

# Sequence And Series JEE Main PYQ - 3

Total Time: 25 Minute

Total Marks: 40

## Instructions

## Instructions

- 1. Test will auto submit when the Time is up.
- 2. The Test comprises of multiple choice questions (MCQ) with one or more correct answers.
- 3. The clock in the top right corner will display the remaining time available for you to complete the examination.

## Navigating & Answering a Question

- 1. The answer will be saved automatically upon clicking on an option amongst the given choices of answer.
- 2. To des<mark>elect your c</mark>hosen answer, click on the clear response button.
- 3. The marking scheme will be displayed for each question on the top right corner of the test window.



## **Sequence And Series**

- 1. The sum of the common terms of the following three arithmetic progressions (+4, -1) 3,7,11,15,...,399, 2,5,8,11,...,359 and 2,7,12,17,...,197, is equal to \_\_\_\_ (+4, -1) **2.** The  $8^{\text{th}}$  common term of the series [1-Feb-2023Shift 2]  $S_1 = 3 + 7 + 11 + 15 + 19 + \dots$  $S_2 = 1 + 6 + 11 + 16 + 21 + \ldots$  is \_\_\_\_\_ 3. For any three positive real numbers a, b and c,  $9(25a^2 + b^2) + 25(c^2 - 3ac) =$ (+4, -1) 15b(3a + c). Then : [2017] **a.** b, c and a are in A.P**b.** a, b and c are in A.P**c.** a, b and c are in G.P**d.** b, c and a are in G.P4. Let  $a, b, c \in R$ . If  $f(x) = ax^2 + bx + c$  is such that a + b + c = 3 and  $f(x + y) = ax^2 + bx + c$ (+4, -1)  $f(x)+f(y)+xy, orall x, y \in R,$  then  $\sum_{n=1}^{\infty} f(n)$  is equal to : [Online April 15, 2018] **a**. 165 **b.** 190 **c**. 255 **d.** 330
- 5. Given an A.P. whose terms are all positive integers. The sum of its first nine (+4, -1) terms is greater than 200 and less than 220. If the second term in it is 12, then its 4<sup>th</sup> term is: [Online April 9, 2014]
  - **a.** 8

**b.** 16

**c.** 20



#### **d.** 24

- 6. If b is the first term of an infinite G.P. whose sum is five, then b lies in the (+4, -1) interval : [Online April 15, 2018]
  - **a.**  $(-\infty, -10]$
  - **b.** (-10,0)
  - **C.** (0, 10)
  - **d.**  $[10,\infty)$
- 7. If the sum of the series  $20 + 19\frac{3}{5} + 19\frac{1}{5} + 18\frac{4}{5} + \dots$  upto  $n^{th}$  term is 488 and the (+4, -1)  $n^{th}$  term is negative, then :
   [Sep. 03, 2020 (II)]
  - **a.**  $n^{th}$  term is  $-4\frac{2}{5}$
  - **b.** n = 41
  - **c.**  $n^{th}$  term is -4
  - **d.** n = 60
- 8. If three distinct numbers a,b,c are in G.P. and the equations  $ax^2 + 2bx + c = 0$  (+4, -1) and  $dx^2 + 2ex + f = 0$  have a common root, then which one of the following statements is correct? [April 08, 2019 (II)]
  - **a.** d, e, f are in A.P.
  - **b.**  $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$  are in *G*.*P*.
  - **c.**  $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$  are in A.P.
  - **d.** d, e, f are in G.P.



