
#### **MARKING SCHEME (COMPARTMENT) 2019**

SET: 55/1/2

| Q. NO.    | VALUE POINTS/ EXPECTED ANSWERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MARKS       | TOTAL |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|
| Ψ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | MARKS |
|           | SECTION - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |       |
| 1.        | $H=B_ECos\Theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |       |
|           | [Alternatively $\Theta = \cos^{-1}(H/B_E)$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |       |
|           | [Alternativery]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
|           | H= horizontal component of earth's magnetic field (=B <sub>E</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |       |
|           | $\Theta$ = angle of dip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1           | 1     |
|           | [Note: Award this 1 mark even if the student just writes the relation between H, B <sub>E</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
| 2.        | and $\Theta$ without explaining the meanings of the symbols]  Heavy nuclei contain a large number of protons which exert strong repulsive forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |       |
| <b>∠.</b> | on one another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
|           | [Alternatively:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
|           | Because of strong repulsive forces between the large number of protons in them]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 1     |
| 3.        | Frequency range of the spectrum occupied by the signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8           |       |
|           | Alternatively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.8         |       |
|           | Difference between the maximum and minimum frequencies considered essential for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 1     |
|           | a given message signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | maga        |       |
|           | 11 OO Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |       |
|           | $\frac{\text{Alternatively}}{\text{Band width} = v_{\text{max}} - v_{\text{min}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |       |
| 4.        | Long Radio waves; In communication systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2 + 1/2   |       |
|           | OR Talling Talling To the Control of | , , , , , , |       |
|           | X-rays; nearly $10^{16}$ Hz to $10^{21}$ Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2 + 1/2   | 1     |
| 5.        | Frequency of photon $v=E/h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2         |       |
|           | $= \frac{2eV}{6.63 \times 10^{-34} Js}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |       |
|           | 0.03 1 10 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |       |
|           | $=\frac{2\times1.6\times10^{-19}}{H_{7}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |       |
|           | $= \frac{2 \times 1.6 \times 10}{6.63 \times 10^{-34}} Hz$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2         | 1     |
|           | $= 4.8 \times 10^{14} \text{Hz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |       |
|           | [Award the last ½ mark even if the student just makes a correct substitution but does                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |       |
|           | not calculate the value of $\nu$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |       |
|           | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1./         | 1     |
|           | (i) Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2 1/2     |       |
|           | (ii) The photo electric current is dependent on the intensity of incident radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72          |       |
|           | Because the change of intensity changes the number of photons incident per second on the photosensitive surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |       |
|           | SECTION - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |       |
| 6.        | Dia amom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |       |
|           | Diagram Electric field due to point charges ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |       |
|           | Net electric field  Net electric field  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |       |

55/1/2 Page **3** of **26** 





55/1/2 Page **4** of **26** 



| 7  |                                                                                                                                                                                     |                   |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
|    | Diagram ½                                                                                                                                                                           |                   |   |
|    | Formula for flux ½ Calculation of Net outward flux 1                                                                                                                                |                   |   |
|    | Calculation of Net Outward nux                                                                                                                                                      |                   |   |
|    |                                                                                                                                                                                     | 1 /               |   |
|    | x=-15cm x=+45cm                                                                                                                                                                     | 1/2               |   |
|    | $Flux = \int \vec{E} \cdot \vec{ds}$                                                                                                                                                | / Z               |   |
|    | [Alternatively $\phi = \int E ds \ Cos\theta$ ]<br>Net outward flux                                                                                                                 |                   |   |
|    | = $[200 \times \pi \times (\frac{5}{100})^2 + 200 \times \pi \times (\frac{5}{100})^2]$<br>= $\pi \text{Nm}^2 \text{C}^{-1} \ (\cong 3.142 \text{ Nm}^2 \text{C}^{-1})$             | 1/2 1/2           | 2 |
|    | [Note: Award full 2 marks even if the students does a direct (correct) calculation of the net outward flux without drawing the diagram or writing the formula for flux. In          | 3. Es.            |   |
| 0  | such a case, award 1 mark for correct substitutions and 1 mark for correct calculations. (Deduct ½ mark if the units for flux are not written)]                                     | tform             |   |
| 8. | Estimation of wavelength in terms of radius of orbit 1 Ratio of wavelengths in the two orbits                                                                                       |                   |   |
|    | $2\pi r_n = n\lambda_n$ and $r_n = a_0 n^2$ $\lambda_n = 2\pi a_0 n$                                                                                                                | 1/2<br>1/2<br>1/2 |   |
|    | and $\frac{\lambda_2}{\lambda_3} = \frac{2}{3}$                                                                                                                                     | 1/2               | 2 |
| 9. | Explaining (any) two reasons 1+1                                                                                                                                                    |                   |   |
|    | The message signal needs to be modulated (using a high frequency carrier wave) before transmission in a communication system because of the following reasons:                      |                   |   |
|    | (i) We need an antenna of size of the order of $\lambda/4$ ; $\lambda$ is very large for the                                                                                        |                   |   |
|    | usual low frequency message signals.  [Alternatively The size of the transmission antenna would be unmanageably large                                                               |                   |   |
|    | for the (usual) low frequency message signals]                                                                                                                                      |                   |   |
|    | (ii) The power radiated from a linear antenna of length $l$ is proportional to                                                                                                      |                   |   |
|    | $(l/\lambda)^2$ ; it is therefore quite low for the (usual) large values of $\lambda$ for                                                                                           |                   |   |
|    | message signals.  (iii) It is very difficult to avoid mixing up of signals from different transmitters if transmission is done at the (usual) low values of frequencies of ordinary |                   |   |
|    | message signals. (Any two reasons)                                                                                                                                                  | 1 + 1             | 2 |
|    |                                                                                                                                                                                     |                   |   |
|    |                                                                                                                                                                                     |                   |   |

55/1/2 Page **5** of **26** 



| 10. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
|     | (a) Effect + Reason $\frac{1}{2} + \frac{1}{2}$<br>(b) Effect + Reason $\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |    |
|     | (a) $I = \frac{V}{\sqrt{R^2 + \omega^2 L^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2        |    |
|     | When $\omega$ increases, I decreases, $\therefore$ brightness decreases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |    |
|     | (b) $I = \frac{V}{\sqrt{1 - \frac{V}{1 - $ | 1/2        |    |
|     | $\sqrt{R^2 + \frac{1}{\omega^2 c^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2        |    |
|     | When $\omega$ increases, I increases, $\therefore$ brightness increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.7        |    |
|     | Alternatively:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2        |    |
|     | (a) Brightness decreases<br>Reason: The impedance of L increases with an increase in angular frequency $\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2<br>1/2 |    |
|     | (b) Brightness increases Reason: The impedance of C decreases with an increase in angular frequency $\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2        | 2  |
| 11. | Treason. The impedance of a decreases with an increase in angular inequency as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30         |    |
|     | (a) Graph of em wave (b) (i) Relation between c, $E_0$ and $B_0$ 1/2 (ii) Expression for speed of em wave 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tform      |    |
|     | $F_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1          |    |
|     | (i) $c = \frac{B_0}{B_0}$<br>(ii) $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2 1/2    | 2  |
| 12. | Formula for Induced Emf 1 Calculation of Induced Emf 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |    |
|     | $E = \frac{1}{2}B\omega r^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1          |    |
|     | $= \left[\frac{1}{2} \times 8 \times 10^{-5} \times 4\pi \times (0.5)^2\right] V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2        |    |
|     | $= 12.56 \times 10^{-5} V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2        | 2  |
|     | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 37 |

