Sample Paper

ANSWERKEY																			
1	(c)	2	(b)	3	(a)	4	(b)	5	(c)	6	(d)	7	(d)	8	(b)	9	(a)	10	(d)
11	(b)	12	(d)	13	(a)	14	(a)	15	(b)	16	(d)	17	(b)	18	(c)	19	(b)	20	(d)
21	(b)	22	(c)	23	(d)	24	(d)	25	(b)	26	(b)	27	(d)	28	(c)	29	(a)	30	(b)
31	(a)	32	(a)	33	(d)	34	(c)	35	(a)	36	(b)	37	(b)	38	(c)	39	(a)	40	(d)
41	(c)	42	(c)	43	(c)	44	(d)	45	(c)	46	(a)	47	(c)	48	(b)	49	(b)	50	(a)

SOLUTIONS

1. (c) Let α and β be the zeroes of the quadratic polynomial. we have $\alpha=8$ and $\beta=10$
Sum of zeroes $=\alpha+\beta=8+10=18$
Product of zeroes $=\alpha \beta=8 \times 10=80$.
\therefore The required quadratic polynomial
$=x^{2}-($ Sum of the zeroes $) x+$ Product of the zeroes
$=x^{2}-18 x+80$
Any other quadratic polynomial that fits these condition will be of the form
$\mathrm{k}\left(\mathrm{x}^{2}-18 \mathrm{x}+80\right)$, where k is a real.
2. (b) $\mathrm{A}(3,-3), \mathrm{B}(-3,3),(-3 \sqrt{3},-3 \sqrt{3})$
$\mathrm{AB}=\sqrt{(-6)^{2}+(6)^{2}}=\sqrt{36+36}=\sqrt{72}=6 \sqrt{2}$
$\mathrm{BC}=\sqrt{(-3 \sqrt{3}+3)^{2}+(-3 \sqrt{3}-3)^{2}}=\sqrt{72}=6 \sqrt{2}$
$\mathrm{AC}=\sqrt{(-3 \sqrt{3}-3)^{2}+(-3 \sqrt{3}+3)^{2}} \quad=\sqrt{72}=6 \sqrt{2}$
$\therefore \triangle \mathrm{ABC}$ is equilateral triangle.
3. (a) Let the two numbers be x and $y(x>y)$. Then,

$$
\begin{equation*}
x-y=26 \tag{i}
\end{equation*}
$$

$x=3 y$
Substituting value of x from (ii) in (i)
$3 y-y=26$
$2 \mathrm{y}=26$
$y=13$
Substituting value of y in (ii) $x=3 \times 13=39$
Thus, two numbers are 13 and 39.
4. (b) Area of equilateral triangle $=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$

$$
\begin{aligned}
& \Rightarrow \frac{\sqrt{3}}{4} a^{2}=121 \sqrt{3} \\
& \Rightarrow \mathrm{a}^{2}=484 \\
& \Rightarrow \mathrm{a}=22 \mathrm{~cm}
\end{aligned}
$$

Perimeter of equilateral $\Delta=3 \mathrm{a}$

$$
\begin{aligned}
& =3(22) \\
& =66 \mathrm{~cm}
\end{aligned}
$$

Since the wire is bent into the form of Q circle, So perimeter of circle $=66 \mathrm{~cm}$

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{pr}=66 \\
& \Rightarrow 2 \times \frac{22}{7} \times r=66 \\
& \Rightarrow r=66 \times \frac{1}{2} \times \frac{7}{22} \\
& \Rightarrow \mathrm{r}=10.5 \mathrm{~cm}
\end{aligned}
$$

So Area enclosed by circle $=\pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 10.5 \times 10.5 \\
& =22 \times 1.5 \times 10.5 \\
& =346.5 \mathrm{~cm}^{2}
\end{aligned}
$$

5. (c) 1 st wheel makes 1 revolutions per sec

2nd wheel makes $\frac{6}{10}$ revolutions per sec
3rd wheel makes $\frac{4}{10}$ revolutions per sec
In other words 1 st, 2 nd and 3 rd wheel take $1, \frac{5}{3}$ and seconds respectively to complete one revolution.
L.C.M of $1, \frac{5}{3}$ and $\frac{5}{2}=\frac{\text { L.C.M of } 1,5,5}{\text { H.C.F of } 1,3,2}=5$

