

Rotational Motion JEE Main PYQ - 2

Total Time: 25 Minute

Total Marks: 40

Instructions

Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To des<mark>elect your c</mark>hosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.

Rotational Motion

1. The moment of inertia of a uniform cylinder of length l and radius R about its (+4, -1) perpendicular bisector is l. What is the ratio $\frac{l}{R}$ such that the moment of inertia is minimum? [8-Apr-2023 shift 1]

a.	$\sqrt{\frac{3}{2}}$
b.	$\frac{\sqrt{3}}{2}$
C.	1
d.	3

 $\sqrt{2}$

2. A circular disc D_1 of mass M and radius R has two identical discs D_2 and D_3 (+4, -1) of the same mass M and radius R attached rigidly at its opposite ends (see figure). The moment of inertia of the system about the axis OO', passing through the centre of D_1 , as shown in the figure, will be :

[11 Jan. 2019 II] **a.** $3MR^2$ **b.** $\frac{2}{3}MR^2$ C. MR^2 **d.** $\frac{4}{5}MR^2$

3. A long cylindrical vessel is half filled with a liquid. When the vessel is rotated (+4, -1) about its own vertical axis, the liquid rises up near the wall. If the radius of vessel is 5 cm and its rotational speed is 2 rotations per second, then the difference in the heights between the centre and the sides, in cm, will be

a. 1.2	[12 Jan. 2019 II]
b. 0.1	
c. 2	
d. 0.4	

- A metal coin of mass 5 g and radius 1 cm is fixed to a thin stick AB of (+4, -1) negligible mass as shown in the figure. The system is initially at rest. The constant torque, that will make the system rotate about AB at 25 rotations per second in 5 s, is close to : [10 Apr. 2019 II]
 - **a.** $4.0 imes 10^{-6}$ Nm
 - **b.** 2.0×10^{-5} Nm
 - **c.** 1.6×10^{-5} Nm
 - **d.** $7.9 imes 10^{-6}$ Nm
- 5. A particle of mass m is fixed to one end of a light spring having force (+4, -1) constant k and unstretched length l. The other end is fixed. The system is given an angular speed ω about the fixed end of the spring such that it rotates in a circle in gravity free space. Then the stretch in the spring is :

6. A rectangular solid box of length 0.3 m is held horizontally, with one of its sides (+4, -1) on the edge of a platform of height 5 m. When released, it slips off the table in a very short time $\tau = 0.01 s$, remaining essentially horizontal. The angle by which it would rotate when it hits the ground will be (in radians) close to :

a.	0.02	[8 Apr. 2019 II]
b.	0.28	
C.	0.5	
d.	0.3	

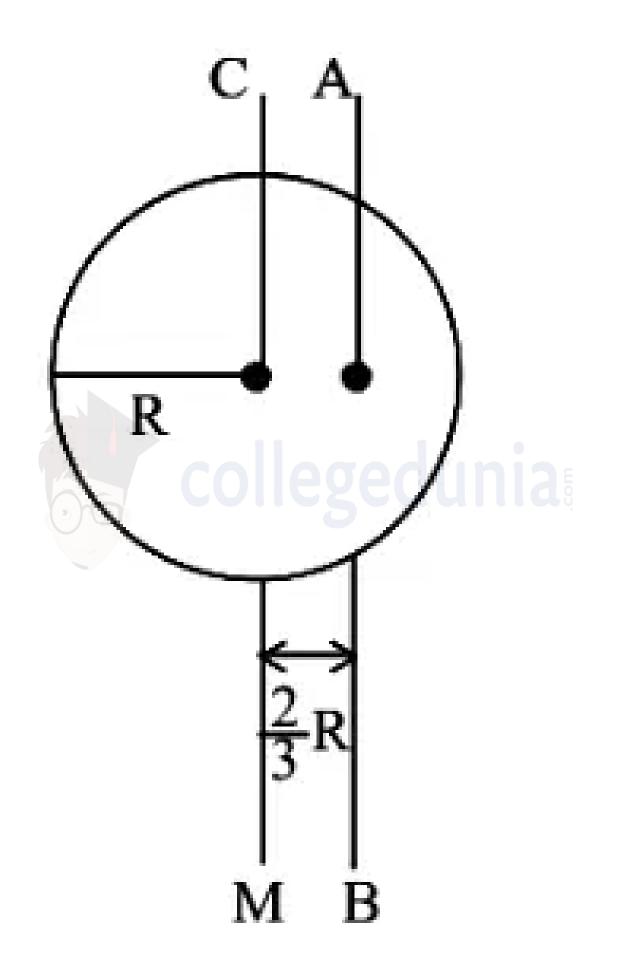
to:

a. turn left.

b. turn right.

c. go straight.