55/1/2 Page **6** of **26** 

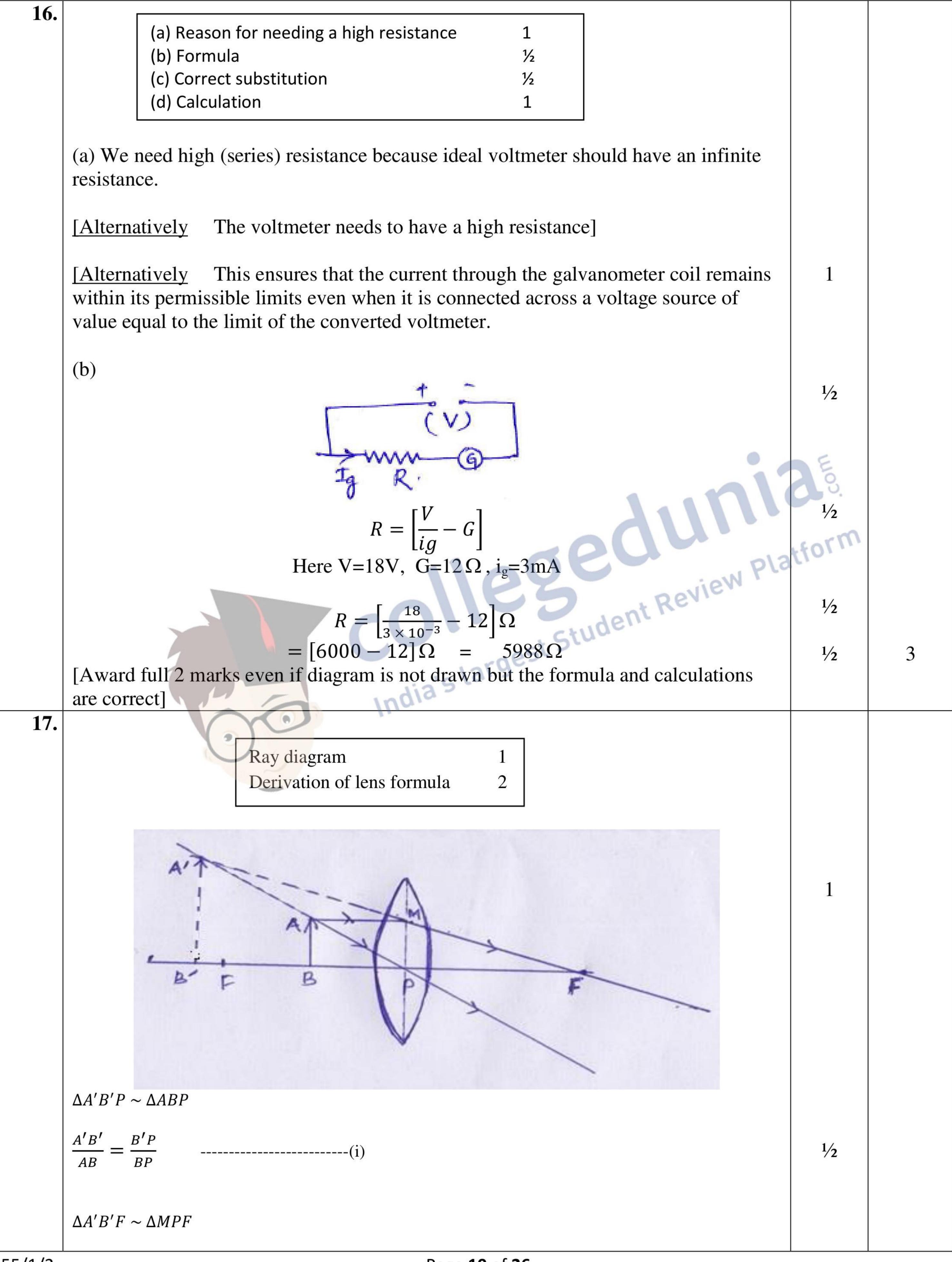


|     |                                                                                                                                                                                                                                                                            | ,    |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
|     | Formula for Induced Emf 1 Calculation of Induced Emf 1                                                                                                                                                                                                                     |      |   |
|     | $\varepsilon = \frac{-d\phi}{dt}$                                                                                                                                                                                                                                          | 1/2  |   |
|     | $= -A \frac{dB}{dt}$                                                                                                                                                                                                                                                       | 1/2  |   |
|     | $= -A\frac{dB}{dx} \times \frac{dx}{dt} = -Av\frac{dB}{dx}$                                                                                                                                                                                                                | 1/2  |   |
|     | $= -[(0.1)^2 \times (-8 \times 10^{-3})]V$                                                                                                                                                                                                                                 | 1 /  |   |
|     | $=8\times10^{-5}V$                                                                                                                                                                                                                                                         | 1/2  | 2 |
|     | SECTION - C                                                                                                                                                                                                                                                                |      |   |
| 13. |                                                                                                                                                                                                                                                                            |      |   |
|     | (a) Reason for circular motion 1 Expression for radius 1 (b) Path of the particle when $\Theta \neq 90^0$                                                                                                                                                                  | aso. |   |
|     | (a) $\vec{F} = q(\vec{v} \times \vec{B})$<br>Force $\vec{F}$ on a moving charged particle in a magnetic field acts perpendicular to the                                                                                                                                    | 1/2  |   |
|     | velocity vector at all instants. It therefore, changes only the direction of velocity without changing its magnitude. This results in a circular motion of the particle for which the force $\vec{F}$ provides the needed centripetal force $\left(=\frac{mv^2}{r}\right)$ |      |   |
|     | which the force $F$ provides the needed centripetar force $\left(=\frac{1}{r}\right)$<br>Here $F$ =qvB sin $\Theta$<br>= qvB (as $\Theta = \pi/2$ )                                                                                                                        |      |   |
|     | $\therefore \frac{mv^2}{r} = qvB$                                                                                                                                                                                                                                          | 1/2  |   |
|     | $\therefore r = \frac{mv}{qB}$                                                                                                                                                                                                                                             | 1/2  |   |
|     | (b) If $\Theta \neq 90^{\circ}$ , then velocity will have a component along $\vec{B}$ also and the charged                                                                                                                                                                 |      |   |
|     | particle will move along $\vec{B}$ with this component of velocity while describing circular motion in a plane perpendicular to $\vec{B}$ . Its motion is, therefore, helical.                                                                                             | 1    | 3 |
|     | [Note: Award this 1 mark even if a student just writes that the charged particle will describe a helical path / motion.]                                                                                                                                                   |      |   |
|     | OR                                                                                                                                                                                                                                                                         |      |   |
|     | Diagram 1 Working Principle 1 Two uses 1/2 + 1/2                                                                                                                                                                                                                           |      |   |
|     |                                                                                                                                                                                                                                                                            |      |   |

55/1/2 Page **7** of **26** 



|     | Magnetic field out of the paper  Exit Port  Charged particle  D <sub>1</sub> OSCILLATOR                                                                                                                                                                                                                                                                                                                                                                      | 1         |      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
|     | Working Principle: Cyclotron uses crossed electric and magnetic fields. Magnetic                                                                                                                                                                                                                                                                                                                                                                             | 1         |      |
|     | field makes the charged particle describe a circular path while electric field frequency is so adjusted as to accelerate the particle whenever it crosses the space between the                                                                                                                                                                                                                                                                              | L         |      |
|     | dees. A relatively small electric field can then be used to accelerate particles to very                                                                                                                                                                                                                                                                                                                                                                     |           |      |
|     | high energy values.                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2       | 3    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2       | 5733 |
|     | Uses: (i) To accelerate charged particles to very high energies                                                                                                                                                                                                                                                                                                                                                                                              | 24        |      |
|     | (ii) To implant ions into solids to modify their properties.  [or any other use]                                                                                                                                                                                                                                                                                                                                                                             | 3.E       |      |
| 14. | (a) Writing the colour band sequence (b) Reason for extensive use of carbon resistors in electric circuits (c) Two important precautions in a meter bridge experiment  1 2 4 + 1/2                                                                                                                                                                                                                                                                           | tform     |      |
|     | (a) The colour band sequence would be orange, blue, yellow, gold (Note: Award ½ mark if only two of the colours are correctly indicated as per the given sequence)                                                                                                                                                                                                                                                                                           | 14        |      |
|     | (b) (i) Compact in size                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/2       |      |
|     | (ii) inexpensive                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2       |      |
|     | <ul> <li>(c) We need to</li> <li>(i) ensure that the jockey is not 'dragged' over the wire while locating the balance point.</li> <li>(ii) select the standard known resistance in such a way that the balance point is near the middle of the bridge wire.</li> <li>(iii) make all connections in a neat compact manner</li> <li>(iv) ensure that there is no excessive continuous current flow that may heat up the different resistance wires.</li> </ul> | 1/2 + 1/2 | 3    |
|     | (Any two; also accept any other suitable precaution)                                                                                                                                                                                                                                                                                                                                                                                                         | , 2 1 / 2 |      |
| 15. |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |      |
|     | (a)                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |      |
|     | Drift Velocity: It is the average velocity with which electrons move in a conductor                                                                                                                                                                                                                                                                                                                                                                          |           |      |
|     | when an external electric field (or potential difference) is applied across the                                                                                                                                                                                                                                                                                                                                                                              | 1/2       |      |
| L   |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |      |


