DO NOT OPEN THE SEAL UNTIL YOU ARE ASKED TO DO SO 2018 Test Booklet Series #### CHEMISTRY Time: 2 Hours Full Marks: Total Marks 100 (2 × 50) Answer all questions Paper consists of 20 pages. Each Multiple Choice Question (MCQ is provided with four options (A), (B), (C) and (D) Identify the correct option / fill the corresponding circle (A)/(B)/(C)/(D) with Blue/Black Ballpoint OMR Answer Sheet. Each question, 2 marks will be awarded for correct answer. - 1. Haemoglobin contains 0.335% Fe. It has the molecular weight 1.67 × 10⁴ considering atomic weight of Fe is 56, calculate the number of Featom(s) in haemoglobin. - (a) 1 - (B) 2 - (C) 3 - (D) 4 - 2. An organic compound containing C, H and N upon complete combustion of 0.93 gm produces 2.64 gm CO₂ and 0.63 gm H₂O If molecular weights of the compound is 93 then find its molecular formula - (a) C_6H_7N (b) $C_5H_5N_2$ (c) $C_4H_3N_3$ (d) C_3HN_4 - 3. Calculate the number of emitted photons in I sec from a 100 W yellow light source. Given $\lambda_{\text{yellow}} = 560 \text{ nm}$. - (a) 8.46×10^{20} (b) 2.82×10^{20} (c) 0.94×10^{20} (d) 18.66×10^{20} - 4. The value of orbital angular momentum of an electron in 2s-orbital will be - (a) $\frac{h}{\pi}$ - (b) $\frac{h}{2\pi}$ - (c) 0 - (d) $\frac{\sqrt{3h}}{4\pi}$ - 5. Increasing metallic character of the elements B, Al, Mg and K follows the trend - (a) B < Mg < Al < K (b) Mg < B < Al < K (c) Mg < Al < B < K - (d) B < AI < Mg < K - 6. Decreasing trend of polar character of the compounds HF, H₂O, NH₃ and SO₂ will be - (A) HF > SO_2 > H_2O > NH_3 - (B) HF > H_2O > SO_2 > NH_3 - (C) HF > NH₃ > SO₂ > H₂O - (D) $H_2O > NH_3 > SO_2 > HF$ - 7. At 100 °C temperature and 1 atm pressure, 1 gm-mole water undergoes vaporization. Calculate the change of internal energy of the process. Given, latent heat of vaporization water - 536cal/gm. - (a) 37.40 kJ (B) 40.50 kJ - (c) 3.10 kJ - (d) 43.60 kJ - 8. Applying adiabatic process, 1 mole of an ideal gas at 350 K temperature is being compressed to $\frac{1}{5}$ th of its original volume. Determine the final temperature of the gas. Given, C_v 12.55 JK⁻¹ mol⁻¹ - (a) 1011.50 K - (b) 738.50 K (c) 1284.50 K - (d) 120.98 K | 9. | Half-life | of | a first | order | reaction | is | 30 | min. | State | how | much | proportio | |----|-----------|-----|---------|----------|-----------|----|----|------|-------|-----|------|-----------| | of | reactant | wil | l rema | ain afte | er 70 mir | า. | | | | | | | (a) 5.03 (b) 0.023 (c) 0.20 (d) 0.80 #### 10. Consider the following reaction: $$N_2O_5 \to N_2O_4 + \frac{1}{2}O_2$$ Rate constants of this dissociation reaction are 3.46×10⁻⁵ and 4.87×10⁻³ at 25°C and 65°C respectively. Determine the activation energy of the process. Given, $R = 8.314 \text{ JK}^{-1} \text{mol}^{-1}$. (a) $10.34 \text{ kJ mol}^{-1}$ (b) 1034.71 kJ mol⁻¹ (c) 48.17 kJ mol⁻¹ (d) 103.47 kJ mol⁻¹ #### 11. Consider the reaction $$PCI_5 \rightleftharpoons PCI_3 + CI_2$$; $K_p - 1.8$ at 250°C At what pressure 25% PCI₅ will be dissociated at 250°C? (a) 0.066 atm (b) 1.80 atm (c) 27.27 atm (d) 2.72 atm ### 12. Consider the following reversible reactions: $$A+B \stackrel{k_1}{=\!