DO NOT OPEN THE SEAL UNTIL YOU ARE ASKED TO DO SO 2018

Test Booklet Series

CHEMISTRY

Time: 2 Hours Full Marks:

Total Marks 100 (2 × 50)

Answer all questions

Paper consists of 20 pages. Each Multiple Choice Question (MCQ is provided with four options (A), (B), (C) and (D) Identify the correct option / fill the corresponding circle (A)/(B)/(C)/(D) with Blue/Black Ballpoint OMR Answer Sheet.

Each question, 2 marks will be awarded for correct answer.

- 1. Haemoglobin contains 0.335% Fe. It has the molecular weight 1.67 × 10⁴ considering atomic weight of Fe is 56, calculate the number of Featom(s) in haemoglobin.
- (a) 1
- (B) 2
- (C) 3
- (D) 4
- 2. An organic compound containing C, H and N upon complete combustion of 0.93 gm produces 2.64 gm CO₂ and 0.63 gm H₂O If molecular weights of the compound is 93 then find its molecular formula
- (a) C_6H_7N (b) $C_5H_5N_2$ (c) $C_4H_3N_3$ (d) C_3HN_4
- 3. Calculate the number of emitted photons in I sec from a 100 W yellow light source. Given $\lambda_{\text{yellow}} = 560 \text{ nm}$.

- (a) 8.46×10^{20} (b) 2.82×10^{20} (c) 0.94×10^{20} (d) 18.66×10^{20}
- 4. The value of orbital angular momentum of an electron in 2s-orbital will be
- (a) $\frac{h}{\pi}$
- (b) $\frac{h}{2\pi}$

- (c) 0
- (d) $\frac{\sqrt{3h}}{4\pi}$
- 5. Increasing metallic character of the elements B, Al, Mg and K follows the trend
- (a) B < Mg < Al < K

(b) Mg < B < Al < K

(c) Mg < Al < B < K

- (d) B < AI < Mg < K
- 6. Decreasing trend of polar character of the compounds HF, H₂O, NH₃ and SO₂ will be
- (A) HF > SO_2 > H_2O > NH_3
- (B) HF > H_2O > SO_2 > NH_3
- (C) HF > NH₃ > SO₂ > H₂O
- (D) $H_2O > NH_3 > SO_2 > HF$
- 7. At 100 °C temperature and 1 atm pressure, 1 gm-mole water undergoes vaporization. Calculate the change of internal energy of the process. Given, latent heat of vaporization water - 536cal/gm.
- (a) 37.40 kJ (B) 40.50 kJ
- (c) 3.10 kJ
- (d) 43.60 kJ
- 8. Applying adiabatic process, 1 mole of an ideal gas at 350 K temperature is being compressed to $\frac{1}{5}$ th of its original volume. Determine the final temperature of the gas.

Given, C_v 12.55 JK⁻¹ mol⁻¹

- (a) 1011.50 K
- (b) 738.50 K (c) 1284.50 K
- (d) 120.98 K

9.	Half-life	of	a first	order	reaction	is	30	min.	State	how	much	proportio
of	reactant	wil	l rema	ain afte	er 70 mir	า.						

(a) 5.03

(b) 0.023

(c) 0.20

(d) 0.80

10. Consider the following reaction:

$$N_2O_5 \to N_2O_4 + \frac{1}{2}O_2$$

Rate constants of this dissociation reaction are 3.46×10⁻⁵ and 4.87×10⁻³ at 25°C and 65°C respectively. Determine the activation energy of the process. Given, $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$.

(a) $10.34 \text{ kJ mol}^{-1}$

(b) 1034.71 kJ mol⁻¹

(c) 48.17 kJ mol⁻¹

(d) 103.47 kJ mol⁻¹

11. Consider the reaction

$$PCI_5 \rightleftharpoons PCI_3 + CI_2$$
; $K_p - 1.8$ at 250°C

At what pressure 25% PCI₅ will be dissociated at 250°C?

