VITEEE 2021 Solutions May 30 - Slot 2

Ques. Boolean Identity (A→ + B→).(A +B) is equal to

Solution.

To solve the given Boolean expression, we need to simplify it using Boolean algebra identities.

Given: $\[\ (A' + B') \cdot (A + B) \]$

Where: $\langle A' \rangle$ is the complement (NOT) of A \(B' \) is the complement (NOT) of B

To simplify, distribute the terms using the distributive property: \[= A'A + A'B + B'A + B'B \]

Let's simplify each term:

1. \(A'A \) will always be 0 because it is the AND operation between a variable and its complement.

2. \(B'B \) will also always be 0 for the same reason.

So the above expression reduces to: \[A'B + B'A \]

This is the Boolean expression for the Exclusive OR (XOR) operation: $\[$ A \oplus B $\]$

So, the simplified Boolean expression for $\((A' + B') \cdot (A + B) \cdot)$ is: $\[$ A \oplus B $\]$

Ques. Max value of x+3y subject to conditions x+y≤4, 0≤x≤3 & 0≤y≤2 is?

Solution.

We are given the objective function and a set of constraints, and we need to maximize the objective function under these constraints. This is a linear programming problem.

Objective function: $\left(\left(Z = x + 3y \right) \right)$

Subject to the constraints: 1) $(x + y \leq 4)$ $2)$ \(0 \leq x \leq 3 \) 3) \(0 \leq y \leq 2 \)

To solve this, we will evaluate the objective function at the vertices of the feasible region determined by the constraints.

From the constraints:

1) $\left(\gamma \vee \gamma\right)$ can be expressed as $\left(\gamma - 4 - x\right)$ from $\left(\gamma + \gamma - 4\right)$. 2) $\left(\times\right)$ has bounds: [0, 3]. 3) \lor \lor \lor has bounds: [0, 2].

Considering these constraints, the vertices of the feasible region are: A(0,0), B(0,2), C(3,0), D(2,2), and E(3,1).

Let's evaluate the objective function Z at each of these vertices:

A(0,0): $\left($ Z = 0 + 3(0) = 0 \) B(0,2): $\{(Z = 0 + 3(2) = 6)\}$ C(3,0): $\left($ Z = 3 + 3(0) = 3 \)

D(2,2): \setminus $(Z = 2 + 3(2) = 8 \setminus)$ E(3,1): $\sqrt{(Z = 3 + 3(1) = 6)}$

From the above values, the maximum value of Z occurs at point D(2,2) and is 8.

So, the maximum value of χ + 3y χ) under the given constraints is 8.