\!=\!\!=\!\!=} C$$; $B+C \stackrel{k_2}{=\!\!=\!\!=\!\!=} P+Q$; $A+2B \stackrel{k_3}{=\!\!=\!\!=\!\!=} P+Q$ If $K_1 = 2.5$ and $K_2 = 0.3$, then the value of K_3 will be (a) 8.33 (b) 0.12 (c) 0.37 (d) 0.75 # 13. If a 0.002 (M) acetic acid solution undergoes 2.3% ionization, then find the pH of that solution. (a) 3.34 (b) 4.74 (c) 2.69 (d) 1.63 | 14. Solubility of Pb(OH) ₂ in water at 25°C i | 14. Solubility of Pb(OH) ₂ in water at 25°C is 6.7×10^{-6} (M). Determine | | | | | | |--|---|--|--|--|--|--| | its solubility in a buffer solution having pH | = 8 at 25°C. | | | | | | | (a) 1.2×10^{-15} (M) (b) 1.2 | (b) 1.2×10^{-3} (M) | | | | | | | (c) 1.48×10^{-5} (M) (d) 1.0 | (d) 1.0×10^{-12} (M) | | | | | | | | | | | | | | | 15. Atomic radius of an element is 75 pm. | If the element forms bcc' | | | | | | | lattice, then what will be the edge length of | f its unit cell? | | | | | | | (a) 173.20 pm (b) 212.76 pm (c) 32. | 47 pm (d) 259.81 pm | | | | | | | | | | | | | | | 16. The values of a, b, c and d in the redox reaction al_2 + bNO + $4H_2O$ | | | | | | | | \rightarrow CHNO ₃ + dHI will be | | | | | | | | (a) 3, 2, 2, 6 (b) 3, 2, 6, 2 (c) 2, | 3, 2, 6 (d) 2, 2, 3, 6 | | | | | | | | | | | | | | | 17. At 15°C, a urea solution having 1 gm urea/lit, shows osmotic | | | | | | | | pressure 304 mm. Calculate the molecular | weight of urea. | | | | | | | (a) 60 (b) 3.075 (c) 59. | 04 (d) 5.90 | | | | | | | | | | | | | | | 18. 5% sucrose solution (mass-volume) in v | water is isotonic with 3% | | | | | | aqueous solution of substance A. Determine the molecular weight of A (given M_{sucrose} = 342). (a) 570 (b) 205.2 (c) 20.52 (d) 57 19. Consider the following half-cell: $Pt|H_2(1 atm)|H_2SO_4$ At 25 °C, the above cell has the reduction potential -0.3 V; state the pH of H₂SO₄ in the half cell. (a) 5.08 (b) 1.30 (c) 4.70 (d) 3.08 - 20. Which of the following electrolytes is most effective to coagulate Agl/I⊖ sol? - (a) $NaNO_3$ - (b) Na_2SO_4 (c) $Ca(NO_3)_2$ - (d) $Al_2(SO_4)_3$ - 21. Find the strength of 1.6 (N) H_2O_2 solutions in volumetric expression. - (a) 8.96 volume (b) 9.86 volume (c) 6.98 volume - (d) 6.89 volume - 22. An element X reacts with aqueous solution of NaOH to produce compound Y and H₂(g) Aqueous solution of Y upon heating at 50°C-60 °C followed by passage of CO₂ (g) to it produces compound Z and Na₂CO₃. Compound z upon heating at 1200 °C produces Al₂ O₃, X, Y and Z will be - (a) Al, AlCl₃, NaAlO₂ (b) Zn, Na_2 ZnO_2 , $Al(HO)_3$ (c) Al, Al(OH) $_3$, AlCl $_3$ - (d) Al, NaAlO₂, Al(OH)₃ - 23. A compound X (crystalline white) reacts with water to produce alkaline solution. Upon heating it forms clean glass bead which again on heating with CuSO₄ forms green bead Y. Compound X is soluble in NaOH but on reaction with conc. H2SO4 produces acidic crystalline white compound Z. Hence X, Y and Z will be - (a) $Na_2[B_4O_5(OH)_4]$ $8H_2O$, CuO B_2O_3 , H_3BO_3 - (b) NaBO₂, CuO, Na₂B₄O₇ - (c) $Na_2[B_4O_7 (OH)_8]$, Cu_2BO_2 , Na_2SO_4 - (d) H_3BO_3 , CuO, BO_2 , $NaB(SO_4)_2$ | | | t reacts with excess ompound (precipitate | | eddish brown | | | |-----|---|---|--|--|--|--| | (a) | Hg(NH ₃) ₂ I | (b) H ₂ NHgOHgI | (c) NH ₃ .NI ₃ | (d) Hg(NH ₂)I | | | | 25. | Products produce | ed by the reaction of | H ₂ S(g) with con | c. HNO₃ are | | | | (a) | S, NO, H ₂ O | | (b) SO_2 NO_2 , H_2O | | | | | (c) | S, NO ₂ , H ₂ O | | (d) H ₂ SO ₄ , NO ₂ | , H ₂ O | | | | 26. | Which one of the | e following is the sm | elting process? | | | | | (a) | $ZnCO_3 \stackrel{\Delta}{\rightarrow} ZnO + CC$ | O_2 | (b) $Fe_2O_3 + 3C \xrightarrow{\Delta} 2Fe + 3CO$ | | | | | (c) | $2PbS + 3O_2 \xrightarrow{\Delta} 2PbC$ | $0 + 2SO_2$ | (d) $Al_2O_3 - 2H_2O_3$ | $0 \stackrel{\Delta}{\rightarrow} Al_2O_3 + 2H_2O_3$ | | | | 27. | Cold and very di | ilute HNO₃ reacts wit | h Zn (metal) and | d produces | | | | (a) | Zn(NO ₃) ₂ , NO ₂ , F | I ₂ O | (b) $Zn(NO_3)_2$, NO , H_2O | | | | | (c) | Zn(NO ₃) ₂ , NH ₄ NO | 0 ₃ , H ₂ O | (d) Zn(NO ₃) ₂ , N ₂ O, H ₂ O | | | | | 28. | Fe ⁺² ion has the | 'spin only' magnetic | moment value o | of | | | | (a) | 2.84 BM | (b) 4.90 BM | (c) 0 BM | (d) 1.73 BM | | | | 29. | In alkaline mediu | ım, KMnO₄ reacts wi | th KI (aqueous) | and generates | | | | (a) | l ₂ | (b) IOΘ | (c) IO_4^{Θ} | (d) IO_3^{Θ} | | | | | Which of the foll ius? | owing lanthanide ele | ments shows lea | st atomic | | | | (a) | Ce | (b) Lu | (c) Eu | (d) Gd | | | 31. 0.257 gm of an organic compound containing nitrogen is applied to Kjeldahl's analysis. Evolved ammonia (g) is being absorbed to 50 ml 0.1 (N) H_2SO_4 solution. Excess H_2SO_4 is being neutralized by 23.2 ml 0.1 (N)NaOH solution. Find the percentage nitrogen amount in the organic compound. - (a) 14.6 - (b) 14.0 - (c) 1.46 - (d) 13.42 - 32. The IUPAC name of the compound is - (a) 4-cyano-4-methyl-2-oxopentane (b) 2-cyano-2-methyl-4-oxopentane - (c) 2,2-dimethyl-4-oxopentane nitrile (D) 4-cyano-4-methyl-2-pentanone - 33. A hydrocarbon X decolourises alk. KMnO₄ at cold and reacts with warm dil. HgSO₄/H₂SO₄ solution to generate compound Y. Y responds to iodoform test but declines to Tollens' test. Y when distilled with 80% H₂SO₄ produces 1,3,5-trimethyl benzene. Compounds X and Y will be - (a) $CH_3 C \equiv C CH_3$, CH_3COCH_3 - (b) $CH_3 C \equiv CH, CH_3COCH_3$ - (c) $HC \equiv CH, CH_3CHO$ - (d) $CH_3CH_2 C \equiv CH_3 CH_3 COCH_3$ 34. Analyze the following reaction and predict the structures