Sample Paper

Time: 90 Minutes

General Instructions

- 1. The Question Paper contains three sections.
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any 20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. *All questions carry equal marks.*
- 6. *There is no negative marking.*

SECTION-A

This section consists of 25 multiple choice questions with overall choice to attempt **any 20** questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

1.	Which of the following exists as covalent crystals in the solid state?									
	(a) Iodine	(b)	Silicon	(c)	Sulphur	(d)	Phosphorus			
2.	In graphite electrons an	lectrons are :								
	(a) localised on each	carbon a	tom	(b)	spread out between the sheets					
	(c) localised on every	y third can	rbon atom	(d)	present in antibonding orbital.					
3.	A fluorine atom (F) aff	fects pair	of an electron in a covale	ent bo	nd which is					
	(a) Weakest	(b)	Strongest	(c)	Neutral	(d)	Constant			
4.	A crystalline solid									
	(a) changes abruptly	from soli	d to liquid when heated	(b)	has no definite melting pe	oint				
	(c) undergoes deform	nation of	its geometry easily	(d)	has an irregular 3-dimens	ional a	rrangements			
5.	An ideal solution is for	rmed who	en its components							
	(a) have no volume c	hange on	mixing	(b)	have no enthalpy change	on miy	king			
	(c) have both the above characteristics			(d)	have high solubility.					
6.	Schottky defect defines i	imperfecti	on in the lattice structure of	of						
	(a) solid	(b)	gas	(c)	liquid	(d)	plasma			
7.	IUPAC name of CH ₃ CH	$H_2C(Br) =$	CH-Cl is							
	(a) 2-bromo-1-chlorobutene				1-chloro-2-bromobutene					
	(c) 3-chloro-2-bromo	butene		(d)	None of the above					
8.	Proteins are condensat	tion poly	ners of							
	(a) α -amino acids	(b)	β-amino acids	(c)	α-hydroxy acids	(d)	β-hydroxy acids			
9.	When two halogen ato	ms are at	tached to same carbon a	tom th	en it is :					
	(a) vic-dihalide	(b)	gem-dihalide	(c)	α , ω -halide	(d)	α , β -halide			
10.	Which of the following	g noble ga	ases react with fluorine t	o form	a compound?					
	(a) Krypton	(b)	Xenon	(c)	Radon	(d)	All of the above			
11.	An ether is more volati	ile than a	n alcohol having the sam	e mol	ecular formula. This is due	eto				
	(a) dipolar character	ofethers		(b)	alcohols having resonand	ce stru	ctures			
	(c) inter-molecular h	ydrogen l	oonding in ethers	(d)	inter-molecular hydroger	n bondi	ng in alcohols			
12.	The space lattice of gra	aphite is								
	(a) cubic	(b)	tetragonal	(c)	rhombic	(d)	hexagonal			
		· · /	-	~ /		× /	C			

Max. Marks: 35

SP	-2						Chemistry
13.	The process of convertin	ng alky	l halides into alcohols ir	nvolve	s		
	(a) addition reaction	(b)	substitution reaction	(c)	dehydrohalogenation	(d)	rearrangement reaction
14.	Which of the following	factor	do not affect solubility c	of solic	l solute in liquid?		6
	(a) Temperature	(b)	Pressure	(c)	Nature of solute	(d)	All of these
15.	Which of the following	has str	rongest hydrogen bondin	ıg?			
	(a) Ethyl amine	(b)	Ethanal	(c)	Ethyl alcohol	(d)	Diethyl ether
16.	What is hybridization of	P in P	Cl ₅ ?				
	(a) sp^3	(b)	sp^3d^2	(c)	$sp^{3}d$	(d)	sp^2
17.	Which of the following	is corre	ect about H-bonding in n	ucleot	tide?		
	(a) A A and T T	(b)	G T and A C	(c)	A G and T C	(d)	A T and G C
18.	Ethylene dichloride can	be pre	pared by adding HCl to				
	(a) ethane	(b)	ethylene	(c)	acetylene	(d)	ethylene glycol
19.	Haloarenes are ortho an	d para	directing due to				
	(a) Resonance in aryl h	nalide		(b)	-I effect of halogen atom		
	(c) +I effect of haloger	n atom		(d)	Both (a) and (b)		
20.	On heating lead nitrate f	òrms o	xides of nitrogen and lea	d. The	e oxides formed are		
	(a) N_2O_2 PbO	(b)	NO ₂ , PbO	(c)	NO, PbO	(d)	NO, PbO,
21.	Which one of the follow	ingisi	non-ideal solution	()	,		, 2
	(a) Benzene + toluene	U		(b)	<i>n</i> -hexane + <i>n</i> -heptane		
	(c) Ethyl bromide + eth	nyl iodi	de	(d)	$CCl_4 + CHCl_3$		
22.	Collectively the element	s of gro	oup 15 are called –				
	(a) pnicogens	(b)	pnicopens	(c)	nicopen	(d)	None of these
23.	Insulin production and i	ts actio	on in human body are rea	sponsi	ble for the level of diabetes	. This	compound belongs to which
	of the following categor	ies?					
	(a) A carbohydrate	(b)	A hormone	(c)	A co-enzyme	(d)	An antibiotic
24.	Which one of the follow	ing ele	ments is most metallic?				
	(a) P	(b)	As	(c)	Sb	(d)	Bi
25.	Which of the following	eleme	nts does not show allotr	opy?			
	(a) Nitrogen	(b)	Bismuth	(c)	Antimony	(d)	Arsenic

