DU MA Economics

Topic:- DU_J19_MA_ECO

The range of the function $f: \Re \to \Re$ defined by

$$f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$$
 is

[Question ID = 2922]

$$\left[\frac{1}{3}, \frac{8}{3}\right]$$
1. [Option ID = 11688]
$$(1, \infty)$$
2. [Option ID = 11685]
$$\left[1, \frac{7}{3}\right]$$
3. [Option ID = 11687]
$$\left[1, \frac{4}{3}\right]$$
4. [Option ID = 11686]

Correct Answer :-

2)

Scenario 3 (this scenario appears in multiple questions):

Data from a random sample of 107 home sales in 2003 yielded the regression

$$\hat{P} = 119.2 + 0.485*BD + 23.4*BA + 0.156*HS + 0.002*PS + 0.090*A - 35.6*PC$$
(23.9) (2.61) (10.76) (0.011) (0.00048) (0.311) (10.5)

 $R^2 = 0.72$; SER = 41.5, P is price or value (Rs. 1000), BD is number of bedrooms, BA is number of baths, HS is house size (sq. ft.), PS is plot size (sq. ft.), A is age (years), PC is a dummy variable = 1 if the house is in poor condition and = 0 otherwise; and the parentheses contain standard errors of the corresponding coefficients. SER is the standard error of the regression.

Question: If a homeowner adds a new bathroom to her house which increases the house size by 100 sq. ft., what is the expected increase in the value of the house?

[Question ID = 2951]

1. Rs.
$$37,000$$
 [Option ID = 11801] Rs. $39,450$ [Option ID = 11802]

Rs. 39,000 [Option ID = 11804]

4. Rs. 37,200 [Option ID = 11803]

Correct Answer :-

Rs. 39,000 [Option ID = 11804]

The maximum value attained by the function $f(x) = x^3 - x^2 - x - 1$ on the set $S = \{x | x^2 - x - 2 \le 0\}$ occurs at

[Question ID = 2929]

x=21. [Option ID = 11715]

x = 5/2

2. [Option ID = 11716]

x = 1

3. [Option ID = 11713]

x = 1/3 [Option ID = 11714]

Correct Answer :-

x=2 [Option ID = 11715]

4) A random variable X has a standard normal distribution. What is the closest guess to the probability that X lies in the interval [2, 3]?

[Question ID = 2946]

0.05

1. [Option ID = 11784]

0.001 [Option ID = 11781]

0.25 [Option ID = 11783]

0.025 4. [Option ID = 11782]

Correct Answer :-

0.025

• [Option ID = 11782]

5)

Consider Scenario 1 (this scenario appears in multiple questions):

Consider utility functions

$$u_1(x,y) = \begin{cases} 2x, & \text{if } y/x > 2\\ \max\{x,y\}, & \text{if } y/x \in [1/2,2]\\ 2y, & \text{if } y/x < 1/2 \end{cases}$$

and

$$u_2(x,y) = \begin{cases} 2x, & \text{if } y/x > 2\\ x+y, & \text{if } y/x \in [1/2, 2]\\ 2y, & \text{if } y/x < 1/2 \end{cases}$$

Let $p_x > 0$ and $p_y > 0$ be the prices of goods x and y respectively. Let w > 0 denote wealth (or income).

Question: For i = 1, 2, let $h_i(p_x, p_y, U)$ denote the set of solutions of the problem: choose x > 0 and y > 0 to minimise $p_x x + p_y y$ subject to $u_i(x,y) \ge U$. Let $e_i(p_x, p_y, U) = p_x X + p_y Y$, where $(X, Y) \in h_i(p_x, p_y, U)$.