55/1/2 Page **8** of **26** 



# conductor. Significance: The drift velocity controls the net current flowing across any cross section./ There is no net transport of charges across any area perpendicular to the applied field. Relaxation time: It is the average time between successive collisions for the drifting $\frac{1}{2}$ electrons in the conductor. Significance: It is a (very important) factor in determining the electrical conductivity $\frac{1}{2}$ of a conductor at different temperatures. (It is a factor which determines the drift velocity acquired by the electrons under a given applied external electric field) (b) 1/2 OR Diagram Expression for equivalent emf and internal resistance $2\frac{1}{2}$ $I = I_1 + I_2$ $= \left(\frac{E_1 - V}{r_1}\right) + \left(\frac{E_2 - V}{r_2}\right)$ $= \left(\frac{E_1}{r_1} + \frac{E_2}{r_2}\right) - V\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$ Hence $V = \left[\frac{E_1 r_2 + E_2 r_1}{r_1 r_2}\right] - I\left(\frac{r_1 r_2}{r_1 + r_2}\right)$ $\therefore E_{eff} = \frac{E_1 r_2 + E_2 r_1}{r_1 r_2}$

55/1/2 Page **9** of **26** 

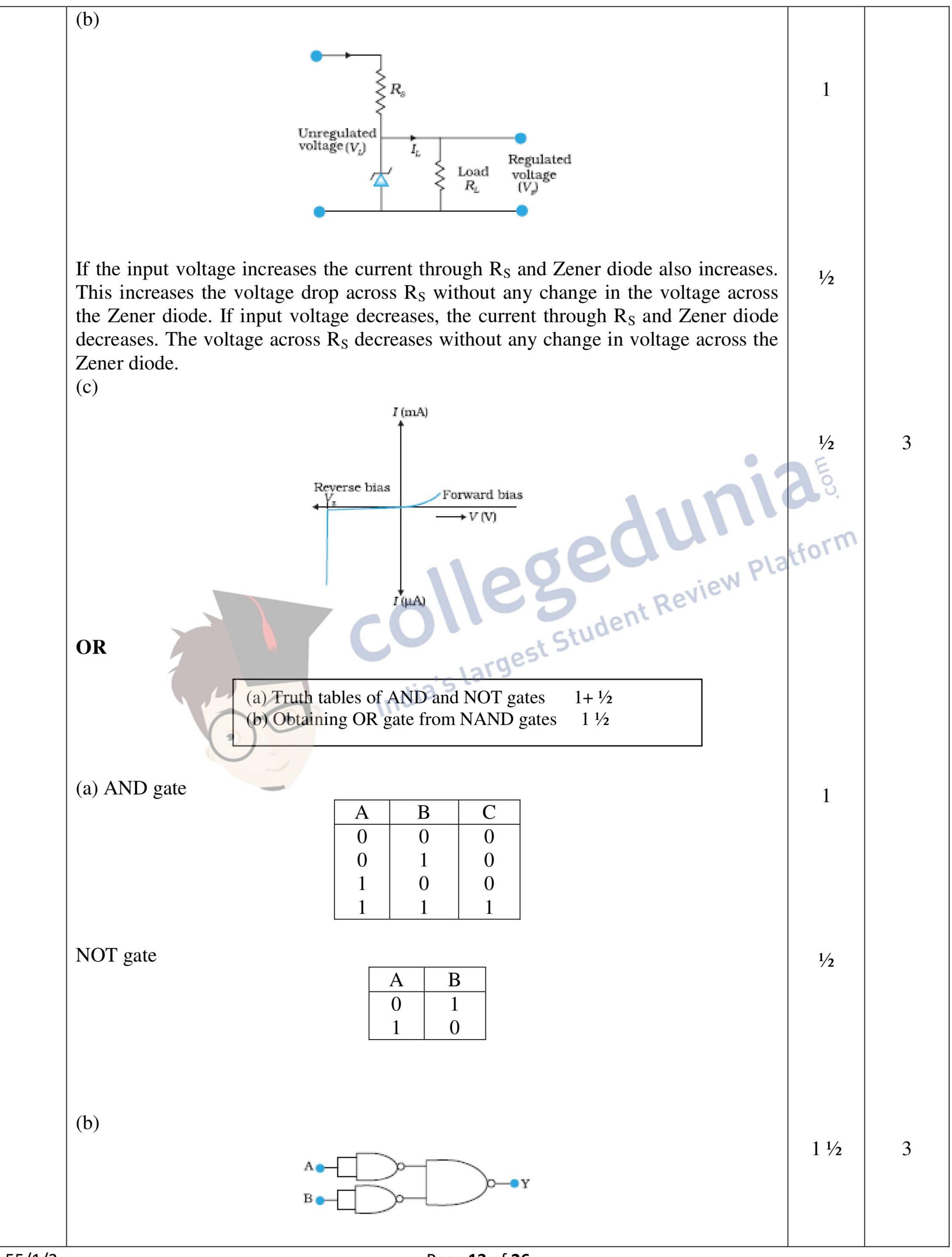




55/1/2 Page **10** of **26** 



| A'B' $B'F$                                                               |       | ] |
|--------------------------------------------------------------------------|-------|---|
| $\frac{AB}{MP} = \frac{BF}{PF}$                                          |       |   |
| or $\frac{A'B'}{AB} = \frac{B'F}{PF}$ (ii)                               | 1/2   |   |
| From (i) and (ii) $B'P  B'F$                                             |       |   |
| $\overline{BP} = \overline{PF}$                                          |       |   |
| or $\frac{-v}{-u} = \frac{B'P + PF}{PF} = 1 + \frac{B'P}{PF}$            |       |   |
| or $\frac{v}{u} = 1 - \frac{v}{f}$                                       |       |   |
| $\operatorname{or} \frac{1}{f} = \frac{1}{v} - \frac{1}{u}$              | 1     | 3 |
| OR                                                                       |       |   |
|                                                                          | 3.0   |   |
| Ray diagram Derivation of mirror formula  2                              | tform |   |
| Jen validi di miror formala                                              |       |   |
| India's large                                                            |       |   |
| G A A A A A A A A A A A A A A A A A A A                                  | 1     |   |
| E B P                                                                    |       |   |
| $A'B'F \sim \Delta MPF$                                                  |       |   |
| $\frac{A'B'}{MP} = \frac{B'F}{PF} = \frac{B'P + PF}{PF}$                 |       |   |
| or $\frac{A'B'}{A'B'} = \frac{B'P + PF}{A'B'}$ (i)                       |       |   |
| $\Delta A'B'C \sim \Delta ABC$                                           | 1/2   |   |
| $\frac{A'B'}{AB} = \frac{B'C}{BC} = \frac{B'P + PC}{PC - PB} \qquad(ii)$ | 1/2   |   |
| or $\frac{B'P+PF}{PF} = \frac{B'P+PC}{PC-PB}$                            | / 2   |   |
| or $\frac{v-f}{f} = \frac{v-2f}{2f+c}$                                   |       |   |
| -J $-2J+u$                                                               |       |   |