SECTION-B

This section consists of 24 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

26.	Which of the following	liquid pairs shows a positive	viation from Raoult's law ?							
	(a) Water - Nitric acid		(b) Benzene - Methanol							
	(c) Water - Hydrochlor	ric acid	(d) Acetone - Chloroform							
27.	The vapour pressure of t by mixing 3 mole of P as	wo liquids 'P' and 'Q' are 80 nd 2 mole of Q would be	d 60 torr, respectively. The total vapour pressure	of solution obtained						
	(a) 72 torr	(b) 140 torr	(c) 68 torr (d) 20 torr							
28.	Arrange the following compounds in the increasing order of their densities.									
	(i)	(ii) Cl	(iii) Cl (iv) Br	℃I						
	(a) (i)<(ii)<(iii)<(iv)	(b) (i)<(iii)<(iv)<(ii)	(c) $(iv) < (iii) < (ii) < (i)$ (d) $(ii) < (iv)$)<(iii)<(i)						

Sample Paper-1

·					
29.	Which of the following is not tetrahedral in shape?				
20	(a) NH_4^+ (b) $SiCl_4$	(c)	SF_4	(d)	SO_4^{2-}
30.	 Primary structure of a protein is (a) sequence in which α-amino acids are linked to one (b) sequence in which amino acids of one polypeptide (c) the folding patterns of polypeptide chains (d) the pattern in which the polypeptide chains are arr 	e anoth chain ranged	ner are joined to other chain		
31.	\rightarrow Br + NaOH $\xrightarrow{\text{Solvent}}$ \rightarrow OH				
37	 For which solvent rate of S_N2 will be maximum? (a) Benzene (c) 100% acetone S - S bond is not present in 	(b) (d)	100% H ₂ O 75% H ₂ O + 25% acetone		
52.	(a) $s_{-} o^{2^{-}}$ (b) $s_{-} o^{2^{-}}$	(c)	$S_{-}O^{2-}$	(d)	$S_{-}O^{2-}$
33	Which of the following is not a crystalline solid?	(0)	5203	(u)	5207
	(a) KCl (b) CsCl	(c)	Glass	(d)	Rhombic S
34.	For the compounds CH_3Cl, CH_3Br, CH_3I and CH_3F , the correct order of increasing C-halogen bond length i	s:			
	(a) $CH_3F < CH_3Cl < CH_3Br < CH_3I$	(b)	$CH_3F < CH_3Br < CH_3Cl < CH$	CH₃I	
	(c) $CH_3F < CH_3I < CH_3Br < CH_3Cl$	(d)	$CH_3Cl < CH_3Br < CH_3F < CH$	CH ₃ I	
35.	XeF_6 dissolves in anhydrous HF to give a good condu	cting s	solution which contains:		
	(a) H^+ and XeF_7^- ion (b) HF_2^- and XeF_5^+ ions	(c)	HXeF_6^+ and F^- ions	(d)	None of these
36.	Equal moles of water and urea are taken in a flask. What	at is m	ass percentage of urea in th	e solu	tion ?
37	(a) 7.692% (b) 769.2%	(c)	76.92%	(d)	0.7692%
	 (a) Molecular weight of alcohol is higher than water (b) Alcohol of less no. of carbon atoms is less soluble (c) Alcohol evaporates quickly (d) All of the above 	in wat	er than alcohol of more no.	. of ca	rbon atoms
38.	 Strong reducing behaviour of H₃PO₂ is due to (a) low oxidation state of phosphorus (b) presence of two — OH groups and one P — H box (c) presence of one — OH group and two P — H box (d) high electron gain enthalpy of phosphorus 	nd ids			
39.	What is the coordination number of sodium and oxygen ions occupy all tetrahedral voids?	n in Na	a ₂ O in which oxide ions oc	cupy	ccp arrangement and sodium
40	(a) 6,4 (b) 4,8	(c)	8,4	(d)	2,4
40.	(a) As (b) P	c bond (c)	s in elemental state ?	(d)	Bi
41.	Isopropyl alcohol is obtained by reacting which of the fellow H_2O ?	ollowi	ng alkenes with concentrat	ed H ₂	SO_4 followed by boiling with
42.	 (a) Ethylene (b) Propylene Which of the following cannot be made by using Willia (a) Methoxybenzene 	(c) amson (b)	2-Methylpropene 's synthesis? Benzyl <i>n</i> -nitrophenyl ethe	(d)	Isoprene
	(c) Methyl tertiary butyl ether	(d)	Di-tert-butyl ether	1	
43.	PCl ₃ reacts with water to form	、 /	2		
	(a) PH_3 (b) H_3PO_4 and HCl	(c)	POCl ₃	(d)	H ₃ PO ₄
44.	(a) Methyl acetate (b) Acetonitrile	cophili (c)	c attack by hydroxyl ions? Acetamide	(d)	Diethyl ether