[Question ID = 2907]

None of the above hold necessarily. [Option ID = 11628]

$$h_1(p_x,p_y,U) = h_2(p_x,p_y,U) \enskip \begin{tabular}{l} & \text{ [Option ID = 11627]} \\ & \text{ } \enskip \enskip } \enskip \enskip \enskip \enskip } \enskip \e$$

$$h_1(p_x,p_y,U)\subset h_2(p_x,p_y,U)$$
 [Option ID = 11625]

$$\begin{array}{ll} h_1(p_x,p_y,U) \subset h_2(p_x,p_y,U) \\ \text{3.} & h_1(p_x,p_y,U) \supset h_2(p_x,p_y,U) \\ \text{4.} & \text{[Option ID = 11625]} \end{array}$$

Correct Answer :-

None of the above hold necessarily. [Option ID = 11628]

6)
$$\lim_{x\to\infty} \left(\frac{x^2-x+1}{x+1}-c_1x-c_2\right) = -5$$
. So, it must be that (c_1,c_2) equals

[Question ID = 2924]

$$(2, -3)$$

$$(1,2)$$
3. [Option ID = 11695]

$$(2,3)$$
4. [Option ID = 11694]

Correct Answer :-

(1, 3)

[Option ID = 11696]

7) The efficiency wage theory argues that

[Question ID = 2937]

Firms choose to pay a lower wage than the classical equilibrium wage, thus the real wage is lower than the wage at which the labor market clears.

[Option ID = 11747]

Firms choose to pay a higher wage than the classical equilibrium wage, thus

the real wage is higher than the wage at which the labor market clears.

[Option ID = 11745]

Firms choose to pay a higher wage than the classical equilibrium wage, thus

the real wage is lower than the wage at which the labor market clears.

[Option ID = 11746]

Firms choose to pay a lower wage than the classical equilibrium wage, thus the

real wage is higher than the wage at which the labor market clears.

[Option ID = 11748]

Correct Answer :-

Firms choose to pay a higher wage than the classical equilibrium wage, thus the real wage is higher than the wage at which the labor market clears.

[Option ID = 11745]

8) According to the theory of comparative advantage, countries gain from trade because

[Question ID = 2913]

All firms can take advantage of cheap labor. [Option ID = 11650]

Trade makes firms behave more competitively, reducing their market power.

ID = 116491

Output per worker in each firm increases.

[Option ID = 11651]

World output can rise when each country specializes in what its does relatively best.

(Option ID = 11652)

Correct Answer :-

World output can rise when each country specializes in what its does relatively best.

[Option ID = 11652]

9) In the 2-factor, 2-good Heckscher-Ohlin model, the two countries differ in

[Question ID = 2915]

tastes

[Option ID = 11660]

relative availabilities of factors of production

[Option ID = 11659]

3. labour productivities [Option ID = 11658]

technologies

[Option ID = 11657]

Correct Answer :-

relative availabilities of factors of production

[Option ID = 11659]

10)

The line y = 2x + 5 is tangent to a circle with equation $x^2 + y^2 + 16x + 12y + c = 0$, at point P. So, P equals

[Question ID = 2923]

(-6, -7)

. [Option ID = 11691]

(-9, -7) [Option ID = 11689]

(-11, -15)

[Option ID = 11692]

(-10, -12)

[Option ID = 11690]

Correct Answer :-

(-6, -7)

[Option ID = 11691]

11)

The random variable X denotes the number of successes in a sequence of independent trials, each with a probability p of success. Let \overline{X} denote the mean number of successes. We know that \overline{X}

[Question ID = 2949]

approximates a Normal distribution with mean p

[Option ID = 11795]

has a Binomial distribution with mean p2. [Option ID = 11793]

None of the above

[Option ID = 11796]

has a Normal distribution with mean p

[Option ID = 11794]

Correct Answer :-

approximates a Normal distribution with mean p

[Option ID = 11795]

12)

Consider Scenario 2 (this scenario appears in multiple questions):

Trader 1 is endowed with 100 identical Left shoes. Trader 2 is endowed with 99 identical Right shoes. Each trader's utility from her allocation of shoes is equal to the number of complete pairs of shoes in the allocation. Traders 1 and 2 trade shoes in competitive markets and arrive at a competitive equilibrium. Assume that shoes are infinitely divisible.

Question: Given their endowments, an efficient allocation

[Question ID = 2910]

- nust give trader 1 at least 99 Left shoes
 [Option ID = 11639]
 must give trader 1 at least 50 Right shoes
- 2. [Option ID = 11638]

none of the above

[Option ID = 11640]

4. must give trader 1 at least 50 Left shoes [Option ID = 11637]

Correct Answer :-

none of the above

• [Option ID = 11640]

13)

A family has two children and it is known that at least one is a girl. What is the probability that both are girls given that at least one is a girl?

