

ANSWERS

CHAPTER 1

CHAPTER₂

- 2.1 10 cm, 40 cm away from the positive charge on the side of the negative charge.
- **2.2** 2.7×10^6 V
- **2.3** (a) The plane normal to AB and passing through its mid-point has zero potential everywhere.
	- (b) Normal to the plane in the direction AB.
- 2.4 (a) Zero
	- (b) 10^5 N C⁻¹
	- (c) 4.4×10^4 N C⁻¹
- 2.5 96 pF
- **2.6** (a) $3 pF$
	- (b) 40 V
- 2.7 (a) 9 pF
	- (b) 2×10^{-10} C, 3×10^{-10} C, 4×10^{-10} C
- **2.8** 18 pF, 1.8×10^{-9} C
- **2.9** (a) $V = 100 \text{ V}$, $C = 108 \text{ pF}$, $Q = 1.08 \times 10^{-8} \text{ C}$ (b) $Q = 1.8 \times 10^{-9}$ C, $C = 108$ pF, $V = 16.6$ V
	-
- **2.10** 1.5×10^{-8} J
- **2.11** 6 \times 10⁻⁶ J

CHAPTER 3

- 3.1 30 A
- **3.2** 17 Ω , 8.5 V
- 3.3 1027 °C
- **3.4** 2.0×10^{-7} Qm
- 3.5 0.0039 °C^{-1}
- 3.6 867 °C
- **3.7** Current in branch $AB = (4/17)$ A,
	- in BC = $(6/17)$ A, in CD = $(-4/17)$ A,
		- in AD = $(6/17)$ A, in BD. = $(-2/17)$ A, total current = $(10/17)$ A.
- 3.8 11.5 V; the series resistor limits the current drawn from the external source. In its absence, the current will be dangerously high.
- **3.9** 2.7 \times 10⁴ s (7.5 h)

CHAPTER₄

- **4.1** $\pi \times 10^{-4}$ T $\simeq 3.1 \times 10^{-4}$ T
- 4.2 3.5×10^{-5} T
- **4.3** 4 \times 10⁻⁶ T, vertical up
- **4.4** 1.2 \times 10⁻⁵ T, towards south

Answers

- 4.5 $0.6 N m^{-1}$
- **4.6** 8.1 \times 10⁻² N; direction of force given by Fleming's left-hand rule
- **4.7** 2 \times 10⁻⁵ N; attractive force normal to A towards B
- 4.8 $8\pi \times 10^{-3}$ T $\simeq 2.5 \times 10^{-2}$ T
- 4.9 0.96 N m
- 4.10 (a) 1.4, (b) 1
- 4.11 4.2 cm
- 4.12 18 MHz
- 4.13 (a) 3.1 Nm, (b) No, the answer is unchanged because the formula τ = *N I* **A** \times **B** is true for a planar loop of any shape.

CHAPTER₅

- **5.1** 0.36 JT^{-1}
- **5.2** (a) **m** parallel to **B**; $U = -mB = -4.8 \times 10^{-2}$ J: stable.

(b) **m** anti-parallel to **B**; $U = +mB = +4.8 \times 10^{-2}$ J; unstable.

- **5.3** 0.60 JT $^{-1}$ along the axis of the solenoid determined by the sense of flow of the current.
- 5.4 7.5×10^{-2} J
- 5.5 (a) (i) 0.33 J (ii) 0.66 J
	- (b) (i) Torque of magnitude 0.33 J in a direction that tends to align the magnitude moment vector along B. (ii) Zero.
- **5.6** (a) 1.28 A m^2 along the axis in the direction related to the sense of current via the right-handed screw rule.
	- (b) Force is zero in uniform field; torque = 0.048 Nm in a direction that tends to align the axis of the solenoid (i.e., its magnetic moment vector) along B.
- **5.7** (a) 0.96 g along S-N direction.
	- (b) 0.48 G along N-S direction.

CHAPTER₆

- 6.1 (a) Along qrpq
	- (b) Along prq, along yzx
	- (c) Along yzx
	- (d) Along zyx
	- (e) Along xry
	- (f) No induced current since field lines lie in the plane of the loop.
- 6.2 (a) Along adcd (flux through the surface increases during shape change, so induced current produces opposing flux).
	- (b) Along $a'd'c'b'$ (flux decreases during the process)

6.3 7.5×10^{-6} V

6.4 (1) 2.4×10^{-4} V, lasting 2 s

Physics

- (2) 0.6×10^{-4} V, lasting 8 s
- 6.5 100 V
- **6.6** (a) 1.5×10^{-3} V, (b) West to East, (c) Eastern end.
- 6.7 4H
- 6.8 30 Wb

CHAPTER 7

7.2 (a)
$$
\frac{300}{\sqrt{2}} = 212.1 \text{V}
$$

(b)
$$
10\sqrt{2} = 14.1
$$
 A

- 7.3 15.9 A
- 7.4 2.49 A
- 7.5 Zero in each case.
- 7.6 $125 s^{-1}$; 25
- **7.7** 1.1×10^3 s⁻¹
- 7.8 0.6 J, same at later times.
- 7.9 2,000 W

7.10
$$
v = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}
$$
, i.e., $C = \frac{1}{4\pi^2 v^2 L}$
For $L = 200$ µH, $v = 1200$ kHz, $C = 87.9$ pF.
For $L = 200$ µH, $v = 800$ kHz, $C = 197.8$ pF.