of B and C: - 36. Phenol on reaction with a solution of KBr and KBrO₃ produces the chief product as - (a) 3-bromophenol (b) 4-bromophenol (c) 2,4,6-tribromophenol (d) 2-bromophenol 37. Identify the major products P and R of the following reactions: 38. Predict the ultimate product, following the sequences of reactions: 39. Consider the following reactions: Ethanal 2) $$H_2O$$ 2) H_2O 2) H_2O 2) H_2O 2) H_2O 2) H_2O X and Y will be - (a) CH₃COOH, CH₃COOC₂H₅ - (b) CH₃COOC₂H₅, CH₃COCH₂COOC₂H₅ - (c) CH₃COOH, CH₃COCH₃ - (d) CH₃COOC₂H₅, CH₃COCH₃ - 40. Predict the final product S of the following reactions: - 41. A sample of sea-water contains amount of dissolved O_2 , 5 × 10^{-3} gm in 1 kg. Write the concentration of dissolved O_2 in ppm unit - (a) 5 - (b) 5×10^{-3} - (c) 5×10^{-2} - (d) 5×10^{-1} 42. Which of the following polymers is biodegradable? 43. Mention the major product of the following reaction: ### 44. Match the following matrix: | | Column X | | Column Y | |----|--|-----|---------------------------------| | 1. | Nitromethane and nitrobenzene can be differentiated by | (a) | ZnSO₄ | | 2. | Methyl carbyl amine if heated | (b) | generates tetramethyl hydrazine | | 3. | $Ne > NH + KMnO_4$ mixture if heated | (c) | generates acetonitrile | | 4. | Aqueous solution of ethylamine gives white ppt. with | (d) | LiAlH ₄ | - (a) 1 (a), 2 (b), 3 (c), 4 (d) - (b) 1 (d), 2 (c), 3 (b), 4 (a) - (c) 1 (d), 2 (b), 3 (a), 4 (c) - (d) 1 (a), 2 (c), 3 (b), 4 (d) 45. Write the final product (N) of the following reactions: - 46. Glucose when treated with CH $_3$ OH in the presence of dry HCI gives α and β methyl glucosides because it contains - (a) a -CHO group (b) a -CH₂-OH group (c) a ring structure (d) five -OH groups ### 47. Match the following matrix: | Column X | | | Column Y | | | |----------|-------------------------------|-----|-----------------|--|--| | 1. | Water soluble vitamin is | (a) | Glucose | | | | 2. | Hydrolysis of starch leads to | (b) | ascorbic acid | | | | 3. | Protein can be identified by | (c) | inversion | | | | 4. | Hydrolysis of sucrose is | (d) | Benedict's test | | | - (a) 1 (a), 2 (b), 3 (c), 4 (d) - (b) 1 (b), 2 (a), 3 (d), 4 (c) - (c) 1 (b), 2 (a), 3 (c), 4 (d) - (d) 1 (a), 2 (c), 3 (b), 4 (d) - 48. Drug Luminal is - (a) Analgesic - (b) Antipyretic - (c) Hypnotic tranquillizer - (d) Non-hypnotic tranquillizer - 49. An aqueous solution of sodium sulfide is treated with few drops of sodium nitroprusside solution, a violet coloration results which confirms the generation of a complex salt having structure. - (a) Na₂ [Fe(NO)₅CN] - (b) Na₂ [Fe(NO)₅CNS] - (c) Na₅ [Fe(CN)₅ NOS] - (d) Na_4 [Fe(CN)₅ NOS] - 50. Follow the chemical reactions: Identify the structures of green and black ppt. - (a) $Ni(OH)_2$, $Ni(OH)_3$ - (b) $Ni(OH)_2$, $NiBr_2$ - (c) $Ni(OH)_2$, $Ni(OBr)_3$ - (d) $Ni(OH)_2$, O = Ni-OH