55/1/2 Page **11** of **26** 

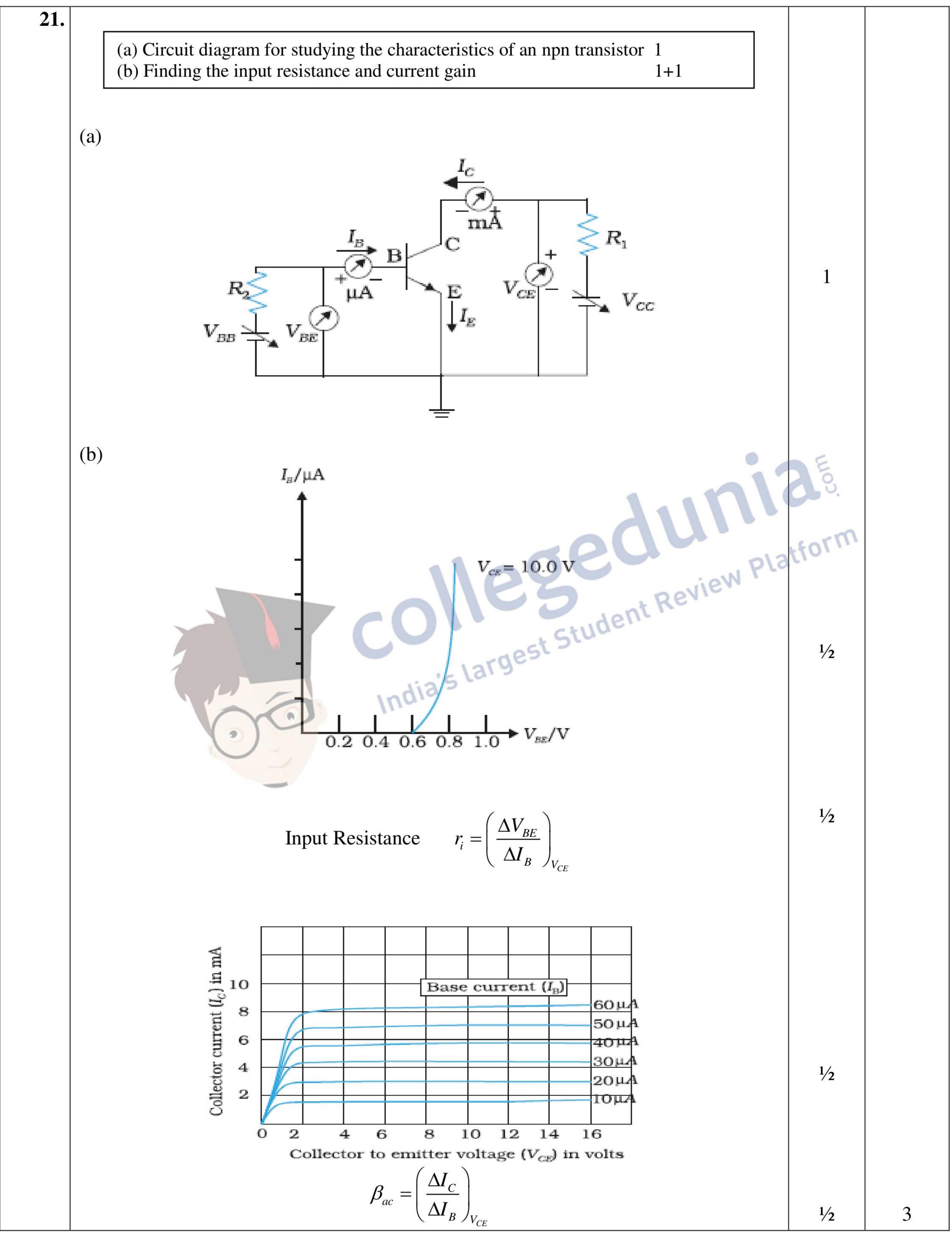


|     | Cross multiply and divide by uvf: $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$                                                                                                                                                                    | 1         | 3 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|
| 18. | Labeled Diagram  Working  Limitations  How the limitations are overcome in a reflecting telescope  1                                                                                                                                           |           |   |
|     | Objective    Fe   Fe   Fe   Fe   Fe   Fe   Fe                                                                                                                                                                                                  | 1         |   |
|     | Working The objective forms a real image of a distant object at its second focal point. The eyepiece magnifies this image producing a final inverted image.                                                                                    |           |   |
|     | Limitations It needs large sized lenses which are expensive and very heavy, difficult to make and tend to have chromatic and spherical aberrations and distortions  (Award this ½ mark if the student writes any one of these limitations)     | 1/2       |   |
| 19. | Reflecting telescopes Reflecting telescopes can overcome these limitations because the mirrors used in them  (i) are free from chromatic aberration and can have very little spherical aberration.  (ii) are less heavy and easier to support. | 1/2 + 1/2 | 3 |
|     | (a) Name and Principle of the device  (b) Circuit diagram  Working  (c) I- V characteristics  1/2 + 1/2  1/2  1/2  1/2                                                                                                                         |           |   |
|     | (a) Zener diode is used as a voltage regulator It works on the principle that after the breakdown voltage $V_Z$ , a large change in the reverse current can be produced by an almost insignificant change in the reverse bias voltage          | 1/2       |   |
|     | Alternatively: The Zener Voltage remains constant, even when the current through the Zener diode varies over a wide range.                                                                                                                     | 1/2       |   |

55/1/2 Page **12** of **26** 






55/1/2 Page **13** of **26** 



|        | [Note: Award ½ mark if the student just writes the truth table of NAND gate without drawing any diagram]                                                                                                                                   |       |   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|
| 20.    |                                                                                                                                                                                                                                            |       |   |
|        | (a) Each of the two definitions 1+1 (b) Graph                                                                                                                                                                                              |       |   |
|        |                                                                                                                                                                                                                                            |       |   |
|        | (a) (i) The threshold frequency (for a given photosensitive surface), is the minimum frequency of the incident radiation that can cause photoemission (from that surface)                                                                  |       |   |
|        | Alternatively                                                                                                                                                                                                                              |       |   |
|        | Threshold frequency = $\frac{work\ function\ (for\ the\ given\ surface)}{h}$                                                                                                                                                               |       |   |
|        | (for a given photosensitive surface)                                                                                                                                                                                                       |       |   |
|        | Alternatively The threshold frequency (for a given photosensitive surface) is that value of the frequency of incident radiation for which the photoelectrons just get emitted from the surface and have (practically) zero kinetic energy. | 1     |   |
|        |                                                                                                                                                                                                                                            | 3 8   |   |
|        | (ii) <u>Stopping Potential</u> It is the (least) value of the (negative) potential difference between the cathode and                                                                                                                      |       |   |
|        | the plate that stops the most energetic photoelectrons (getting emitted in a given set up) from just reaching the plate.                                                                                                                   | tform |   |
|        | aview r                                                                                                                                                                                                                                    |       |   |
|        | Alternatively Stopping Potential $V_0 = (h\nu - W)/e$                                                                                                                                                                                      |       |   |
|        | $\nu$ = frequency of incident radiation                                                                                                                                                                                                    |       |   |
|        | W= work function of the given photosensitive surface                                                                                                                                                                                       |       |   |
|        | [Note: Award this 1 mark even if the student just writes the formula without explaining the symbols]                                                                                                                                       | 1     |   |
|        | Alternatively                                                                                                                                                                                                                              |       |   |
|        | Stopping Potential $V_0 = \frac{h(\nu - \nu_0)}{e}$                                                                                                                                                                                        |       |   |
|        | where $v$ = frequency of incident radiation $v_0$ = threshold frequency of the given photosensitive surface                                                                                                                                |       |   |
|        | [Note: Award this 1 mark even if the student just writes the formula without explaining the symbols]                                                                                                                                       |       |   |
|        | (b) The required graph is shown below                                                                                                                                                                                                      |       |   |
|        | Stoffing Potential (Ve)  Frequency of incident Vaduations (D)                                                                                                                                                                              | 1     | 3 |
|        |                                                                                                                                                                                                                                            |       |   |
| 55/1/2 | Page <b>14</b> of <b>26</b>                                                                                                                                                                                                                |       |   |