Hence, after every 5 seconds the red spots on all the three wheels touch the ground.
6. (d) $\sin \theta=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$

Since, $\sin \theta=\frac{\text { perpendicular }}{\text { base }}$
$\therefore \frac{A C}{A B}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}$
Now in $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \angle \mathrm{B}=\theta \text { and } \angle \mathrm{C}=90^{\circ} \\
& \left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}=\mathrm{BC}^{2}+\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)^{2}
\end{aligned}
$$

$\therefore B C=2 a b$
$\operatorname{cosec} \theta \frac{a^{2}}{} \quad b^{2}$,
$\cot \theta=\frac{B C}{A C}=\frac{2 a b}{a^{2}-b^{2}}$
$\operatorname{cosec} \theta+\cot \theta=\frac{a^{2}+b^{2}}{a^{2}-b^{2}}+\frac{2 a b}{a^{2}-b^{2}}=\frac{a+b}{a-b}$
7. (d) $\begin{array}{lll}1 & 2 \\ \mathrm{P}(7,-6) & \mathrm{R} & \mathrm{Q}(3,4)\end{array}$

Coordinate of R
$=\left(\frac{7(2)+3(1)}{1+2}, \frac{-6(2)+4(1)}{1+2}\right)$
$=\left(\frac{17}{3}, \frac{-8}{3}\right)$
Thus, the point R lies in IV quadrant.
8. (b) The sum of the two numbers lies between 2 and 12 . So the primes are 2, 3, 5, 7, 11 .
No. of ways for getting $2=(1,1)=1$
No. of ways of getting $3=(1,2),(2,1)=2$
No. of ways of getting $5=(1,4),(4,1)$,

$$
(2,3),(3,2)=4
$$

No. of ways of getting 7

$$
=(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)=6
$$

No. of ways of getting $11=(5,6),(6,5)=2$
No. of favourable ways $=1+2+4+6+2=15$
No. of exhaustive ways $=6 \times 6=36$
Probability of the sum as a prime
$=\frac{15}{36}=\frac{5}{12}$
9. (a) Given, $A B=2 D E$ and $\triangle A B C \sim \triangle D E F$

Hence, $\frac{\operatorname{area}(\triangle A B C)}{\operatorname{area}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}}$
or $\frac{56}{\operatorname{area}(\triangle D E F)}=\frac{4 D E^{2}}{D E^{2}}=4 \quad[\because \mathrm{AB}=2 \mathrm{DE}]$
$\operatorname{area}(\triangle D E F)=\frac{56}{4}=14$ sq. cm .
10. (d) Given : length of the sheet $=11 \mathrm{~cm}$

Breadth of the sheet $=2 \mathrm{~cm}$
Diameter of the circular piece $=0.5 \mathrm{~cm}$
Radius of the circular piece
$=\frac{0.5}{2}=0.25 \mathrm{~cm}$
Now, area of the sheet $=$ length \times breadth
$=11 \times 2=22 \mathrm{~cm}^{2}$.
Area of a circular disc $=\pi r^{2}$
$=\frac{22}{7} \times(0.25)^{2} \mathrm{~cm}^{2}$
Number of circular discs formed
$=\frac{\text { Area of the sheet }}{\text { Area of one disc }}$
$=\frac{22}{\frac{22}{7} \times(0.25)^{2}}=\frac{22 \times 7}{22 \times 0.0625}=112$
Hence, 112 discs can be formed.
11. (b) $a=x^{3} y^{2}$

$$
\begin{aligned}
& =x \times x \times x \times y \times y \\
b & =x y^{3} \\
& =x \times y \times y \times y \\
\Rightarrow & \operatorname{HCF}(a, b)=x y^{2}
\end{aligned}
$$

12. (d) $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$
$=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}$

$$
\begin{aligned}
& =\frac{\sin \theta}{\cos \theta \cdot\left(\frac{\sin \theta-\cos \theta}{\sin \theta}\right)}+\frac{\cos \theta}{\sin \theta \cdot\left(\frac{\cos \theta-\sin \theta}{\cos \theta}\right)} \\
& =\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\cos \theta-\sin \theta)} \\
& =\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)} \\
& =\frac{\sin ^{2} \theta \times \sin \theta-\cos ^{2} \theta \times \cos \theta}{\sin \theta \cos \theta(\sin \theta-\cos \theta)} \\
& =\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \cos \theta(\sin \theta-\cos \theta)} \\
& =\frac{(\sin \theta-\cos \theta)\left(\sin 2 \theta+\cos { }^{2} \theta+\sin \theta \cos \theta\right)}{\sin \theta \cos \theta(\sin \theta-\cos \theta)} \\
& =\frac{1+\sin \theta \cos \theta}{\sin \theta \cos \theta} \\
& \text { So, } \frac{-k}{2}=1 \\
& \therefore \mathrm{k}=2
\end{aligned}
$$