(a) 0.066 atm (b) 1.80 atm (c) 27.27 atm (d) 2.72 atm

12. Consider the following reversible reactions:

$$A+B \stackrel{k_1}{=\!\!=\!\!=\!\!=} C$$
; $B+C \stackrel{k_2}{=\!\!=\!\!=\!\!=} P+Q$; $A+2B \stackrel{k_3}{=\!\!=\!\!=\!\!=} P+Q$

If $K_1 = 2.5$ and $K_2 = 0.3$, then the value of K_3 will be

(a) 8.33

(b) 0.12

(c) 0.37

(d) 0.75

13. If a 0.002 (M) acetic acid solution undergoes 2.3% ionization, then find the pH of that solution.

(a) 3.34

(b) 4.74

(c) 2.69

(d) 1.63

14. Solubility of Pb(OH) ₂ in water at 25°C i	14. Solubility of Pb(OH) ₂ in water at 25°C is 6.7×10^{-6} (M). Determine					
its solubility in a buffer solution having pH	= 8 at 25°C.					
(a) 1.2×10^{-15} (M) (b) 1.2	(b) 1.2×10^{-3} (M)					
(c) 1.48×10^{-5} (M) (d) 1.0	(d) 1.0×10^{-12} (M)					
15. Atomic radius of an element is 75 pm.	If the element forms bcc'					
lattice, then what will be the edge length of	f its unit cell?					
(a) 173.20 pm (b) 212.76 pm (c) 32.	47 pm (d) 259.81 pm					
16. The values of a, b, c and d in the redox reaction al_2 + bNO + $4H_2O$						
\rightarrow CHNO ₃ + dHI will be						
(a) 3, 2, 2, 6 (b) 3, 2, 6, 2 (c) 2,	3, 2, 6 (d) 2, 2, 3, 6					
17. At 15°C, a urea solution having 1 gm urea/lit, shows osmotic						
pressure 304 mm. Calculate the molecular	weight of urea.					
(a) 60 (b) 3.075 (c) 59.	04 (d) 5.90					
18. 5% sucrose solution (mass-volume) in v	water is isotonic with 3%					

aqueous solution of substance A. Determine the molecular weight of A (given M_{sucrose} = 342).

(a) 570

(b) 205.2

(c) 20.52

(d) 57

19. Consider the following half-cell:

 $Pt|H_2(1 atm)|H_2SO_4$

At 25 °C, the above cell has the reduction potential -0.3 V; state the pH of H₂SO₄ in the half cell.

(a) 5.08

(b) 1.30

(c) 4.70

(d) 3.08

- 20. Which of the following electrolytes is most effective to coagulate Agl/I⊖ sol?
- (a) $NaNO_3$
- (b) Na_2SO_4 (c) $Ca(NO_3)_2$
- (d) $Al_2(SO_4)_3$
- 21. Find the strength of 1.6 (N) H_2O_2 solutions in volumetric expression.
- (a) 8.96 volume

(b) 9.86 volume

(c) 6.98 volume

- (d) 6.89 volume
- 22. An element X reacts with aqueous solution of NaOH to produce compound Y and H₂(g) Aqueous solution of Y upon heating at 50°C-60 °C followed by passage of CO₂ (g) to it produces compound Z and Na₂CO₃. Compound z upon heating at 1200 °C produces Al₂ O₃, X, Y and Z will be
- (a) Al, AlCl₃, NaAlO₂