55/1/2 Page **14** of **26** 





55/1/2 Page **15** of **26** 



| 22     |                                                                                              |           |   |
|--------|----------------------------------------------------------------------------------------------|-----------|---|
| 22.    | (a) Highest energy level to which atom will be excited 1                                     |           |   |
|        | (b) Calculation of longest Lyman wavelength                                                  |           |   |
|        | (c) Calculation of longest Balmer wavelength                                                 |           |   |
|        |                                                                                              |           |   |
|        | (a) Maximum Energy that the excited hydrogen atom can have is E=-13.6eV + 12.5eV=-1.1 eV     |           |   |
|        | Now $E_3 = \frac{-13.6}{3^2}eV = -1.5eV$ (< (-1.1eV))                                        | 1/2       |   |
|        |                                                                                              | E4 5000   |   |
|        | $E_4 = \frac{-13.6}{4^2}eV = -0.85eV  (> (-1.1eV))$                                          |           |   |
|        | It follows that the electron can only be excited up to the n=3 state.                        |           |   |
|        |                                                                                              | 1/2       |   |
|        | (b) Longest wavelength of Lyman series:                                                      |           |   |
|        | $\frac{1}{\lambda_L} = R \left[ \frac{1}{1^2} - \frac{1}{2^2} \right] = R \cdot \frac{3}{4}$ | 9.5281 PG |   |
|        | $\lambda_L$ [12 22] [14                                                                      | 1/2       |   |
|        | A                                                                                            |           |   |
|        | $\therefore \lambda_I = \frac{4}{2} \times \frac{1}{2}$                                      |           |   |
|        | A $R$                                                                                        |           |   |
|        | $=\frac{1}{2\times 1} \frac{1}{1\times 107} m \cong 1218 A^0$                                | 1/2       |   |
|        | $-\frac{1}{3 \times 1.1 \times 10^7} = 1210  \text{A}$                                       | 3         |   |
|        | Longest wavelength of Balmer series:                                                         |           |   |
|        | 1 _ [1 1]                                                                                    | -m        |   |
|        | $\frac{1}{\lambda_R} = R \left  \frac{1}{2^2} - \frac{1}{3^2} \right $                       | 1/2       |   |
|        | $\frac{R}{5R}$                                                                               |           |   |
|        | $=\frac{36}{36}$                                                                             |           |   |
|        |                                                                                              |           |   |
|        | $\lambda_B = \left(\frac{36}{5 \times 1.1 \times 10^7}\right) m \approx 6560 A^0$            | 1/2       | 3 |
|        | lia's lars                                                                                   |           |   |
| 23.    |                                                                                              |           |   |
|        | (a) Explanation of amplitude modulation 1½  (b) Calculation of modulation index 1½           |           |   |
|        | (b) Calculation of modulation mack                                                           |           |   |
|        |                                                                                              |           |   |
|        | $^{\circ}$                                                                                   | 1/2       |   |
|        | - VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV                                                       | /2        |   |
|        |                                                                                              | 1/2       |   |
|        |                                                                                              | /2        |   |
|        | $\frac{2}{2} 1 \sqrt{1 \sqrt{1 \sqrt{1 \sqrt{1 \sqrt{1 \sqrt{1 \sqrt{1 \sqrt{1 \sqrt{1$      | 1/2       |   |
|        | C_(t) for AM OF V CO                                                                         |           |   |
|        | [Note: Award 1 mark here if the student just draws the diagram of the amplitude,             |           |   |
|        | modulated wave without drawing the 'carrier wave' and the 'message signal'                   |           |   |
|        | diagrams]                                                                                    |           |   |
|        |                                                                                              |           |   |
|        | (b)                                                                                          |           |   |
|        | $a_m + a_c = 20 V$                                                                           |           |   |
|        | $a_c - a_m = 5 V$                                                                            |           |   |
|        |                                                                                              | 1/2       |   |
|        | $\Rightarrow a_c = 12.5 V$                                                                   | 1/2       |   |
|        | $a_m = 12.5 V$                                                                               |           |   |
|        | m - 1215                                                                                     |           |   |
|        |                                                                                              |           |   |
| 55/1/2 | Page <b>16</b> of <b>26</b>                                                                  |           |   |

|     | Modulation index $\mu = \frac{a_m}{a_n}$                                                                                                                                                                                               | 1/2 |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | $=\frac{7.5}{12.5}=0.6$                                                                                                                                                                                                                | 1/2 | 3 |
| 24. | (a) Explanation for formation of diffraction pattern (b) Calculation of separation  1                                                                                                                                                  |     |   |
|     | (a) From S $M_2$ $Q_\theta$ $M_2$ To C                                                                                                                                                                                                 | 1/2 |   |
|     | Path difference, NP-LP=NQ $= a \sin \theta$ $\approx a\theta$ $\approx a\theta$                                                                                                                                                        | 1/2 |   |
|     | At C on the screen, $\theta = 0^{\circ}$ . All path differences are zero and hence all wavelets meet in phase and produce a maxima at C.  At points P on the screen for which path difference is $\lambda$ , $2\lambda$ , $3\lambda$ , | 1/2 |   |
|     | At points P on the screen for which path difference is $\frac{\lambda}{2}$ , $3\frac{\lambda}{2}$ ,                                                                                                                                    |     |   |
|     | The wavelets produce a maxima due to one uncancelled part of the wavefront. $\therefore a\theta = (2n+1)\frac{\lambda}{2}$ condition for maxima $(n=1,2,\dots)$                                                                        | 1/2 |   |
|     | (b) separation between 1 <sup>st</sup> secondary maxima of the two wavelengths $= \frac{3D}{2d} (\lambda_2 - \lambda_1)$ 3×15                                                                                                          | 1/2 |   |
|     | $= \frac{3 \times 1.5}{2 \times 2 \times 10^{-4}} \times 60 \times 10^{-10} \text{ m}$ $= 67.5 \times 10^{-6} \text{ m}$ $= 67.5 \mu \text{m}$                                                                                         | 1/2 | 3 |

55/1/2 Page **17** of **26** 



 $Q = \frac{(V_{rms})_L [/(V_{rms})_C]}{(V_{rms})_R}$ 

Quantity factor is measure of the sharpness of the resonance in LCR circuit.