13. (a) Let present age of Nuri $=x$ years Let present age of Sonu $=\mathrm{y}$ years Five years ago,

$$
\begin{align*}
& x-5=3(y-5) \\
& x-5=3 y-15 \\
& x-3 y=-10 \tag{i}
\end{align*}
$$

Ten years later,

$$
\begin{align*}
& (x+10)=2(y+10) \\
& x+10=2 y+20 \\
& x-2 y=10 \tag{ii}
\end{align*}
$$

Subtracting (ii) from (i), we get

$$
\begin{aligned}
& -y=-20 \\
& \Rightarrow \quad y=20
\end{aligned}
$$

Substituting $y=20$ in (ii), we get

$$
\begin{aligned}
& x-2 \times 20=10 \\
\Rightarrow \quad & x=50
\end{aligned}
$$

So, present age of Nuri is 50 years and present age of Sonu is 20 years
14. (a) Using Pythagoras theorem in $\triangle \mathrm{ABL}$ we have $\mathrm{AL}=8 \mathrm{~cm}$,
Also, $\triangle \mathrm{BPQ} \sim \Delta \mathrm{BAL}$
$\therefore \frac{B Q}{P Q}=\frac{B L}{A L} \Rightarrow \frac{6-x}{y}=\frac{6}{8} \quad$ or $x=6-\frac{3}{4} y$

15. (b) Let the common factor be $x-k$ we have,
$\mathrm{f}(\mathrm{k})=\mathrm{g}(\mathrm{k})=0$
$\Rightarrow \quad \mathrm{k}^{2}+5 \mathrm{k}+\mathrm{p}=\mathrm{k}^{2}+3 \mathrm{k}+\mathrm{q}$
$\mathrm{k}=\frac{\mathrm{q}-\mathrm{p}}{2}$
substituting " k " in $x^{2}+5 x+p=0$
$\mathrm{x}^{2}+5 \mathrm{x}+\mathrm{p}=0$
$\left(\frac{\mathrm{q}-\mathrm{p}}{2}\right)^{2}+\left(\frac{\mathrm{q}-\mathrm{p}}{2}\right)+\mathrm{p}=0$
$\therefore(p-q)^{2}=2(3 p-5 q)$
16. (d) $X=$ (April, June, September, November)

Hence, $n(X)=4$
17. (b) $x^{2}=\frac{5}{9} \Rightarrow x= \pm\left(\frac{1}{3}\right)(\sqrt{5})=$ irrational
18. (c) $\mathrm{PQ}=13 \Rightarrow \mathrm{PQ}^{2}=169$
$\Rightarrow \quad(x-2)^{2}+(-7-5)^{2}=169$
$\Rightarrow \quad x^{2}-4 x+4+144=169$
$\Rightarrow \quad x^{2}-4 x-21=0$
$\Rightarrow \quad x^{2}-7 x+3 x-21=0$
$\Rightarrow \quad(\mathrm{x}-7)(\mathrm{x}+3)=0$
$\Rightarrow \quad x=7,-3$
19. (b)