(SP-3)

Chemistry

sp-4

Given below are two statements labelled as Assertion (A) and Reason (R). Select the most appropriate answer from the options given below:

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.
- **45.** Assertion : $PhCCH_2Cl$ is more reactive than $PhCH_2Cl$.

Ο

Reason : Conjugation with carbonyl group much more effective than with simple alkene or benzene ring.

- **46.** Assertion : Bond angle of H_2S is smaller than H_2O .
 - **Reason :** Electronegativity of the central atom increases, bond angle decreases.
- 47. Assertion : Alkyl fluorides are prepared by heating AgF with alkyl chloride.Reason : Because direct fluorination of alkanes occurs very slowly with rupture of C = C bonds.
- **48.** Assertion : Molarity of a solution in liquid state changes with temperature.
- **Reason :** The volume of a solution changes with change in temperature.
- 49. Assertion : Dinitrogen is inert at room temperature.Reason : Dinitrogen directly combines with lithium to form ionic nitrides.

SECTION-C

This section consists of 6 multiple choice questions with an overall choice to attempt **any 5**. In case more than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation.

50.	Match the columns										
	Column -I		Column-II								
	(A) Mass percentage	(p)	Medicine and pharmacy								
	(B) Mass by volume	(q)	Concentration of pollutants in water								
	(C) ppm	(r)	Industrial chemical application								
	(D) Volume percentage	(s)	Liquid solutions								
	(a) $A - (q), B - (p), C - (s), D - (r)$	(b)	A - (s), B - (r), C - (p), D - (q)								
	(c) $A - (r), B - (q), C - (s), D - (p)$	(d)	A - (r), B - (p), C - (q), D - (s)								
51.	Which of the following analogy is incorrect?										
 (a) Optically inactive amino acid : Glycine : : Optically active protein : Lysine (b) Eccential amino acid : Lysine acid : Chycine : : Optically active protein : Lysine 											
	(b) Essential amino acid : Lysine : : Non essential amin	: Glycine									
	(c) Basic amino acid : Aspartate : : Acidic amino acid :	Histid	ine								
	(d) Glucose : Pyranose : : Fructose : Furanose										
	+Excess H_2O 'X' + HF										
52.	XeF ₆										
	└ ···· 'Y' + HF										
	$+2H_{2}O$										
	Correct analogy for X : : Y										
	(a) $X : XeO_3 :: Y : XeOF_4$	(b)	$X : Xe :: Y : XeO_3$								
	(c) $X : XeO_2F_2 :: Y : Xe$	(d)	$X : XeO_3 :: Y : XeO_2F_2$								