55/1/2 Page **18** of **26** 

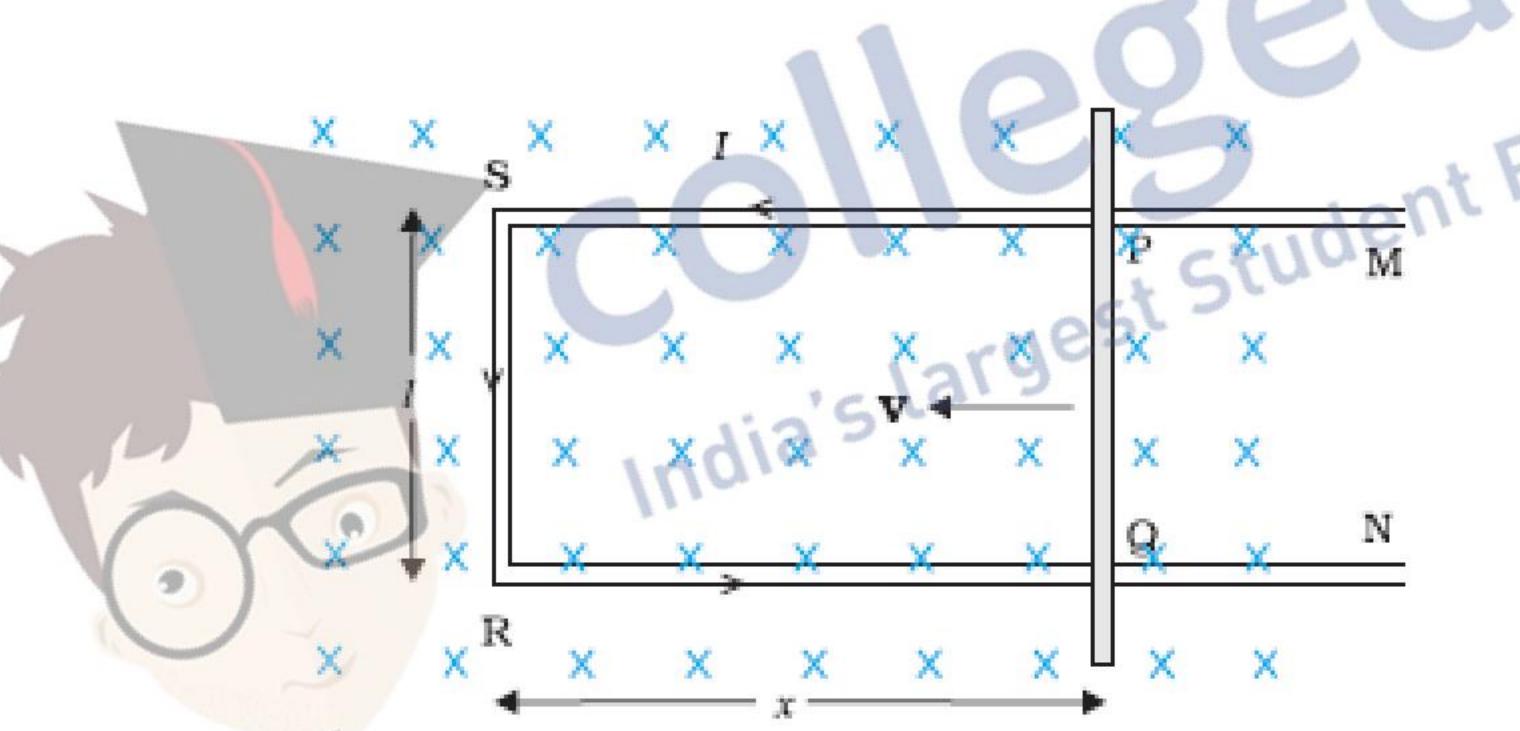
Alternatively

### Alternatively

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

OR

(a) Statement of Faraday's Laws


- (b) Derivation of the expression for the emf induced across the ends of a straight conductor

(c) Derivation of Magnetic energy stored

- (a) (i) Whenever there is a change in magnetic flux linked with a coil, an emf is induced in the coil, however it lasts so long as magnetic flux keeps on changing.
  - (ii) The magnitude of the induced emf is equal to the rate of change of magnetic flux through the circuit

Alternatively

(b)



1/2

Straight conductor PQ of length 'l' is moving with velocity 'v' in uniform magnetic field B, which is perpendicular to the plane of the system.

Length RQ=x, RS=PQ=1

Instantaneous flux= (normal) field  $\times$  area

The magnetic flux ( $\phi_B$ ) enclosed by the loop PQRS,

$$\therefore \phi_B = Blx$$

Since 'x' is changing with time, there is a change of magnetic flux. The rate of change of this magnetic flux determines the induced emf

$$\therefore e = \frac{-d\phi}{dt} = \frac{-d}{dt}(Blx)$$

$$= -Bl\frac{dx}{dt}$$

55/1/2 Page **19** of **26** 

|        | e = Blv                                                                                                                                                   | 1/2    |   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
|        | $as \frac{dx}{dt} = -v$                                                                                                                                   |        |   |
|        | $a\iota$                                                                                                                                                  |        |   |
|        | (c) Work done (that gets stored as the magnetic potential energy) when current 'I'                                                                        |        |   |
|        | flows in the solenoid.                                                                                                                                    |        |   |
|        | dW = (e)(Idt)                                                                                                                                             |        |   |
|        | $\therefore dW = \left(L\frac{dI}{dt}\right) \cdot (Idt)$                                                                                                 | 1/2    |   |
|        | -dt                                                                                                                                                       | 1/2    |   |
|        | $\therefore dW = LIdI$                                                                                                                                    |        |   |
|        | Total work done $W = \int dW = \int LI \ dI$                                                                                                              |        |   |
|        | 1                                                                                                                                                         |        |   |
|        | $W = \frac{1}{2}L I^2$                                                                                                                                    | 1/2    |   |
|        | $_{i}\mathbf{Z}_{i}$                                                                                                                                      |        |   |
|        |                                                                                                                                                           |        |   |
|        | For the solenoid, we have $L = \mu_0 n^2 A l$                                                                                                             |        |   |
|        | and $B = \mu_0 nI$                                                                                                                                        | 1/2    |   |
|        |                                                                                                                                                           | 3 8    |   |
|        |                                                                                                                                                           | J. U.  |   |
|        | $\therefore W = \frac{1}{2} \left( \mu_0 n^2 A l \right) \left[ \frac{B}{\mu_0 n} \right]^2$                                                              |        |   |
|        | $\mu_0 n^{-}$                                                                                                                                             | +form  |   |
|        | $B^2Al$                                                                                                                                                   | 1/2    | 5 |
|        | = H DeVic                                                                                                                                                 | 72     | 3 |
|        | $2\mu_0$                                                                                                                                                  |        |   |
| 26.    | aest Stu                                                                                                                                                  |        |   |
|        | (a) Angwar and instification                                                                                                                              |        |   |
|        | (a) Answer and justification (b) Explanation of the formation of interference fringes and derivation of                                                   |        |   |
|        | expression of fringe width  1 + 2                                                                                                                         |        |   |
|        | (c) Finding the intensity of light                                                                                                                        |        |   |
|        |                                                                                                                                                           |        |   |
|        | (a) No,                                                                                                                                                   | 1/2    |   |
|        | Because to obtain the steady interference pattern, the phase difference between the                                                                       | 550 62 |   |
|        | waves should remain constant with time, two independent monochromatic light                                                                               | 1/2    |   |
|        | sources cannot produce such light waves.                                                                                                                  |        |   |
|        | (b)                                                                                                                                                       |        |   |
|        | (b) When light waves from two coherent sources, in Voung's double slit experiment                                                                         | 1      |   |
|        | When light waves from two coherent sources, in Young's double slit experiment, superpose at a point on the screen, they produce constructive/ destructive |        |   |
|        | interference, depending on the path difference between the two waves.                                                                                     |        |   |
|        | micronice, acpending on the path difference between the two waves.                                                                                        |        |   |
|        |                                                                                                                                                           |        |   |
|        | p                                                                                                                                                         |        |   |
|        |                                                                                                                                                           | 1/2    |   |
|        | $\mathbf{S}_{1}$                                                                                                                                          |        |   |
|        | $\stackrel{I}{\longrightarrow} Z$                                                                                                                         |        |   |
|        | y                                                                                                                                                         |        |   |
|        | $S_2$ $D$ $\longrightarrow$                                                                                                                               |        |   |
|        |                                                                                                                                                           |        |   |
|        | $\dot{\mathbf{G}}'$                                                                                                                                       |        |   |
| 55/1/2 | Page <b>20</b> of <b>26</b>                                                                                                                               |        |   |



## Path difference between the waves reaching at point P from two sources S<sub>1</sub> and S<sub>2</sub>

$$S_2P - S_1P \approx \frac{xd}{D}$$

1/2

For constructive interference (i.e for nth bright fringe on the screen)