We have two chord $A B$ and $C D$ when produced meet outside the circle at P .
Since in a cyclic quadrilateral the exterior angle is equal to the interior opposite angle,
$\therefore \quad \angle \mathrm{PAC}=\angle \mathrm{PDB}$
From (1) and (2) and using AA similarity we have $\triangle \mathrm{PAC} \sim \triangle \mathrm{PDB}$
\therefore Their corresponding sides are proportional.
$\Rightarrow \frac{\mathrm{PA}}{\mathrm{PD}}=\frac{\mathrm{PC}}{\mathrm{PB}}$
$\Rightarrow \quad \mathrm{PA} . \mathrm{PB}=\mathrm{PC} . \mathrm{PD}$.
20. (d) we have, $\tan \theta=\frac{a \sin \phi}{1-a \cos \phi}$
$\Rightarrow \cot \theta=\frac{1}{a \sin \phi}-\cot \phi$
$\Rightarrow \cot \theta+\cot \phi=\frac{1}{a \sin \phi}$
$\tan \phi=\frac{b \sin \theta}{1-b \cos \theta}$
$\Rightarrow \cot \phi=\frac{1}{b \sin \theta}-\cot \theta$
$\Rightarrow \cot \phi+\cot \theta=\frac{1}{b \sin \theta}$
From (i) and (ii), we have
$\frac{1}{a \sin \phi}=\frac{1}{b \sin \theta}$
$\Rightarrow \frac{a}{b}=\frac{\sin \theta}{\sin \phi}$
21. (b) Let $f(x)=x^{n}+y^{n}$.

Divisible by $(x+y)$ means $f(-y)=0$.
So, $(-y)^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}=0$.
This is possible only when " n " is an odd number.
22. (c)

Let $\quad \mathrm{AB}=\mathrm{BC}=\mathrm{x}$.
Since $\triangle \mathrm{ABC}$ is right-angled with

$$
\begin{aligned}
& \angle B=90^{\circ} \\
\therefore \quad & A C^{2}=A B^{2}+B C^{2}=x^{2}+\mathrm{x}^{2}=2 \mathrm{x}^{2} \\
\Rightarrow & A C=\sqrt{2} x
\end{aligned}
$$

Since $\triangle \mathrm{ABE} \sim \triangle \mathrm{ACD}$

$$
\therefore \frac{\operatorname{Area}(\triangle \mathrm{ABE})}{\operatorname{Area}(\triangle \mathrm{ACD})}=\frac{\mathrm{AB}^{2}}{\mathrm{AC}^{2}}=\frac{\mathrm{x}^{2}}{2 \mathrm{x}^{2}}=\frac{1}{2}
$$

Thus $\frac{\operatorname{Area}(\triangle \mathrm{ABE})}{\operatorname{Area}(\triangle \mathrm{ACD})}=\frac{1}{2}$
Thus reqd. ratio is $1: 2$.
23. (d) Area of circle $\mathrm{A}=3.14 \times 10 \times 10=314$

Area of circle $B=3.14 \times 8 \times 8=200.96$
Area of $\mathrm{Q}=\frac{1}{8} \times$ Area of B
$=\frac{1}{8} \times 200.96=25.12$
Now, $=\frac{\text { Area of } \mathrm{P}}{\text { Area of } \mathrm{Q}}$
\Rightarrow Area of $\mathrm{P}=\frac{5}{4} \times$ Area of Q
$=\frac{5}{4} \times 25.12=31.4$
Area of square $=7 \times 7=48$
Required Area
$=(314+200.96+49-25.12-31.4)$
$=507.44 \mathrm{~cm}^{2}$
24. (d) All the properties are satisfied by real numbers.
25. (b) $\mathrm{A}(0,4), \mathrm{B}(0,0), \mathrm{C}(3,0)$
$\mathrm{AB}=\sqrt{(0-0)^{2}+(0-4)^{2}}=4$
$\mathrm{BC}=\sqrt{(3-0)^{2}+(0-0)^{2}}=3$
$\mathrm{CA}=\sqrt{(0-3)^{2}+(4-0)^{2}}=5$
$\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=12$
26. (b) Let the two parts be x and y.

We have,
$x+y=62$
$\frac{\frac{x}{4}}{\frac{2 y}{5}}=\frac{2}{3}$
$15 x-16 y=0$
By solving (i) and (ii) we get $\mathrm{x}=32, \mathrm{y}=30$
27. (d) Here, $(p+2)\left(q-\frac{1}{2}\right)=p q-5$
$\Rightarrow \quad \mathrm{pq}-\frac{1}{2} \mathrm{p}+2 \mathrm{q}-1=\mathrm{pq}-5$
$\Rightarrow \quad-\frac{\mathrm{p}}{2}+2 \mathrm{q}=-4$
$\Rightarrow \quad \frac{\mathrm{p}}{2}-2 \mathrm{q}=4$
also, $(p-2)\left(q-\frac{1}{2}\right)=p q-5$
$\Rightarrow \quad \mathrm{pq}-\frac{1}{2} \mathrm{p}-2 \mathrm{q}+1=\mathrm{pq}-5$
$\Rightarrow \quad-\frac{1}{2} \mathrm{p}-2 \mathrm{q}=-6$
By adding (iii) and (iv), we get $\mathrm{p}=10$
$=\frac{p}{2}-2 q=4$
or $\frac{10}{2}-2 q=4$
$\Rightarrow \quad 5-4=2 \mathrm{q} \Rightarrow \mathrm{q}=\frac{1}{2}$
Hence, solution set $(\mathrm{p}, \mathrm{q})=\left(10, \frac{1}{2}\right)$
28. (c) Let $\cos \theta+\sqrt{3} \sin \theta=2 \sin \theta$