| 9. | Let $rac{1}{x_1},rac{1}{x^2},,rac{1}{x_n}(x_1 eq 0$ for $i=1,2,,n)$ be in A.P. such that | $x_1 = 4$ and $x_{21} = 20$ . If (+4, -1) |
|----|---------------------------------------------------------------------------------------------|-------------------------------------------|
|    | n is the least positive integer for which $x_n > 50$ , then $\sum_{i=1}^n$                  | $\left(rac{1}{x_i} ight)$ is equal to    |
|    | <b>a.</b> $\frac{1}{8}$                                                                     | [Online April 16, 2018]                   |
|    | <b>b.</b> 3                                                                                 |                                           |
|    | <b>C.</b> $\frac{13}{8}$                                                                    |                                           |
|    | <b>d.</b> $\frac{13}{4}$                                                                    |                                           |
| 10 | . Let $a_1,a_2,,a_{10}$ be a G.P. If $rac{a_3}{a_1}=25$ , then $rac{a_9}{a_5}$ equals :   | (+4, -1)                                  |
|    | <b>a.</b> $2(5^2)$                                                                          | [Online April 15, 2018]                   |
|    | <b>b.</b> $4(5^2)$                                                                          |                                           |
|    | <b>C.</b> 5 <sup>4</sup>                                                                    |                                           |

**d.**  $5^3$ 



## Answers

#### 1. Answer: 321 - 321

## **Explanation**:

The correct answer is 321 3,7,11,15,..., 399  $d_1 = 4$ 2,5,8,11,..., 359  $d_2 = 3$ 2,7,12,17,..., 197  $d_3 = 5$ LCM  $(d_1, d_2, d_3) = 60$ Common terms are 47, 107, 167 Sum = 321

#### Concepts:

### 1. Arithmetic Progression:

Arithmetic Progression (AP) is a mathematical series in which the difference between any two subsequent numbers is a fixed value.

For example, the **natural number** sequence 1, 2, 3, 4, 5, 6,... is an AP because the difference between two consecutive terms (say 1 and 2) is equal to one (2 -1). Even when dealing with odd and even numbers, the common difference between two consecutive words will be equal to 2.

In simpler words, an arithmetic progression is a collection of integers where each term is resulted by adding a fixed number to the preceding term apart from the first term.

For eg:- 4,6,8,10,12,14,16

We can notice Arithmetic Progression in our day-to-day lives too, for eg:- the number of days in a week, stacking chairs, etc.

#### Read More: Sum of First N Terms of an AP



## **Explanation:**

 $T_8 = 11 + (8 - 1) \times 20$ = 11 + 140 = 151 So, the correct answer is 151.

#### **Concepts:**

### 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.

Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.

Eg: If  $a_{1}a_{2}a_{3}$ ,  $a_{4}$ ...... etc is considered to be a sequence, then the sum of terms in the sequence  $a_{1}+a_{2}+a_{3}+a_{4}$ ...... are considered to be a series.

## Types of Sequence and Series:

## **Arithmetic Sequences**

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.

#### **Geometric Sequences**

A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

#### **Fibonacci Numbers**



Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 

## 3. Answer: a

## **Explanation:**

9  $(25a^2 + b^2) + 25(c^2 + 3ac) = 15b(3a + c)$ ⇒  $(15a)^2 + (3b)^2 + (5c)^2 - 45ab - 15bc - 75ac = 0$ ⇒  $(15a - 3b)^2 + (3b - 5c)^2 + (15a - 5c)^2 = 0$ It is possible when 15a - 3b = 0 and 3b - 5c = 0 and 15a - 5c = 0 15a = 3b = 5c  $\frac{a}{1} = \frac{b}{5} = \frac{c}{3}$  $\therefore$  b, c, a are in A.P.

#### Concepts:

#### 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.

Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.

Eg: If  $a_1, a_2, a_3, a_4$ ...... etc is considered to be a sequence, then the sum of terms in the sequence  $a_1+a_2+a_3+a_4$ ...... are considered to be a series.

## Types of Sequence and Series:

#### **Arithmetic Sequences**

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.