[Question ID = 2943]

1.
$$\frac{1}{2}$$
 [Option ID = 11769]

2. [Option ID = 11772]

3. [Option ID = 11770]

4. [Option ID = 11771]

Correct Answer :-

•
$$\frac{1}{3}$$
 [Option ID = 11770]

14)

It is known that there is a rational number between any two distinct irrational numbers. Consider a continuous function $f: \Re \to \Re$ such that $f(x) = \sin x$ for every rational number x. If x is an irrational number, then

[Question ID = 2918]

$$f(x) = \sin x$$
1. [Option ID = 11672]
$$f(x) = (\sin x)/2 + (\cos x)/2$$
2. [Option ID = 11670]
$$f(x) = \sin(x/2) + \cos(x/2)$$
3. [Option ID = 11669]
$$f(x) = \cos x$$
4. [Option ID = 11671]

Correct Answer :-

$$f(x) = \sin x$$
 [Option ID = 11672]

15)

Consider Scenario 2 (this scenario appears in multiple questions):

Trader 1 is endowed with 100 identical Left shoes. Trader 2 is endowed with 99 identical Right shoes. Each trader's utility from her allocation of shoes is equal to the number of complete pairs of shoes in the allocation. Traders 1 and 2 trade shoes in competitive markets and arrive at a competitive equilibrium. Assume that shoes are infinitely divisible.

Question: An equilibrium allocation of shoes gives trader 2

[Question ID = 2909]

```
at most 50 Right shoes

1. [Option ID = 11636]

at least 99 Left shoes

2. [Option ID = 11634]

at most 50 Left shoes

3. [Option ID = 11633]

at most 99 Left shoes

4. [Option ID = 11635]
```

Correct Answer :-

```
at least 99 Left shoes
[Option ID = 11634]
```

16)

Assume that the aggregate production of an economy is $Y_t = \sqrt{K_t L_t}$, where $K_{t+1} = (1 - \delta)K_t + I_t$, $S_t = sY_t$ and $L_t = L$ (i.e., the notation and meanings correspond to the setting for the Solow Model with constant population). Then, the savings rate s that maximizes the steady state rate of consumption equals

[Question ID = 2932]

1/21. [Option ID = 11726] $\delta/(1+\delta)$ 2. [Option ID = 11725] None of the above. [Option ID = 11728]

 $1/(1+\delta)$ [Option ID = 11727]

Correct Answer :-

[Option ID = 11726]

17) Consider a function $f: \Re^2 \to \Re$. Suppose, for every $p \in \Re^2$, there exists $x(p) \in \Re^2$

such that $f(x(p)) \ge 1$ and $p.x(p) \le p.y$ for every $y \in \Re^2$ such that $f(y) \ge 1$. Define $g: \Re^2 \to \Re$ by g(p) = p.x(p). Then, g is

[Question ID = 2920]

linear

[Option ID = 11677]

quasi-convex

[Option ID = 11679]

3. CONVEX [Option ID = 11678] concave

[Option ID = 11680]

Correct Answer :-

concave

[Option ID = 11680]

18)

Given nonempty subsets of \Re^2 , say Y_1, \ldots, Y_n , let $Y^* = \{\sum_{j=1}^n y_j \mid y_1 \in Y_1, \ldots, y_n \in Y_n\}$ Y_n . Given $p \in \Re^2$ and a nonempty set $Y \subset \Re^2$, let $V(p,Y) = \sup\{p.y \mid y \in Y\}$. Then, for every p,

[Question ID = 2921]

$$v(p, Y^*) \ge \sum_{j=1}^n v(p, Y_j)$$
[Option ID = 11684]

$$v(p,Y^*)=\sum_{j=1}^n v(p,Y_j)$$
 [Option ID = 11682]

$$v(p,Y^*) \leq \sum_{j=1}^n v(p,Y_j)$$
 [Option ID = 11683]
$$v(p,Y^*) < \sum_{j=1}^n v(p,Y_j) \text{ or } v(p,Y^*) \geq \sum_{j=1}^n v(p,Y_j)$$

[Option ID = 11681]

Correct Answer :-

 $v(p,Y^*) = \sum_{j=1}^n v(p,Y_j)$ [Option ID = 11682]