(b) Zn, Na_2 ZnO_2 , $Al(HO)_3$

(c) Al, Al(OH) $_3$, AlCl $_3$

- (d) Al, NaAlO₂, Al(OH)₃
- 23. A compound X (crystalline white) reacts with water to produce alkaline solution. Upon heating it forms clean glass bead which again on heating with CuSO₄ forms green bead Y. Compound X is soluble in NaOH but on reaction with conc. H2SO4 produces acidic crystalline white compound Z. Hence X, Y and Z will be
- (a) $Na_2[B_4O_5(OH)_4]$ $8H_2O$, CuO B_2O_3 , H_3BO_3
- (b) NaBO₂, CuO, Na₂B₄O₇
- (c) $Na_2[B_4O_7 (OH)_8]$, Cu_2BO_2 , Na_2SO_4
- (d) H_3BO_3 , CuO, BO_2 , $NaB(SO_4)_2$

		t reacts with excess ompound (precipitate		eddish brown		
(a)	Hg(NH ₃) ₂ I	(b) H ₂ NHgOHgI	(c) NH ₃ .NI ₃	(d) Hg(NH ₂)I		
25.	Products produce	ed by the reaction of	H ₂ S(g) with con	c. HNO₃ are		
(a)	S, NO, H ₂ O		(b) SO_2 NO_2 , H_2O			
(c)	S, NO ₂ , H ₂ O		(d) H ₂ SO ₄ , NO ₂	, H ₂ O		
26.	Which one of the	e following is the sm	elting process?			
(a)	$ZnCO_3 \stackrel{\Delta}{\rightarrow} ZnO + CC$	O_2	(b) $Fe_2O_3 + 3C \xrightarrow{\Delta} 2Fe + 3CO$			
(c)	$2PbS + 3O_2 \xrightarrow{\Delta} 2PbC$	$0 + 2SO_2$	(d) $Al_2O_3 - 2H_2O_3$	$0 \stackrel{\Delta}{\rightarrow} Al_2O_3 + 2H_2O_3$		
27.	Cold and very di	ilute HNO₃ reacts wit	h Zn (metal) and	d produces		
(a)	Zn(NO ₃) ₂ , NO ₂ , F	I ₂ O	(b) $Zn(NO_3)_2$, NO , H_2O			
(c)	Zn(NO ₃) ₂ , NH ₄ NO	0 ₃ , H ₂ O	(d) Zn(NO ₃) ₂ , N ₂ O, H ₂ O			
28.	Fe ⁺² ion has the	'spin only' magnetic	moment value o	of		
(a)	2.84 BM	(b) 4.90 BM	(c) 0 BM	(d) 1.73 BM		
29.	In alkaline mediu	ım, KMnO₄ reacts wi	th KI (aqueous)	and generates		
(a)	l ₂	(b) IOΘ	(c) IO_4^{Θ}	(d) IO_3^{Θ}		
	Which of the foll ius?	owing lanthanide ele	ments shows lea	st atomic		
(a)	Ce	(b) Lu	(c) Eu	(d) Gd		

31. 0.257 gm of an organic compound containing nitrogen is applied to Kjeldahl's analysis. Evolved ammonia (g) is being absorbed to 50 ml 0.1 (N) H_2SO_4 solution. Excess H_2SO_4 is being neutralized by 23.2 ml 0.1 (N)NaOH solution. Find the percentage nitrogen amount in the organic compound.

- (a) 14.6
- (b) 14.0
- (c) 1.46
- (d) 13.42
- 32. The IUPAC name of the compound

is

- (a) 4-cyano-4-methyl-2-oxopentane (b) 2-cyano-2-methyl-4-oxopentane
- (c) 2,2-dimethyl-4-oxopentane nitrile (D) 4-cyano-4-methyl-2-pentanone
- 33. A hydrocarbon X decolourises alk. KMnO₄ at cold and reacts with warm dil. HgSO₄/H₂SO₄ solution to generate compound Y. Y responds to iodoform test but declines to Tollens' test. Y when distilled with 80% H₂SO₄ produces 1,3,5-trimethyl benzene. Compounds X and Y will be
- (a) $CH_3 C \equiv C CH_3$, CH_3COCH_3
- (b) $CH_3 C \equiv CH, CH_3COCH_3$
- (c) $HC \equiv CH, CH_3CHO$
- (d) $CH_3CH_2 C \equiv CH_3 CH_3 COCH_3$