Multiplying both sides by $2+\sqrt{3}$, we get
$\Rightarrow \cos \theta=2 \sin \theta-\sqrt{3} \sin \theta=(2-\sqrt{3}) \sin \theta$

$$
\begin{aligned}
& (2+\sqrt{3}) \cos \theta=(2+\sqrt{3})(2-\sqrt{3}) \sin \theta \\
& \Rightarrow(2+\sqrt{3}) \cos \theta=\left\{(2)^{2}-(\sqrt{3})^{2}\right\} \sin \theta \\
& \Rightarrow 2 \cos \theta+\sqrt{3} \cos \theta=(4-3) \sin \theta \\
& \Rightarrow 2 \cos \theta+\sqrt{3} \cos \theta=(4-3) \sin \theta \\
& \Rightarrow \sin \theta-\sqrt{3} \cos \theta=2 \cos \theta
\end{aligned}
$$

29. (a) Substituting the given zeros in $(x-a)(x-b)$, we get

$$
\begin{aligned}
& \left(x-\frac{1}{3}\right)\left(x+\frac{2}{5}\right) \\
& =\frac{1}{15}\left[15 x^{2}+x-2\right]
\end{aligned}
$$

30. (b) $S=\{(1,1), \ldots .,(1,6),(2,1), \ldots \ldots,(2,6),(3,1), \ldots .,(3,6)$, $(4,1), \ldots . .,(4,6),(5,1), \ldots .,(5,6),(6,1), \ldots . .,(6,6)\}$ $\mathrm{n}(\mathrm{S})=36$
Let E be the event that both dice show different numbers.
$\mathrm{E}\{(1,2),(1,3), \ldots .,(1,6),(2,1),(2,3),(2,4), \ldots$. ,
$(2,6),(3,1),(3,2),(3,4),(3,5),(3,6),(4,1),(4,2),(4$,
3), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (6, 1),
$(6,2),(6,3),(6,4),(4,5)\}$
$\mathrm{n}(\mathrm{E})=30$
$P(E)=\frac{n(E)}{n(S)}=\frac{30}{36}=\frac{5}{6}$
31. (a) $\quad \begin{array}{llll}\mathrm{A}(3 \mathrm{p}, 4) & \mathrm{P}(5, \mathrm{p}) & \mathrm{B}(-2,2 q)\end{array}$

Since, $P(5, p)$ is the mid point of $A B$
$\therefore \quad 5=\frac{3 p-2}{2}$ and $p=\frac{4+2 q}{2}$
$\mathrm{p}=4$ and $2 \mathrm{q}=2 \mathrm{p}-4$
$\Rightarrow \quad 2 \mathrm{q}=8-4=4$
Now, $q=2$
$\Rightarrow \mathrm{p}+\mathrm{q}=4+2=6$
$\Rightarrow \mathrm{p}-\mathrm{q}=4-2=2$
32. (a) An irrational number.
33. (d) $\frac{\cos ^{2} \theta}{\cot ^{2} \theta-\cos ^{2} \theta}=3 \Rightarrow \frac{\cos ^{2} \theta}{\frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\cos ^{2} \theta}=3$
$\Rightarrow \frac{\cos ^{2} \theta \times \sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}=3$
$\Rightarrow \frac{\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta\left(1-\sin ^{2} \theta\right)}=3$
$\Rightarrow \frac{\sin ^{2} \theta}{\cos ^{2} \theta}=3 \Rightarrow \tan ^{2} \theta=3 \Rightarrow \tan \theta=\sqrt{3}$
$\tan \theta=\tan 60^{\circ} \Rightarrow \theta=60^{\circ}$ (acute angle)
34. (c)