Case Study : *Read the following paragraph and answers the questions.*

Alkyl halides are insoluble in water but soluble in organic solvents. The insolubility in water is due to their inability to form hydrogen bonds with water. Alkyl bromides and iodides are denser than water whereas alkyl chlorides and fluorides are lighter than water. Alkyl halides have higher boiling points than alkanes of comparable molecular weight. For a given halogen atom, the boiling points of alkyl halides increase with the increase in the size of the alkyl group.

- 53. Which of the following is liquid at room temperature (b.p. is shown against it)?
 (a) CH₃I(42 °C)
 (b) CH₃Br (3 °C)
 (c) C₂H₅Cl (12 °C)
 (d) CH₃F (-78 °C)
 54. Which of the following possesses highest melting point?
- (a) Chlorobenzene
 (b) *m*-dichlorobenzene
 (c) *o*-dichlorobenzene
 (d) *p*-dichlorobenzene
 55. The decreasing order of boiling points of alkyl halides is

 (a) RF>RCl>RBr>RI
 (b) RBr>RCl>RI
 (c) RI>RBr>RCl>RF
 (c) RI>RBr>RCl>RF
 (d) RCl>RF>RI>RBr

OMR ANSWER SHEET

Sample Paper No -1

★ Use Blue / Black Ball pen only.

Г

- * Please do not make any atray marks on the answer sheet.
- ★ Rough work must not be done on the answer sheet.
- ★ Darken one circle deeply for each question in the OMR Answer sheet, as faintly darkend / half darkened circle might by rejected.

٦

Start time : E					1 time			Т	ïme taker	l				
1. N	. Name (in Block Letters)													
Γ														
2. D	Les													
Γ														
3 C	Candidate's Signature													
0. 0	SECTION-A													
1.	a	(b)	\bigcirc		9.	\overline{a}				18.	a	(b)	\bigcirc	(d)
2.		(b)	\bigcirc		10.		(b)	$\overset{\bigcirc}{\odot}$		19.		(b)	\bigcirc	
3.	a	b	Ċ	ď	11.	a	Ď	Ċ	ď	20.	a	b	Ċ	ď
4.	a	b	C	d	12.	a	b	C	d	21.	a	b	C	d
5.	a	b	C	d	13.	a	b	Ċ	d	22.		b	Ċ	d
6.	(a)	(b)	\bigcirc	$\begin{pmatrix} d \end{pmatrix}$	14.	(a)	(b)	\bigcirc	$\begin{pmatrix} d \end{pmatrix}$	23.		(b)	\bigcirc	
7.			\bigcirc		15.	(a)		\bigcirc		24.			()	
8.			\bigcirc		16.			\bigcirc		25.		\bigcirc	C	
	\bigcirc				11/1	$\overline{}$	SECTI	ON-B						
26.	(a)	(b)	\bigcirc	(d)	34.	(a)	(b)	\bigcirc	(d)	42.	(a)	(b)	\bigcirc	(d)
27.	a	(b)	Ċ	ď	35.	a	b	Ċ	d	43.		(b)	$\overset{\smile}{\odot}$	d
28.	a	b	Ċ	d	36.	a	b	Ċ	d	44.	a	b	Ċ	d
29.	a	b	C	d	37.	a	b	C	d	45.		b	C	d
30.	a	b	C	d	38.	(a)	b	C	d	46.		b	C	d
31.	(a)	(b)	\bigcirc		39.	(a)	(b)	(c)		47.		(b)	\bigcirc	
32.			\bigcirc		40.			\bigcirc		48.			\bigcirc	
33.	Ű	$\underline{\bigcirc}$	\odot	Ű	41.	<u> </u>	SFCT1		U	49.		\odot	$\underline{\bigcirc}$	U
50					52					51		h		
51.		(b)	\bigcirc		52.		(b)	\bigcirc		55.		(b)	0	
	<u> </u>	<u> </u>					<u> </u>		<u> </u>		· <u> </u>	<u> </u>		\smile
No. o	No. of Qns. Attempted Correct Incorrect Marks													