$$\frac{xd}{D} = n\lambda$$

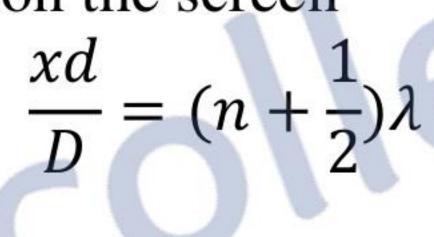
where  $n = 0, \pm 1, \pm 2, \dots$ 

$$\therefore x_n = \frac{n\lambda D}{d}$$

1/2

Similarly for (n+1)<sup>th</sup> bright fringe

$$x_{n+1} = \frac{(n+1)\lambda D}{d}$$


Fringe width  $\beta = x_{n+1} - x_n$ 

$$=\frac{\lambda D}{d}$$

1/2

### [Alternatively

Path difference for n<sup>th</sup> dark fringe on the screen



$$x_n = \frac{(n + \frac{1}{2})\lambda D}{d}$$

$$x_{n+1} = \frac{(n + \frac{3}{2})\lambda D}{d}$$

Fringe width  $\beta = x_{n+1} - x_n$ 

$$=\frac{\lambda D}{d}$$

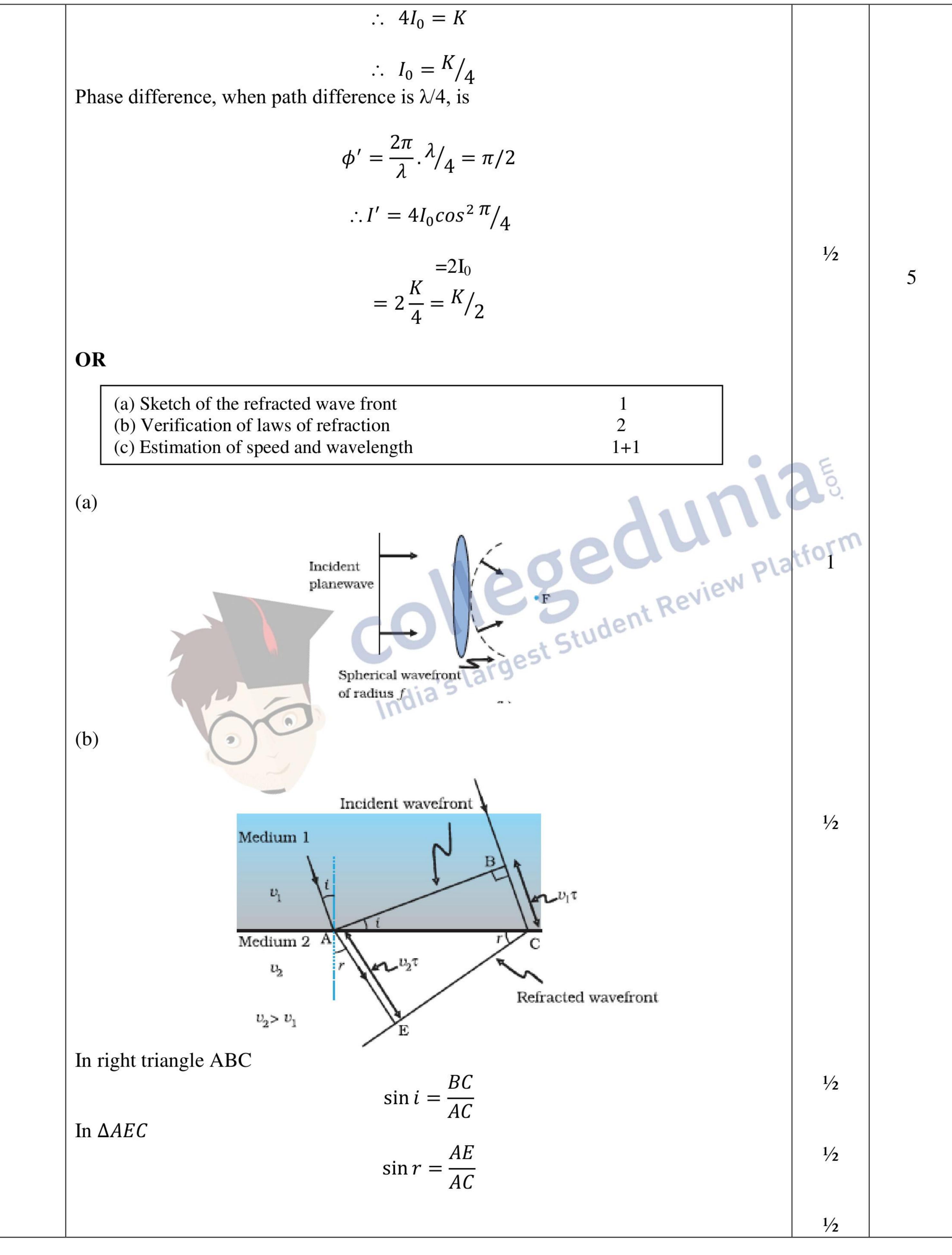
- (c) The intensity at a point on the screen where waves meet with a phase difference
- $(\phi)$ , is given by

$$I = 4I_0 \cos^2 \frac{\phi}{2}$$

72

Phase difference ( $\varphi$ ) when path difference is 'x'

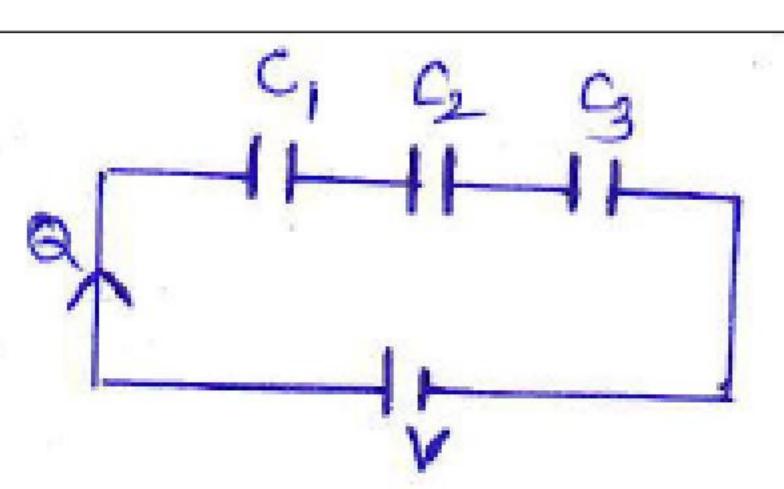
$$\phi = \frac{2\pi}{\lambda} \cdot x$$


 $\therefore$  for  $x = \lambda$ , we have

$$\phi = 2\pi$$

 $\therefore$  Intensity  $I = 4I_0 cos^2 \pi = K$ 

55/1/2 Page **21** of **26** 






55/1/2 Page **22** of **26** 



| 1 <del></del> |                                                                                                                             |      | 1 |
|---------------|-----------------------------------------------------------------------------------------------------------------------------|------|---|
|               | $\frac{\sin i}{\sin r} = \frac{BC}{AE} = \frac{v_1 \tau}{v_2 \tau} = \frac{v_1}{v_2} = \mu$                                 |      |   |
|               | (c) Speed of yellow light inside the glass slab                                                                             | 1/2  |   |
|               | $v = \frac{c}{\mu}$ $= \frac{3 \times 10^8}{1.5} m/s$ $= 2 \times 10^8 m/s$                                                 | 1/2  |   |
|               | Wavelength of yellow light inside the glass slab $\lambda' = \frac{\lambda}{\mu}$                                           | 1/2  |   |
|               | $=\frac{590}{1.5}nm$                                                                                                        | 1/2  | 5 |
| 27.           | =393.33nm  (a) Derivation of expression for the resultant capacitance in   (i) parallel (ii) series                         | torm |   |
|               | (a) (i) Parallel                                                                                                            | 1/2  |   |
|               | $Q_1 = C_1 V,$ $Q_2 = C_2 V,$ $Q_3 = C_3 V,$                                                                                | 1/2  |   |
|               | But $Q=Q_1 + Q_2 + Q_3$<br>$\therefore Q=C_1V + C_2V + C_3V$<br>$\therefore CV=C_1V + C_2V + C_3V$<br>$C = C_1 + C_2 + C_3$ | 1/2  |   |
|               | (ii) <u>Series</u>                                                                                                          | 1/2  |   |
| 55/1/2        | Page <b>23</b> of <b>26</b>                                                                                                 |      |   |



Potential difference across the plates of the three capacitors are:

$$V_1 = \frac{Q}{C_1}$$

$$V_2 = \frac{Q}{C_2}$$

$$V_3 = \frac{Q}{C_3}$$

$$\text{But V} = V_1 + V_2 + V_3$$

$$V = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3}$$

$$\therefore \frac{Q}{c} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}$$

$$\therefore \frac{1}{c_{eq}} = \frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}$$