7. A rigid massless rod of length 3l has two masses attached at each end as shown in the figure. The rod is pivoted at point P on the horizontal axis (see figure). When released from initial horizontal position, its instantaneous angular acceleration will be : [10 Jan. 2019 II]


	a. $\frac{g}{2l}$	
	b. $\frac{7g}{3l}$	
	C. $\frac{g}{13l}$	
	d. $\frac{g}{3l}$	
8.	A roller is made by joining together two cones at their vertices O. It is kept on	(+4, -1)
	two rails AB and CD which are placed asymmetrically (see figure), with its	
	axis perpendicular to CD and its centre O at the centre of line joining AB and	l
	CD (see figure). It is given a light push so that it starts rolling with its centre O	

[2016]

moving parallel to CD in the direction shown. As it moves, the roller will tend

- d. turn left and right alternately.
- 9. Two discs of same mass and different radii are made of different materials such (+4, that their thicknesses are 1 cm and 0.5 cm respectively. The densities of -1) materials are in the ratio 3:5. The moment of inertia of these discs respectively about their diameters will be in the ratio of $\frac{x}{6}$. The value of x is ____.
- **10.** I_{CM} is the moment of inertia of a circular disc about an axis (CM) passing(+4,
through its center and perpendicular to the plane of disc I_{AB} is it's moment of
inertia about an axis AB perpendicular to plane and parallel to axis CM at a
distance $\frac{2}{3}R$ from center Where R is the radius of the dise The ratio of I_{AB} and
 I_{CM} is x : 9 The value of x is_____[31-Jan-2023 Shift 2]

Answers

1. Answer: a

Explanation:

$$\begin{split} I &= \frac{mR^2}{4} + \frac{ml^2}{12} \\ I &= \frac{m}{4} \left[R^2 + \frac{l^2}{3} \right] \\ &= \frac{m}{4} \left[\frac{v}{\pi l} + \frac{l^2}{3} \right] \\ \frac{dl}{dl} &= \frac{m}{4} \left[\frac{-v}{\pi l^2} + \frac{2l}{3} \right] = 0 \\ \frac{v}{\pi l^2} &= \frac{2l}{3} \\ v &= \frac{2\pi l^3}{3} \\ \pi R^2 l &= \frac{2\pi l^3}{3} \\ \frac{l^2}{R^2} &= \frac{3}{2} \\ \frac{l}{R} &= \sqrt{\frac{3}{2}} \end{split}$$

Concepts:

1. System of Particles and Rotational Motion:

- The system of particles refers to the extended body which is considered a <u>rigid b</u> ody most of the time for simple or easy understanding. A rigid body is a body with a perfectly definite and unchangeable shape.
- 2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
- 3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.

2. Answer: a

Explanation:

$$egin{aligned} I &= rac{MR^2}{2} + 2\left(rac{MR^2}{4} + MR^2
ight) \ &= rac{MR^2}{2} + rac{MR^2}{2} + 2MR^2 \end{aligned}$$

 $= 3 \, M R^2$

Concepts:

1. System of Particles and Rotational Motion:

- The system of particles refers to the extended body which is considered a <u>rigid b</u> ody most of the time for simple or easy understanding. A rigid body is a body with a perfectly definite and unchangeable shape.
- 2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
- 3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.

3. Answer: c

ollegedunia

$$y \,=\, rac{\omega^2\,x^2}{2g} \,=\, rac{(2 imes 2\pi)^2 imes (0.05)^2}{20}] \,\,\simeq\, 2\,cm$$

Concepts:

Explanation:

1. System of Particles and Rotational Motion:

- The system of particles refers to the extended body which is considered a <u>rigid b</u> <u>ody</u> most of the time for simple or easy understanding. A rigid body is a body with a perfectly definite and unchangeable shape.
- 2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
- 3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.

4. Answer: b

Explanation:

 $egin{aligned} lpha &= rac{\Delta \omega}{\Delta t} = rac{25 imes 2\pi}{5} = 10 \pi \mathrm{rad}/ \mathrm{sec}^2 \ au &= \left(rac{5}{4} M R^2
ight) lpha \ &= rac{5}{4} imes 5 imes 10^{-3} imes \left(10^{-2}
ight)^2 imes 10 \pi \ &= 1.9625 imes 10^{-5} N m \ &\simeq 2.0 imes 10^{-5} N m \end{aligned}$

Concepts:

1. System of Particles and Rotational Motion:

- The system of particles refers to the extended body which is considered a <u>rigid b</u> ody most of the time for simple or easy understanding. A rigid body is a body with a perfectly definite and unchangeable shape.
- 2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
- 3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.

