VITEEE 2021 Solutions May 31 - Slot 2

Q: The value of c for which the mean value of the theorem hols for the function f(x) = 2x - x 2 on the interval [0,1] is:

- 1.0
- $2. \frac{1}{4}$
- 3. ½
- $4. \frac{1}{3}$

Solution.

The Mean Value Theorem states that if \setminus (f \setminus) is continuous on \setminus [a, b] \setminus) and differentiable on $\langle (a, b) \rangle$, then there exists some number $\langle (c \rangle)$ in $\langle (a, b) \rangle$ such that:

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

Given: $\[\text{If } (x) = 2x - x^2 \]$ on the interval [0,1].

First, find $\langle f'(x) \rangle$:

\[f'(x) = 2 - 2x \]

Next, evaluate the function at the endpoints of the interval: $\sqrt{f(1)} = 2(1) - (1)^{2} = 1 \$ $\[\n\prod f(0) = 0 \]$

Substitute the given values into the formula from the Mean Value Theorem:

\[2 - 2c = \frac{1 - 0}{1 - 0} = 1 \]

Solving for \setminus c \setminus :

 $\sqrt{2 - 2c} = 1 \sqrt{2}$ $\[\sqrt{ -2c} = -1 \]$ $\{ c = \frac{1}{2} \}$

So, the correct answer is: 3. $\left(c = \frac{1}{2} \right)$

Q: If **a** \times **b** and **c** \times **d** are perpendicular satisfying $a.c = \lambda$, $b.d = \lambda$ **(λ>0) and a.d = 4, b.c = 9, then λ is equal to:**

- 1. 3
- 2. 6
- 3. 36
- 4. 2

Solution.

Given that vectors \setminus (a \setminus) and \setminus b \setminus are perpendicular, as well as vectors \setminus (c \) and \setminus (d \).

From this, we can conclude:

 $\[\]$ a \cdot b = 0 \] and \(c \cdot d = 0 \) because the dot product of two perpendicular vectors is zero.

We're also given: 1) $\{(a \cdot c = \lambda)\}$ $2)$ \(b \cdot d = \lambda \) $3)$ \(a \cdot d = 4 \) 4) \setminus b \cdot cdot c = 9 \setminus

From the properties of the dot product: $\[(a + b)\cdot(c + d) = a\cdot c + a\cdot d + b\cdot c + b\cdot d\]$

Given that $\mathcal A$ a \times b \) and $\mathcal A$ c \times d \) are perpendicular, the vectors \Diamond (a + b \Diamond) and \Diamond (c + d \Diamond) are also perpendicular to each other. Thus:

 $\[(a + b) \cdot \cdot \cdot (c + d) = 0 \]$

```
Substituting in the known dot products:
\[\ \{\ \lambda + 4 + 9 + \lambda\] = 0 \]\]\{ 2\lambda | \text{ambda} + 13 = 0 \}\[ 2\lambda = -13 \]
\{ \lambda = -\frac{13}{2} \}
```
This result seems contradictory because we're given \setminus λ ambda > 0 λ). It's possible that the problem may have an error or it might require additional context or constraints to yield a positive value for \(\lambda \).