(b) Potential difference across the capacitor of 4µf capacitance

$$V = \frac{Q}{C} = \frac{16\mu C}{4\mu F}$$

$$= 4V$$
India's largest Stude

Potential across 12µf capacitor

Energy stored on this capacitor

$$U = \frac{1}{2}CV^{2}$$

$$= \frac{1}{2}(12 \times 10^{-6})8^{2} \text{ joule}$$

$$= 6 \times 64 \times 10^{-6} \text{ joule}$$

$$= 384 \times 10^{-6} \text{ J}$$

$$= 384 \mu \text{J}$$

OR

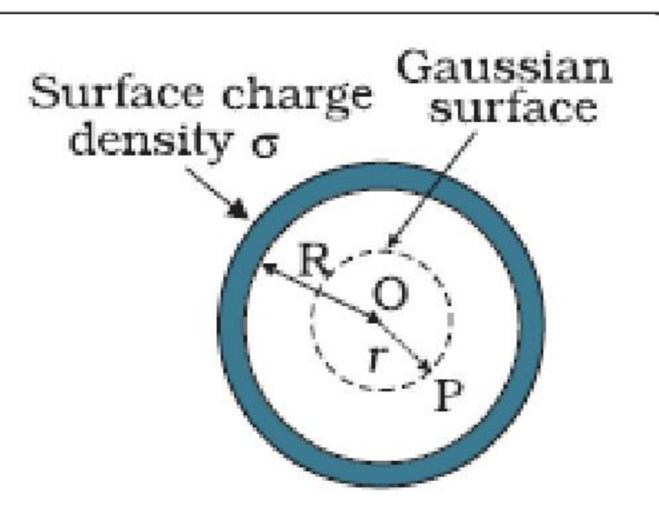
- (a) Derivation of expression for the Electric field
  - (i) inside (ii) outside

1 + 2

- (b) Graphical variation of the Electric field
- 9**.**

(c) Calculation of Electric flux

1


(a) (i) Inside

collegedunia India's largest Student Review Platform

1/2

1/2

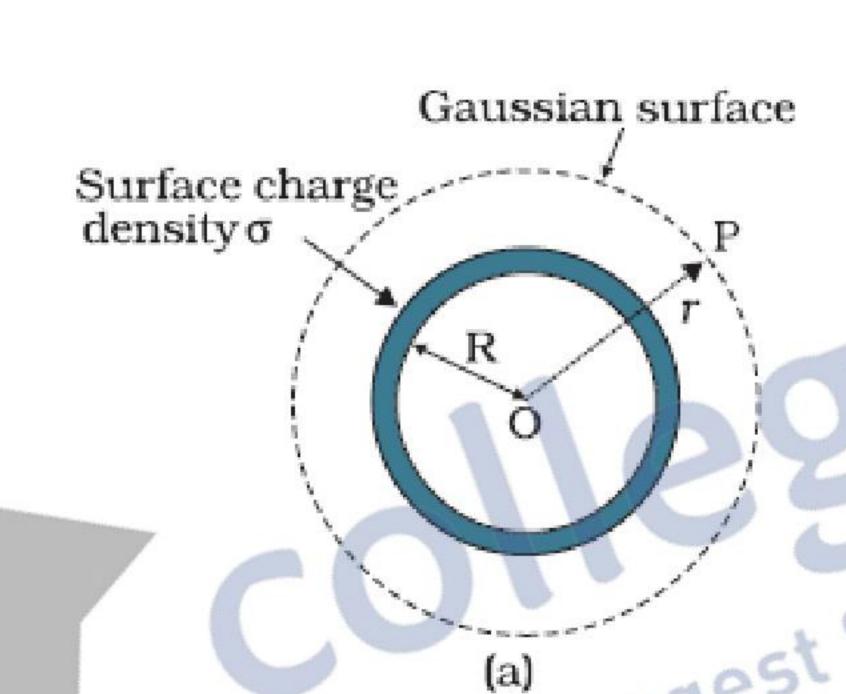
55/1/2 Page **24** of **26** 



The point P is inside the spherical shell. The Gaussian surface is a sphere through P centered at 'O'

1/2

Flux through this surface=  $E \times 4\pi r^2$ 


1/2

However there is no charge enclosed by this Gaussian surface. Hence using Gauss's Law

$$E \times 4\pi r^2 = 0$$
$$=> E=0$$

1/2

<u>Outside</u>



/ Z

1/2

 $1/_{2}$ 

To calculate Electric Field  $\vec{E}$  at the outside point P, we take the Gaussian surface to be a sphere of radius 'r' and with center O, passing through P.

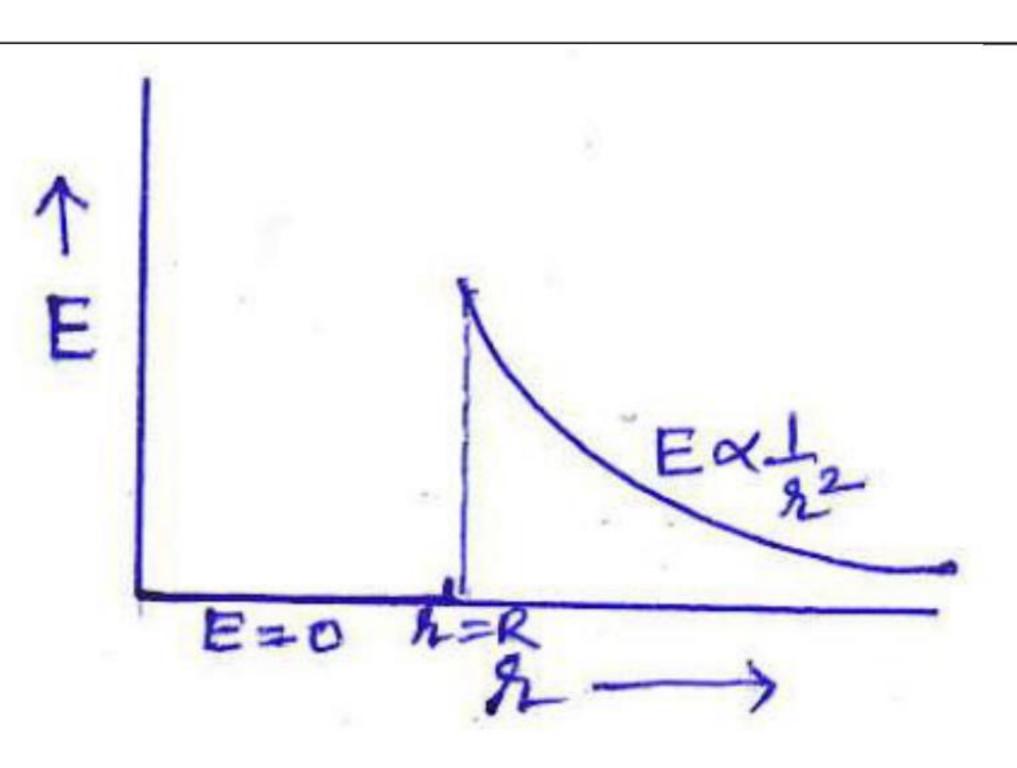
Electric Flux through the Gaussian surface  $\varphi = E \times 4\pi r^2$ 

Charge enclosed by this the Gaussian surface =  $\sigma \times 4\pi R^2$ 

By Gauss's Law

$$E \times 4\pi r^2 = \frac{\sigma \times 4\pi R^2}{\epsilon_0} = \frac{q}{\epsilon_0}$$
 Where q= total charge on the spherical shell.

 $\frac{1}{2}$ 


$$\therefore E = \frac{q}{4\pi\epsilon_0 r^2}$$

$$\vec{E} = \frac{1}{4\pi\epsilon_{0}'} \frac{q}{r^{2}} \hat{r}$$

(b)

Page **25** of **26** 





1/2

1/2

(c) Electric flux passing through the square sheet

$$\phi = \int \overrightarrow{E}.\overrightarrow{ds}$$

=EA 
$$\cos\Theta$$
  
=200 × 0.01 ×  $\cos 60^{\circ}$   
=1.0 Nm<sup>2</sup>/C

[Note: The student may do the calculation by taking  $\Theta=30^{0}$  and get  $\sqrt{3}Nm^{2}/C$  as the answer. In that case award ½ mark only for part (c)]



\*These answers are meant to be used by evaluators