#### **Geometric Sequences**

A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

#### **Fibonacci Numbers**

Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 

#### 4. Answer: d

## Explanation:

As, 
$$f(x + y) = f(x) + f(y) + xy$$
  
Given,  $f(1) = 3$   
Putting,  $x = y = 1$   
 $\Rightarrow f(2) = 2f(1) + 1 = 7$   
Similarly,  $x = 1, y = 2$   
 $\Rightarrow f(3) = f(1) + f(2) + 2 = 12$   
Now,  $\sum_{n=1}^{10} f(n) = f(1) + f(2) + f(3) + ... + f(10)$   
 $= 3 + 7 + 12 + 18 + ... = S$  (let)  
Now,  $S_n = 3 + 7 + 12 + 18 + ... + t_n$   
Again,  $S_n = 3 + 7 + 12 + ... + t_{n-1} + t_n$   
We ge,  $t_n = 3 + 4 + 5 + ...$  n terms  
 $= \frac{n(n+5)}{2}$   
i.e.,  $S_n = \sum_{n=1}^{n} t_n = \frac{1}{2} \left\{ \sum n^2 + 5 \sum n \right\}$   
 $= \frac{n(n+1)(n+8)}{6}$   
So,  $S_{10} = \frac{10 \times 11 \times 18}{6} = 330$ 



### Concepts:

### 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.

Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.

Eg: If  $a_1, a_2, a_3, a_4$ ...... etc is considered to be a sequence, then the sum of terms in the sequence  $a_1+a_2+a_3+a_4$ ...... are considered to be a series.

## Types of Sequence and Series:

## Arithmetic Sequences

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.

## Geometric Sequences

A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

#### **Fibonacci Numbers**

Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 



#### 5. Answer: c

#### **Explanation**:

 $\begin{array}{l} (12-d) + 12 + (12+d) + (12+2d) + \dots 12 + 7d \\ = 12?9 + 27d = 108 + 27d \\ \text{now according to question} \\ 200 < 108 + 27d < 220 \\ 92 < 27d < 112 \\ \frac{92}{27} < d < \frac{112}{27} \\ \Rightarrow d = 4 \text{ only integer} \\ \Rightarrow 4\text{th term} = 12 + 2d = 12 + 8 = 20 \end{array}$ 

### Concepts:

### 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.

Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.

Eg: If  $a_{1},a_{2},a_{3}, a_{4},...$  etc is considered to be a sequence, then the sum of terms in the sequence  $a_{1}+a_{2}+a_{3}+a_{4},...$  are considered to be a series.

## Types of Sequence and Series:

#### **Arithmetic Sequences**

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.

#### **Geometric Sequences**



A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

### **Fibonacci Numbers**

Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 

#### 6. Answer: c

#### **Explanation:**

If b is the first term and r is the common ratio of an infinite G.P. then sum is 5  $5 = \frac{b}{1-r}$ ]  $1 - r = \frac{b}{5}$   $r = 1 - \frac{b}{5}$   $r = \frac{5-b}{5}$ ? -1 < r < 1 \$\therefore-1

#### Concepts:

#### 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.

Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.



Eg: If  $a_1, a_2, a_3, a_4$ ...... etc is considered to be a sequence, then the sum of terms in the sequence  $a_1+a_2+a_3+a_4$ ...... are considered to be a series.

## Types of Sequence and Series:

## **Arithmetic Sequences**

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.

#### **Geometric Sequences**

A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

## Fibonacci Numbers

Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 

#### 7. Answer: c

#### **Explanation:**

 $S = \frac{100}{5} + \frac{98}{5} + \frac{96}{5} + \frac{94}{5} + \dots n$   $S_n = \frac{n}{2} \left( 2 \times \frac{100}{5} + (n-1) \left( -\frac{2}{5} \right) \right) = 188$   $n(100 - n + 1) = 488 \times 5$   $n^2 - 101n + 488 \times 5 = 0$  n = 61, 40  $T_n = a + (n-1)d = \frac{100}{5} - \frac{2}{5} \times 60$ = 20 - 24 = -4



### Concepts:

### 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.

Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.

Eg: If  $a_1, a_2, a_3, a_4,...$  etc is considered to be a sequence, then the sum of terms in the sequence  $a_1+a_2+a_3+a_4,...$  are considered to be a series.

## Types of Sequence and Series:

## Arithmetic Sequences

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.