Using pythagoras theorem,
$\mathrm{d}=\sqrt{12^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}$
$\therefore \mathrm{d}=13 \mathrm{~m}$
So, distance between the tops of poles is 13 m .
35. (a) Radius of circle $=14 \mathrm{~cm} \div 2=7 \mathrm{~cm}$

One side of the figure opposite to
$35 \mathrm{~cm}=35 \mathrm{~cm}-7 \mathrm{~cm}=28 \mathrm{~cm}$

Perimeter of the two sectors of circle
$=\frac{1}{2} \times \frac{22}{7} \times 14 \mathrm{~cm}=22 \mathrm{~cm}$
\therefore Total perimeter $=134 \mathrm{~cm}$
The perimeter of the given figure is 134 cm .
36. (b) Product of zeroes $=\frac{161}{23}=7$

$$
\begin{array}{ll}
\Rightarrow & 2 \times \text { product of zeroes }=14 \mathrm{p} \\
\Rightarrow & 2 \times 7=14 \mathrm{p} \\
\therefore & p=\frac{14}{14} \Rightarrow p=1
\end{array}
$$

37. (b) Suppose the required ratio is $m_{1}: m_{2}$ Then, using the section formula, we get
$-2=\frac{m_{1}(4)+m_{2}(-3)}{m_{1}+m_{2}}$
$\Rightarrow-2 \mathrm{~m}_{1}-2 \mathrm{~m}_{2}=4 \mathrm{~m}_{1}-3 \mathrm{~m}_{2}$
$\Rightarrow m_{2}=6 m_{1} \Rightarrow m_{1}: m_{2}=1: 6$
38. (c) If the sum of 3 prime is even, then one of the numbers must be 2 .
Let the second number be x . Then as per the given condition,
$x+(x+36)+2=100 \Rightarrow x=31$
So, the number are $2,31,67$.
Hence largest number is 67 .
39. (a) $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}$

$$
\Rightarrow \operatorname{ar}(\Delta \mathrm{ABC})=\left(\frac{2.1}{2.8}\right)^{2} \times \operatorname{ar}(\Delta \mathrm{DEF})=9 \mathrm{~cm}^{2}
$$

40. (d) $\frac{\mathrm{k}}{6} \neq \frac{-1}{-2} \Rightarrow \mathrm{k} \neq 3$.
41. (c) H.C.F. $=16$ and Product $=3072$

$$
\text { L.C.M. }=\frac{\text { Product }}{\text { H.C.F. }}=\frac{3072}{16}=192
$$

42. (c) H.C.F. of two numbers is 27

So let the numbers are 27 a and 27 b
Now $27 a+27 b=135$
$\Rightarrow \quad a+b=5$
Also $27 \mathrm{a} \times 27 \mathrm{~b}=27 \times 162$.
$\Rightarrow \quad a b=6$
$(a-b)^{2}=(a+b)^{2}-4 a b$
$\Rightarrow \quad \mathrm{a}-\mathrm{b}=1$
Solving (i) and (iii), we get
$\mathrm{a}=3, \mathrm{~b}=2$
So numbers are $27 \times 3,27 \times 2$ i.e., 81,54
43. (c) H.C.F. of two co-prime natural number is 1 .
44. (d) $\mathrm{LCM}=\mathrm{HCF}$
$\Rightarrow \quad$ two numbers are equal.
45. (c) Clearly, $\mathrm{LCM}=\left(\mathrm{LCM}\right.$ of p and $\left.\mathrm{p}^{3}\right)$
$\left(L C M\right.$ of q^{2} and $\left.q\right)=p^{3} q^{2}$
46. (a) As three faces are marked with number ' 2 ', so number of favourable cases $=3$.
\therefore Required probability, $P(2)=\frac{3}{6}=\frac{1}{2}$
47. (c) No. of favourable cases $=$ No. of events of getting the number $1+$ no. of events of getting the number $3=2+1$ $=3$
\therefore Required probability, $\mathrm{P}(1$ or 3$)=\frac{3}{6}=\frac{1}{2}$
48. (b) Only 1 face is marked with 3 , so there are 5 faces which are not marked with 3 .
\therefore Required probability, $\mathrm{P}($ not 3$)=\frac{5}{6}$
49. (b)
50. (a)

