक इकाई आव्यूह I_3 तथा $A = \begin{pmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ के लिए दर्शाइए कि $A^2 = I_3$ तथा A^{-1} और $(A^2)^{-1}$ भी ज्ञात कीजिए। 28. Show that $$\begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a - 1)^3.$$ [4] दर्शाइए कि $$\begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \ 2a + 1 & a + 2 & 1 \ 3 & 3 & 1 \ \end{vmatrix} = (a - 1)^3$$ ## **SECTION-D** #### खण्ड –द 29. Prove that the straight lines $\frac{x-1}{3} = \frac{y+2}{1} = \frac{z+3}{2}$ and $\frac{x-5}{7} = \frac{y+8}{-5} = \frac{z-6}{11}$ are coplanar and find the equations of plane on which they lie. [6] सिद्ध कीजिए कि रेखाएँ $\frac{x-1}{3} = \frac{y+2}{1} = \frac{z+3}{2}$; $\frac{x-5}{7} = \frac{y+8}{-5} = \frac{z-6}{11}$ समतलीय हैं। उस तल का समीकरण भी ज्ञात कीजिए जिसमें ये रेखाएँ स्थित हैं। **30.** Find the smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2. [6] वृत्त $x^2 + y^2 = 4$ तथा रेखा x + y = 2 द्वारा घिरे छोटे क्षेत्र का क्षेत्रफल ज्ञात कीजिए। #### OR/अथवा Find the derivative of $\tan \sqrt{x}$ from first principle. $\tan \sqrt{x}$ का प्रथम सिद्धान्त से अवकलन ज्ञात कीजिए। 31. A manufacturer makes red and blue pen. He works at least 10 hours per day. A red pen takes twice as much as time as to make a blue pen. A blue pen takes 20 minutes time to make. A red pen sells for ₹8 and at most 50 can be sold in a day. A blue pen sells for ₹5 and at most 50 can be sold in a day. The manufacturer desires to maximize his revenue. Formulate the above problem as a L.P.P. and solve it graphically. [6] एक निर्माता लाल तथा नीले पैन बनाता है। वह प्रतिदिन कम से कम 10 घंटे काम करता है। एक लाल पैन बनाने में, एक नीले पैन को बनाने में लगने वाले समय से दुगना समय लगता है। एक नीले पैन को बनाने में 20 मिनट लगते हैं। एक लाल पैन को ₹8 में बेचा जाता है और एक दिन में अधिकतम 50 नग बेचे जा सकते हैं। एक नीला पैन ₹5 में बेचा जाता है और एक दिन में अधिकतम 50 नग बेचे जा सकते हैं। निर्माता अधिकतम राजस्व अर्जित करना चाहता है। इस समस्या को रैखिक प्रोग्रामन समस्या बनाइए और आलेखीय विधि से हल कीजिए। 32. Solve the following system of linear equations, using matrix method: $$3x + y + z = 1$$ $$2x + 2z = 0$$ $$5x - y + 2z = 4$$ आव्यूह विधि से, निम्न समीकरण निकाय को हल कीजिए: $$3x + y + z = 1$$ $$2x + 2z = 0$$ $$5x - y + 2z = 4$$ OR/अथवा Using elementary row operations, find the inverse of the following matrix. $$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix}$$ प्रारम्भिक पंक्ति संक्रियाओं का प्रयोग करके, निम्न आव्यूह का व्युत्क्रम ज्ञात कीजिए : $$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 2 \end{pmatrix}$$ 33. Find the equations of the tangent and normal to the curve $y^2 = x^3$ at the point where x coordinate is 4. [6] वक्र $y^2 = x^3$ के उस बिन्दु पर जिसका x-निर्देशांक 4 है, स्पर्श रेखा व अभिलंब के समीकरण ज्ञात कीजिए। **[6]**