## Geometric Sequences

A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

#### Fibonacci Numbers

Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 



#### 8. Answer: c

### **Explanation:**

 $b^{2} = ac$ Also roots of  $ax^{2} = 2bx + c = 0$  are equal  $\Rightarrow x = \frac{-b}{a}, \text{ common root}$   $\Rightarrow d\left(\frac{-b}{a}\right)^{2} + 2e\left(\frac{-b}{a}\right) + \int = 0$   $db^{2} - 2eab + fa^{2} = 0, b^{2} = ac$   $\Rightarrow dac - 2eab + fa^{2} = 0$   $\Rightarrow dc - 7eb + fa = 0$ Dividing by ac  $\Rightarrow \frac{d}{a} - \frac{2e}{b} + \frac{f}{c} = 0$   $\Rightarrow \frac{d}{a} + \frac{f}{c}2 \cdot \frac{e}{b}$ 

## Concepts:

## 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.

Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.

Eg: If  $a_1, a_2, a_3, a_4$ ...... etc is considered to be a sequence, then the sum of terms in the sequence  $a_1+a_2+a_3+a_4$ ...... are considered to be a series.

## Types of Sequence and Series:

## **Arithmetic Sequences**

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.

## **Geometric Sequences**



A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

## Fibonacci Numbers

Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 

#### 9. Answer: d

#### **Explanation:**

Given:  $AP: \frac{1}{x_1}, \frac{1}{x_2}, \dots, \frac{1}{x_n}$ And  $x_1 = 4, x_{21} = 20$ So,  $\frac{1}{4} + 20d = \frac{1}{20}$   $20d = \frac{1}{20} - \frac{1}{4} = \frac{1-5}{20}$   $\Rightarrow 20d = \frac{-4}{20}$   $\Rightarrow d = \frac{-4}{20 \times 2}$   $\Rightarrow d = \frac{-4}{100}$ Now,  $\frac{1}{x_n} 24$  n = 25Therefore,  $\sum_{i=1}^{25} \left(\frac{1}{x_i}\right) = \frac{25}{2} \left(2 \times \frac{1}{4} - \frac{1}{100} \times 24\right)$  $= \frac{13}{4}$ 

#### Concepts:

#### 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.



Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.

Eg: If  $a_1, a_2, a_3, a_4$ ...... etc is considered to be a sequence, then the sum of terms in the sequence  $a_1+a_2+a_3+a_4$ ...... are considered to be a series.

## Types of Sequence and Series:

## **Arithmetic Sequences**

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.

## **Geometric Sequences**

A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

#### **Fibonacci Numbers**

Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1. Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 

#### 10. Answer: c

## **Explanation:**

```
a_1, a_2, \dots, a_{10} are in G.P.,
Let the common ratio be r
```



 $rac{a_3}{a_1} = 25 \Rightarrow rac{a_1 r^2}{a_1} = 25 \Rightarrow r^2 = 25$  $rac{a_9}{a_5} = rac{a_1 r^8}{a_1 r^4} = r^4 = 5^4$ 

#### **Concepts:**

### 1. Sequence and Series:

**Sequence:** <u>Sequence and Series</u> is one of the most important concepts in Arithmetic. A sequence refers to the collection of elements that can be repeated in any sort.

Eg: a<sub>1</sub>,a<sub>2</sub>,a<sub>3</sub>, a<sub>4</sub>.....

**Series:** A series can be referred to as the sum of all the elements available in the sequence. One of the most common examples of a sequence and series would be Arithmetic Progression.

Eg: If  $a_{1}a_{2}a_{3}$ ,  $a_{4}$ ...... etc is considered to be a sequence, then the sum of terms in the sequence  $a_{1}+a_{2}+a_{3}+a_{4}$ ...... are considered to be a series.

## Types of Sequence and Series:

## Arithmetic Sequences

A sequence in which every term is created by adding or subtracting a definite number to the preceding number is an arithmetic sequence.

#### **Geometric Sequences**

A sequence in which every term is obtained by multiplying or dividing a definite number with the preceding number is known as a geometric sequence.

#### Harmonic Sequences

A series of numbers is said to be in harmonic sequence if the reciprocals of all the elements of the sequence form an arithmetic sequence.

#### **Fibonacci Numbers**

Fibonacci numbers form an interesting sequence of numbers in which each element is obtained by adding two preceding elements and the sequence starts with 0 and 1.



Sequence is defined as,  $F_0 = 0$  and  $F_1 = 1$  and  $F_n = F_{n-1} + F_{n-2}$ 