19)

In a simple open economy framework, an increase in government spending leads to

[Question ID = 2939]

A rise in budget deficit and a fall in current account deficit

1. [Option ID = 11753]

A fall in both budget and current account deficits

2. [Option ID = 11756]

A fall in budget deficit and a rise in current account deficit
[Option ID = 11754]

A rise in both budget and current account deficits
[Option ID = 11755]

Correct Answer :-

A rise in both budget and current account deficits

[Option ID = 11755]

The matrix $Q = PAP^T$, where P^T is the transpose of the matrix P, and

$$P = \left(\begin{array}{cc} \sqrt{3}/2 & 1/2\\ -1/2 & \sqrt{3}/2 \end{array}\right)$$

$$A = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Then, $P^TQ^{12}P$ equals

[Question ID = 2925]

$$\left(\begin{array}{cc}
1 & 0 \\
144 & 1
\end{array}\right)$$

[Option ID = 11699]

$$\left(\begin{array}{cc} 1 & 144 \\ 0 & 1 \end{array}\right)$$

2. [Option ID = 11698]

$$\left(\begin{array}{ccc}
2+\sqrt{3} & 1 \\
-1 & 2-\sqrt{3}
\end{array}\right)$$

3. [Option ID = 11700]

 $\begin{pmatrix} 1 & 12 \\ 0 & 1 \end{pmatrix}$ 4. [Option ID = 11697]

Correct Answer:-

$$\begin{pmatrix} 1 & 12 \\ 0 & 1 \end{pmatrix}$$

• [Option ID = 11697]

21)

Nitin is a stamp collector and consumes only stamps and cheese sandwiches. His utility function is $u(s,c) = s + \log c$. If Nitin is at a point where he is consuming both goods, then the total amount that he is spending on cheese sandwiches depends

[Question ID = 2912]

on all three of the above

1. [Option ID = 11648]

only on the price of stamps

[Option ID = 11646]

only on the price of sandwiches

[Option ID = 11645]

only on his income

[Option ID = 11647]

Correct Answer :-

only on the price of stamps

• [Option ID = 11646]

22) [Question ID = 2933]

- 1. [Option ID = 11732]
- 2. [Option ID = 11730]
- 3. [Option ID = 11729]
- 4. [Option ID = 11731]

Correct Answer :-

• [Option ID = 11730]

23) [Question ID = 2930]

- 1. [Option ID = 11719]
- 2. [Option ID = 11720]
- 3. [Option ID = 11718]
- 4. [Option ID = 11717]

Correct Answer :-

• [Option ID = 11718]

24) [Question ID = 2934]


```
1. [Option ID = 11736]
2. [Option ID = 11735]
3. [Option ID = 11733]
4. [Option ID = 11734]
Correct Answer :-
• [Option ID = 11735]
    [Question ID = 2911]
1. [Option ID = 11643]
2. [Option ID = 11644]
3. [Option ID = 11641]
4. [Option ID = 11642]
Correct Answer :-
• [Option ID = 11641]
26)
    [Question ID = 2927]
1. [Option ID = 11705]
2. [Option ID = 11707]
3. [Option ID = 11708]
4. [Option ID = 11706]
Correct Answer:-
• [Option ID = 11708]
27)
    [Question ID = 2954]
1. [Option ID = 11815]
```

- 2. [Option ID = 11813]
- 3. [Option ID = 11816]
- 4. [Option ID = 11814]

Correct Answer :-

• [Option ID = 11815]

28) [Question ID = 2938]

- 1. [Option ID = 11749]
- 2. [Option ID = 11751]
- 3. [Option ID = 11752]
- 4. [Option ID = 11750]

Correct Answer :-

• [Option ID = 11749]

29) [Question ID = 2917]

- 1. [Option ID = 11666]
- 2. [Option ID = 11665]
- 3. [Option ID = 11668]
- 4. [Option ID = 11667]

Correct Answer :-

• [Option ID = 11668]