5. Answer: b

Explanation:

$$egin{aligned} kx &= m\ell\omega^2 + mx\omega^2 \ x &- rac{m\ell\omega^2}{k-m\omega^2} \end{aligned}$$

Concepts:

1. System of Particles and Rotational Motion:

1. The system of particles refers to the extended body which is considered a <u>rigid b</u> <u>ody</u> most of the time for simple or easy understanding. A rigid body is a body

with a perfectly definite and unchangeable shape.

- 2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
- 3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.

6. Answer: c

Explanation:

Angular impulse = change in angular momentum

 $\tau \Delta t = \Delta L$ $mg \frac{\ell}{2} \times 0.1 = \frac{m\ell^2}{3} \omega$ $\omega = \frac{3g \times 0.01}{2\ell}$ $= \frac{3 \times 10 \times .01}{2 \times 0.3}$ $= \frac{1}{2} = 0.5 \ rad/s$ time taken by rod to hit the ground $t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \times 5}{10}} = 1 \ \text{sec}$ in this time angle rotate by rod $\theta = \omega t = 0.5 \times 1 = 0.5 \ \text{radian}$

Concepts:

1. System of Particles and Rotational Motion:

- The system of particles refers to the extended body which is considered a <u>rigid b</u> <u>ody</u> most of the time for simple or easy understanding. A rigid body is a body with a perfectly definite and unchangeable shape.
- 2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
- 3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.

7. Answer: c

Explanation:

Applying torque equation about point P. $2M_{0}\left(2l\right)-5M_{0}gl=I\alpha$ $I = 2M_0 \left(2l
ight)^2 + 5M_0 l^2 = 13M_0 l^2 d$ $\therefore lpha = -rac{M_0 g \ell}{13 M_0 \ell^2} \Rightarrow lpha = -rac{g}{13 \ell}$ $\therefore \alpha = \frac{g}{13\ell}$ anticlockwise

Concepts:

1. System of Particles and Rotational Motion:

- 1. The system of particles refers to the extended body which is considered a rigid b ody most of the time for simple or easy understanding. A rigid body is a body with a perfectly definite and unchangeable shape.
- 2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
- 3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.

8. Answer: c

Explanation:

If central line is at a distance r from instantaneous axis of rotation, the r is at lesser distance from point on left than on right. Since $v = r\omega$, the roller will turn to left.

Concepts:

1. System of Particles and Rotational Motion:

1. The system of particles refers to the extended body which is considered a rigid b ody most of the time for simple or easy understanding. A rigid body is a body

with a perfectly definite and unchangeable shape.

- 2. The distance between the pair of particles in such a body does not replace or alter. Rotational motion can be described as the motion of a rigid body originates in such a manner that all of its particles move in a circle about an axis with a common angular velocity.
- 3. The few common examples of rotational motion are the motion of the blade of a windmill and periodic motion.

9. Answer: 5 - 5

Explanation:

The correct answer is 5.

Concepts:

1. Rotational Motion:

Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.

Rotational Motion Examples:

The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a <u>rigid body</u>.

Other examples:

- Moving by Bus
- Sailing of Boat
- Dog walking
- A person shaking the plant.
- A stone falls straight at the surface of the earth.
- Movement of a coin over a carrom board

Types of Motion involving Rotation:

1. Rotation about a fixed axis (Pure rotation)

- 2. Rotation about an axis of rotation (Combined translational and rotational motion)
- 3. Rotation about an axis in the rotation (rotating axis)

10. Answer: 17 - 17

Explanation:

The correct answer is 17.

 $egin{aligned} I_{cm} &= rac{mR^2}{2} \ I_{AB} &= rac{mR^2}{2} + m\left(rac{2R}{3}
ight)^2 = rac{17}{18}mR^2 \ rac{I_{AB}}{I_{cm}} &= rac{17}{9} \Rightarrow x = 17 \end{aligned}$

Concepts:

1. Rotational Motion:

Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.

Rotational Motion Examples:

The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a <u>rigid body</u>.

Other examples:

- Moving by Bus
- Sailing of Boat
- Dog walking
- A person shaking the plant.
- A stone falls straight at the surface of the earth.
- Movement of a coin over a carrom board

Types of Motion involving Rotation:

- 1. Rotation about a fixed axis (Pure rotation)
- 2. Rotation about an axis of rotation (Combined translational and rotational motion)

3. Rotation about an axis in the rotation (rotating axis)