34. Analyze the following reaction and predict the structures of B and C:

- 36. Phenol on reaction with a solution of KBr and KBrO₃ produces the chief product as
- (a) 3-bromophenol

(b) 4-bromophenol

(c) 2,4,6-tribromophenol

(d) 2-bromophenol

37. Identify the major products P and R of the following reactions:

38. Predict the ultimate product, following the sequences of reactions:

39. Consider the following reactions:

Ethanal 2)
$$H_2O$$
 2) H_2O 2) H_2O 2) H_2O 2) H_2O 2) H_2O

X and Y will be

- (a) CH₃COOH, CH₃COOC₂H₅
- (b) CH₃COOC₂H₅, CH₃COCH₂COOC₂H₅
- (c) CH₃COOH, CH₃COCH₃
- (d) CH₃COOC₂H₅, CH₃COCH₃
- 40. Predict the final product S of the following reactions:

- 41. A sample of sea-water contains amount of dissolved O_2 , 5 × 10^{-3} gm in 1 kg. Write the concentration of dissolved O_2 in ppm unit
- (a) 5
- (b) 5×10^{-3}
- (c) 5×10^{-2}
- (d) 5×10^{-1}

42. Which of the following polymers is biodegradable?

43. Mention the major product of the following reaction:

44. Match the following matrix:

	Column X		Column Y
1.	Nitromethane and nitrobenzene can be differentiated by	(a)	ZnSO₄
2.	Methyl carbyl amine if heated	(b)	generates tetramethyl hydrazine
3.	$Ne > NH + KMnO_4$ mixture if heated	(c)	generates acetonitrile
4.	Aqueous solution of ethylamine gives white ppt. with	(d)	LiAlH ₄

- (a) 1 (a), 2 (b), 3 (c), 4 (d)
- (b) 1 (d), 2 (c), 3 (b), 4 (a)
- (c) 1 (d), 2 (b), 3 (a), 4 (c)
- (d) 1 (a), 2 (c), 3 (b), 4 (d)

45. Write the final product (N) of the following reactions:

- 46. Glucose when treated with CH $_3$ OH in the presence of dry HCI gives α and β methyl glucosides because it contains
- (a) a -CHO group

(b) a -CH₂-OH group

(c) a ring structure

(d) five -OH groups

47. Match the following matrix:

Column X			Column Y		
1.	Water soluble vitamin is	(a)	Glucose		
2.	Hydrolysis of starch leads to	(b)	ascorbic acid		
3.	Protein can be identified by	(c)	inversion		
4.	Hydrolysis of sucrose is	(d)	Benedict's test		

- (a) 1 (a), 2 (b), 3 (c), 4 (d)
- (b) 1 (b), 2 (a), 3 (d), 4 (c)
- (c) 1 (b), 2 (a), 3 (c), 4 (d)
- (d) 1 (a), 2 (c), 3 (b), 4 (d)

- 48. Drug Luminal is
- (a) Analgesic

- (b) Antipyretic
- (c) Hypnotic tranquillizer
- (d) Non-hypnotic tranquillizer
- 49. An aqueous solution of sodium sulfide is treated with few drops of sodium nitroprusside solution, a violet coloration results which confirms the generation of a complex salt having structure.
- (a) Na₂ [Fe(NO)₅CN]
- (b) Na₂ [Fe(NO)₅CNS]
- (c) Na₅ [Fe(CN)₅ NOS]
- (d) Na_4 [Fe(CN)₅ NOS]
- 50. Follow the chemical reactions:

Identify the structures of green and black ppt.

- (a) $Ni(OH)_2$, $Ni(OH)_3$
- (b) $Ni(OH)_2$, $NiBr_2$
- (c) $Ni(OH)_2$, $Ni(OBr)_3$
- (d) $Ni(OH)_2$, O = Ni-OH