30) [Question ID = 2919] 1. [Option ID = 11676] 2. [Option ID = 11675] 3. [Option ID = 11673] 4. [Option ID = 11674] Correct Answer :- [Option ID = 11674] 31) [Question ID = 2908] 1. [Option ID = 11630] 2. [Option ID = 11631] 3. [Option ID = 11629] 4. [Option ID = 11632] Correct Answer :- [Option ID = 11632] [Question ID = 2952] 1. [Option ID = 11805] 2. [Option ID = 11807] 3. [Option ID = 11806] 4. [Option ID = 11808] Correct Answer :-• [Option ID = 11807] 33) [Question ID = 2931] 1. [Option ID = 11724] 2. [Option ID = 11721] 3. [Option ID = 11723] 4. [Option ID = 11722] Correct Answer :-• [Option ID = 11722] [Question ID = 2947] 1. [Option ID = 11785] 2. [Option ID = 11788] 3. [Option ID = 11786] 4. [Option ID = 11787] Correct Answer :-• [Option ID = 11787] 35) [Question ID = 2950] 1. [Option ID = 11800] 2. [Option ID = 11799]

3. [Option ID = 11797]


```
4. [Option ID = 11798]
Correct Answer :-

    [Option ID = 11798]

36)
    [Question ID = 2936]
1. [Option ID = 11744]
2. [Option ID = 11743]
3. [Option ID = 11742]
4. [Option ID = 11741]
Correct Answer :-
• [Option ID = 11741]
    [Question ID = 2953]
1. [Option ID = 11812]
2. [Option ID = 11811]
3. [Option ID = 11809]
4. [Option ID = 11810]
Correct Answer :-

    [Option ID = 11809]

38)
    [Question ID = 2926]
1. [Option ID = 11704]
2. [Option ID = 11703]
3. [Option ID = 11702]
4. [Option ID = 11701]
Correct Answer :-

    [Option ID = 11702]

    [Question ID = 2955]
1. [Option ID = 11817]
2. [Option ID = 11818]
3. [Option ID = 11820]
4. [Option ID = 11819]
Correct Answer :-
• [Option ID = 11818]
40)
    [Question ID = 2945]
1. [Option ID = 11779]
2. [Option ID = 11778]
3. [Option ID = 11780]
4. [Option ID = 11777]
Correct Answer :-
• [Option ID = 11778]
```

41)

[Question ID = 2928] 1. [Option ID = 11712] 2. [Option ID = 11711] 3. [Option ID = 11709] 4. [Option ID = 11710] Correct Answer :-• [Option ID = 11710] [Question ID = 2940] 1. [Option ID = 11760] 2. [Option ID = 11758] 3. [Option ID = 11757] 4. [Option ID = 11759] Correct Answer :-• [Option ID = 11759] 43) [Question ID = 2941] 1. [Option ID = 11762] 2. [Option ID = 11764] 3. [Option ID = 11763] 4. [Option ID = 11761] Correct Answer :-• [Option ID = 11763] [Question ID = 2944] 1. [Option ID = 11774] 2. [Option ID = 11773] 3. [Option ID = 11775] 4. [Option ID = 11776] Correct Answer :- [Option ID = 11776] 45) [Question ID = 2914] 1. [Option ID = 11654] 2. [Option ID = 11653] 3. [Option ID = 11656] 4. [Option ID = 11655] Correct Answer :- [Option ID = 11654] 46) [Question ID = 2935] 1. [Option ID = 11740] 2. [Option ID = 11739] 3. [Option ID = 11738] 4. [Option ID = 11737]

Correct Answer :-

• [Option ID = 11737] 47) [Question ID = 2948] 1. [Option ID = 11792] 2. [Option ID = 11790] 3. [Option ID = 11789] 4. [Option ID = 11791] Correct Answer :-• [Option ID = 11790] 48) [Question ID = 2916] 1. [Option ID = 11662] 2. [Option ID = 11661] 3. [Option ID = 11663] 4. [Option ID = 11664] Correct Answer :-• [Option ID = 11664] [Question ID = 2942] 1. [Option ID = 11767] 2. [Option ID = 11768] 3. [Option ID = 11765] 4. [Option ID = 11766] Correct Answer :-• [Option ID = 11767] 50) [Question ID = 2906] 1. [Option ID = 11623] 2. [Option ID = 11624] 3. [Option ID = 11621] 4. [Option ID = 11622] • [Option ID = 11623]