The variable capacitor should have a range of about 88 pF to 198 pF.

7.11 (a) 50 rad s⁻¹
(b) 40
$$
\Omega
$$
, 8.1 A
(c) V, 14275 V V, 14275 V V, 230 V

(c)
$$
V_{Lrms} = 1437.5 \text{ V}, V_{Crms} = 1437.5 \text{ V}, V_{Rrms} = 230 \text{ V}
$$

$$
V_{LCrms} = I_{rms} \left(\omega_0 L - \frac{1}{\omega_0 C} \right) = 0
$$

CHAPTER₈

8.1 (a)
$$
C = \varepsilon_0 A / d = 8.00 \text{ pF}
$$

$$
\frac{dQ}{dt} = C \frac{dV}{dt}
$$

$$
\frac{dV}{dt} = \frac{0.15}{1.07 \text{ mF}}
$$

$$
\frac{dv}{dt} = \frac{0.18}{80.1 \times 10^{-12}} = 1.87 \times 10^9 \,\mathrm{V\ s}^{-1}
$$

(b) $i_d = \varepsilon_0 \frac{d}{dt} \phi_{E}$ $i_d = \varepsilon_0 \frac{d}{dt} \Phi_{E}$. Now across the capacitor $\Phi_{E} = EA$, ignoring end corrections.

Therefore,
$$
\dot{\mathbf{t}}_d = \varepsilon_0 A \frac{\mathrm{d} \Phi_{\mathrm{E}}}{\mathrm{d} t}
$$

Now,
$$
E = \frac{Q}{\varepsilon_0 A}
$$
. Therefore, $\frac{dE}{dt} = \frac{i}{\varepsilon_0 A}$, which implies $i_d = i = 0.15$ A.

(c) Yes, provided by 'current' we mean the sum of conduction and displacement currents.

8.2 (a)
$$
I_{\text{rms}} = V_{\text{rms}} \omega C = 6.9 \mu A
$$

- (b) Yes. The derivation in Exercise 8.1(b) is true even if *i* is oscillating in time.
- (c) The formula $B = \frac{\mu_0}{2\pi} \frac{r}{R^2} i_d$ $\mu_{\scriptscriptstyle (}$ $=\frac{\mu_0}{2\pi}$

goes through even if i_d (and therefore B) oscillates in time. The formula shows they oscillate in phase. Since $i_d = i$, we have

 $i_0 = \frac{\mu_0}{2\pi} \frac{1}{R^2} i_0$ $B_0 = \frac{\mu_0}{2\pi} \frac{r}{R^2} i$ $\mu_{\scriptscriptstyle (}$ $=\frac{\mu_0}{2\pi}\frac{1}{R^2}i_0$, where B_0 and i_0 are the amplitudes of the oscillating magnetic field and current, respectively. $i_0 = \sqrt{2} I_{\text{ms}} = 9.76$ µA. For $r = 3$ cm, $R = 6$ cm, $B_0 = 1.63 \times 10^{-11}$ T.

- **8.3** The speed in vacuum is the same for all: $c = 3 \times 10^8$ m s⁻¹.
- 8.4 E and B in *x*-*y* plane and are mutually perpendicular, 10 m.
- **8.5** Wavelength band: $40 \text{ m} 25 \text{ m}$.
- 8.6 10^9 Hz
- 8.7 153 N/C

8.8 (a) 400 nT,
$$
3.14 \times 10^8
$$
 rad/s, 1.05 rad/m, 6.00 m.

- (b) $\mathbf{E} = \{ (120 \text{ N/C}) \sin[(1.05 \text{ rad/m})]x (3.14 \times 10^8 \text{ rad/s})t] \}$ $\mathbf{B} = \{ (400 \text{ nT}) \sin[(1.05 \text{ rad/m})]x - (3.14 \times 10^8 \text{ rad/s})t] \} \hat{\mathbf{k}}$
- **8.9** Photon energy (for $\lambda = 1$ m)

$$
= \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19}} \, \text{eV} = 1.24 \times 10^{-6} \, \text{eV}
$$

Photon energy for other wavelengths in the figure for electromagnetic spectrum can be obtained by multiplying approximate powers of ten. Energy of a photon that a source produces indicates the spacings of the relevant energy levels of the source. For example, $\lambda = 10^{-12}$ m corresponds to photon energy = 1.24×10^6 eV = 1.24 MeV. This indicates that nuclear energy levels (transition between which causes γ -ray emission) are typically spaced by 1 MeV or so. Similarly, a visible wavelength $\lambda = 5 \times 10^{-7}$ m, corresponds to photon energy = 2.5 eV. This implies that energy levels (transition between which gives visible radiation) are typically spaced by a few eV.

- **8.10** (a) $\lambda = (c/v) = 1.5 \times 10^{-2}$ m
	- (b) $B_0 = (E_0/c) = 1.6 \times 10^{-7} \text{ T}$
	- (c) Energy density in **E** field: $u_{\rm E} = (1/2)\varepsilon_0 E^2$ Energy density in **B** field: $u_{\text{B}} = (1/2\mu_0)B^2$ Using $E = cB$, and $c =$ $0^{\mathcal{L}}0$ 1 $\frac{1}{\mu_0 \varepsilon_0}$, $u_{\rm E} = u_{\rm B}$